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Abstract 

Quantifying the smoothness of different layers of the retina can potentially be an important and practical biomarker 
in various pathologic conditions like diabetic retinopathy. The purpose of this study is to develop an automated 
machine learning algorithm which uses support vector regression method with wavelet kernel and automatically 
segments two hyperreflective retinal layers (inner plexiform layer (IPL) and outer plexiform layer (OPL)) in 50 optical 
coherence tomography (OCT) slabs and calculates the smoothness index (SI). The Bland–Altman plots, mean abso‑
lute error, root mean square error and signed error calculations revealed a modest discrepancy between the manual 
approach, used as the ground truth, and the corresponding automated segmentation of IPL/ OPL, as well as SI meas‑
urements in OCT slabs. It was concluded that the constructed algorithm may be employed as a reliable, rapid and 
convenient approach for segmenting IPL/OPL and calculating SI in the appropriate layers.

Keywords Automated segmentation, Support vector regression, Inner plexiform layer, Outer plexiform Layer, Bland‑
Altman plot, Biomarker

Introduction
Optical Coherence Tomography (OCT) is a non-invasive 
and powerful imaging technique that uses low-coherence 
interferometry to obtain high-resolution multidimen-
sional images of biological retinal tissue [1]. OCT pro-
vides an in  vivo cross-sectional image from the retinal 
layers which typically lose their normal characteristics, 
such as thickness, smoothness, and organization, as a 
result of various pathologic conditions, including the 
diabetic retinopathy, age-related macular degeneration 
(AMD), and retinal vascular events [2–5]. Thus, quan-
tifying these structural changes of retinal layers by pro-
cessing the OCT images will provide useful information 
about the severity of involvement and also response to 
treatments [6]. In this way, segmentation of retinal layers 
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is essential for this purpose and has been proposed using 
manual, semi-automatic, and fully automated methods 
[7–11].

On spectral-domain OCT (SD-OCT), the healthy retina 
has an organized, layered structure that is highlighted by 
diverse reflectance patterns. As knowledge of SD-OCT 
increased, plenty of imaging biomarkers were suggested 
to estimate the visual prognosis, such as the amount of 
the central retinal thickness (which reflects the entire ret-
ina), the attenuation of the ellipsoid zone (EZ) or exter-
nal limiting membrane (ELM) (which reflect the outer 
retinal incompetence) and disorganization of the reti-
nal inner layers (DRIL) (which reflects the inner retina) 
[12–14]. Improved risk stratification utilizing new OCT 
biomarkers would aid in disease morphology characteri-
zation, advise the optimum use of specific therapies (e.g., 
anti-vascular endothelial growth factor (VEGF) therapy), 
enhance prognosis counseling, and help define the inclu-
sion criteria for therapeutic trials more precisely [15].

Moreover, the inner plexiform layer (IPL; also known 
as the inner synaptic layer) is made up of synaptic con-
nections between bipolar cell axons and ganglion cell 
dendrites. In the visual pathway, the IPL includes the 
synapse between second-order and third-order neurons. 
The outer plexiform layer (OPL; also known as the outer 
synaptic layer) made up synapses between photorecep-
tor cells and cells from the inner nuclear layer. Because 
ischemic processes and structural abnormalities such as 
epiretinal membranes (ERM), may possibly impact the 
inner portions of the retina, the research of biomarkers 
that particularly evaluate the inner retina has gained a lot 
of interest in recent years [16]. For instance, disorganiza-
tion of the retinal inner layers (DRIL) is a newly discov-
ered and reliably prognostic imaging biomarker. DRIL is 
defined by disorganization of inner retinal laminations 
as well as an inability to distinguish the borders between 
the layers. Sun et al. defined DRIL and established a con-
nection between it and visual acuity (VA) in patients 
with diabetic macular edema (DME) for the first time 
[17]. Since then, DRIL has been implicated in a variety 
of retinal pathologies, including retinal vein occlusions 
(RVO), nonproliferative diabetic retinopathy (NPDR) and 
proliferative diabetic retinopathy (PDR) with or with-
out DME, epiretinal membranes (ERM), uveitic cystoid 
macular edema (CME), central retinal artery occlusion, 
and macular telangiectasia [17–28]. While DRIL may be 
an excellent VA correlate in a variety of retinal ischemic 
disorders, precise and repeatable measurements of DRIL 
may be challenging. Interobserver agreement for DRIL 
assessment was low in individuals with macular edema 
due to RVO. Macular edema may obscure the bounda-
ries necessary for an appropriate assessment of DRIL. So, 

prior to regular use of this measure in clinical practice, an 
automated and algorithmic surrogate of DRIL is likely to 
be needed [29].

In this regard, Cho et  al. compared the correlations 
between the inner-retinal irregularity index, defined as 
the length ratio between the inner plexiform layer and 
retinal pigment epithelium, and visual outcomes before 
and after epiretinal membrane (ERM) surgery. The inner-
retinal irregularity index was shown to be strongly asso-
ciated with visual results before and after ERM surgery. 
They showed that this index has the potential to serve as 
a novel surrogate measure for inner-retinal damage as 
well as a predictive prognostic sign in ERM [30]. Neuron 
J, a semi-automated layer-tracing software program that 
is a plug-in module for ImageJ, a free JAVA-based image 
analysis software package, was used to compute the 
irregularity index. However, the software fails to identify 
the right route in certain places with low-contrast layers. 
In this instance, the tracing mode is switched to manual 
tracing mode in order to precisely measure the length of 
interest [30].

Since the manual segmentation using applications such 
as ImageJ is time-consuming and extremely vulnerable 
to intra- and interobserver variability, automated tech-
niques have been developed to overcome these issues 
[31–35]. Researchers have long studied the thickness of 
different layers of the retina as an important and practi-
cal biomarker in the diagnosis and treatment of various 
retinal diseases. Numerous studies focused on segment-
ing the retinal layers in OCT images to generate reti-
nal thickness maps as well as establishing a correlation 
between the produced maps and associated retinopathies 
[30, 36, 37]. The formation of the retina as a series of par-
allel layers stacked on top of one another has prompted 
researchers to consider the degree of irregularity and 
thickness of these layers in various retinal conditions 
[17–19, 27–29]. We previously introduced a novel bio-
marker -iris smoothness index (SI)-into anterior seg-
ment optical coherence tomography (AS-OCT) images 
of patients with Fuchs uveitis and developed an auto-
mated method for its measurement [38, 39]. The man-
ual segmentation of retinal layers in OCT images using 
ImageJ software, which is time-consuming and needs a 
skilled operator, may restrict the practical applicability 
of SI quantification in retinal layers. To overcome these 
limitations, in the current study we aimed to develop an 
automated algorithm for calculating the SI in two hyper-
reflective retinal layers (inner plexiform layer (IPL) and 
outer plexiform layer (OPL)) in patients with varying 
stages of diabetic retinopathy and compare the results to 
those obtained by experts using the manual method as 
the ground truth.
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Methods
Data acquisition and adjustment
The dataset for this study was supplied by the Farabi 
Eye Hospital at Tehran University of Medical Sciences 
in Tehran, Iran. The RTVue XR 100 Avanti device 
(Optovue, Inc., Fremont, CA, USA) was used to cap-
ture enhanced-depth imaging optical coherence tomog-
raphy (EDI-OCT) images between 8:00 and 12:00 a.m. 
Patients were positioned appropriately, and 8  mm * 
12 mm raster patterns of OCT B-scans were captured. 
For image analysis and SI calculation, scans passing 
through the fovea as well as equally spaced rasters in 
the superior and inferior macular areas were chosen. In 
OCT scans above or below the fovea, the IPL and OPL 
layers are often separated and parallel. But, due to the 
near proximity of IPL and OPL in the foveal region, it 
might be challenging for the algorithm to differentiate 
between the layers.

To evaluate the accuracy of the algorithm in a robust 
and precise manner in the current investigation, we 
selected similar OCT rasters in all patients with equal 
distances from the fovea and assessed the accuracy of 
segmentation and measurement.

We omitted low-quality scans due to conditions like 
cataract or other causes of hazy media in which the IPL 
and OPL were not discernible. Due to structural OCT 
alterations, such as the presence of exudate, which may 
impact OPL and IPL segmentation, we also removed 
some OCT scans.

Finally, we included 50 OCT B-scans from 21 patients 
with various stages of diabetic retinopathy (mild to 
severe non-proliferative diabetic retinopathy and pro-
liferative diabetic retinopathy) in this study. The images 
were originally 256 × 728 pixels in size. The inner plexi-
form layer (IPL) and outer plexiform layer (OPL) in OCT 
images were manually segmented by two retina experts 

Fig. 1 Steps of the proposed automated method. After denoising the original image (a) by non‑local means denoising algorithm (b), the retinal 
area is localized using Gabor filters (c). A search strategy is used to perform the initial prediction of the IPL and OPL layers (d). Then dilation and 
erosion are performed in order to remove undesirable areas and improve the predicted layers (e). Finally, the boundaries are detected using an 
SVR‑based model (f)
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(H.R.E and E.K.P using the public domain ImageJ soft-
ware (available in the public domain at Fiji http:// imagej. 
nih. gov/ ijwas).

The proposed automated algorithm, developed in the 
current study by Python framework, consists of three 
stages: pre-processing; segmentation of the retinal IPL 
and OPL layers using support vector regression (SVR); 
and smoothness index calculation. The proposed steps 
of the automated method are depicted in Fig.  1. After 
denoising the original image (Fig. 1a) by non-local means 
denoising algorithm (Fig. 1b), the retinal area is localized 
using Gabor filters (Fig. 1c). A search strategy is used to 
perform the initial prediction of the IPL and OPL layers 
(Fig. 1d). Then, as morphological operations, dilation and 
erosion are performed in order to remove undesirable 
areas and improve the predicted layers (Fig. 1e). Finally, 
the boundaries are detected using an SVR-based model 
(Fig. 1f ).

In preprocessing stage, low pass Gaussian filter with 
kernel size of 11 × 11 as well as a non-local means algo-
rithm were used to reduce the noise of OCT images. 
This algorithm is an image noise reduction method 
that, unlike local and global methods, uses a different 
and smarter approach for denoising in such a way that 
it considers similar parts in image in terms of texture 
and structure, and detects and removes noisy points by 
averaging. Then, histogram equalization was applied to 
increase the contrast of the image.

Localization of retinal area was carried out using Gabor 
filter. Upper and lower limits of the retina were obtained 
using segmentation of internal limiting membrane (ILM) 
and retinal pigment epithelium (RPE) layers. Gabor fil-
tering with two different kernels was used for obtaining 
these boundaries as shown in the following formula.

where

and � is the wavelength of sinusoidal component, θ repre-
sents the orientation of the normal to the parallel stripes 
of Gabor function, ψ denotes the phase offset of the sinu-
soidal function, σ is the standard deviation of the Gauss-
ian envelope and γ is the spatial aspect ratio and specifies 
the elasticity support of Gabor function. By properly 
selecting of �, θ ,ψ , σ and γ parameters, we obtained two 
different kernels that shown in Fig. 2(1,2). After applying 
them to the original image (Fig. 2a), the boundaries of the 
ILM and RPE were obtained that shown in Fig. 2b. In this 
way, as you can see in Fig. 2c the retinal area is separated 

(1)

g(x, y; �, θ ,ψ , σ , γ ) = exp −
x′2 + γ 2y′2

2σ 2
cos(2π

x′

�
+ ψ),

(2)x
′

= xcosθ + ysinθ , y
′

= −xsinθ + ycosθ ,

from the rest of the image. The selected parameters for 
two kernels were summarized in Table 1. In the current 
study, the initial parameters were chosen in a way that 

Fig. 2 The result of localization of retinal area: (1,2) Gabor kernels, 
(a) Original image, (b) Upper and lower boundaries of the retina, (c) 
Segmented retina region

http://imagej.nih.gov/ijwas
http://imagej.nih.gov/ijwas
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the resulted segmentation visually resembles the out-
put of the original OCT image. In this manner, we find a 
ground truth interval for the parameters. In the next step 

the values were carefully changed to increase the preci-
sion of the obtained layer according to the original image.

IPL and OPL segmentation
We automatically acquired the retinal area as a region of 
interest in the previous steps, which has the benefit of 
reducing background noise and therefore facilitating the 
segmentation of the IPL and OPL layers. For segmenta-
tion of IPL and OPL layers, we smooth our original image 
(Fig.  3a) using Gaussian filter (Fig.  3b) and then go to 
reduce image noise (Fig.  3c). In the next step, we go to 

Table 1 Parameters used for two kernels for segmentation of 
ILM and RPE layers

Kernel � θ ψ σ γ

Kernel 1 for ILM layer π
4

2π
4

11 23 14

Kernel 2 for RPE layer π
4

2π
4

− 1.5 20 11

Fig. 3 Pre‑processing stage: a Original image, b Smoothed image using Gaussian filter, c Denoised image using non‑localization method, d 
Enhanced image using histogram equalization, e Binarized image using a search strategy, f Result of applying morphological operators



Page 6 of 16Saeidian et al. BMC Medical Imaging           (2023) 23:21 

the enhanced image using histogram equalization that 
result of this process is shown in Fig.  3d. Initial predic-
tion of the layers is obtained by employing a search strat-
egy based on similarity and correlation between intensity 
of the pixels in these layers. According to the separabil-
ity of the image histogram, after some mentioned pre-
processing steps, conventional thresholding algorithms 
can be used to find the optimal threshold in a simple 
and achievable manner. The points on our target layers 
(IPL and OPL) have a brightness above 30, while other 
points reflect a brightness below 15, as can be observed 
after applying the Gabor filter. Testing different bright-
ness thresholds between 15 and 30, one observes that 
the output images have no significant difference, so the 
threshold of brightness is set to 20 in the current study. 
After setting a suitable threshold between foreground 
(IPL and OPL) and background (the rest of the image) 
pixels, a binary image was created using global threshold-
ing algorithm, this process is generally shown in Fig. 0.3. 
White pixels indicate estimated IPL and OPL locations in 
the generated binary images (Fig. 3e). Then, morphologi-
cal operators are employed to detect the desired layers, 
erosion eliminates the individual white pixels which is 
not connected to any meaningful layer and dilation helps 
to get a connected and continuous layer. Also, we need 
to perform a connected-component labeling for eliminat-
ing any extra layer, such layers may occur in the process 
like the one which appears in the upper right corner of 
Fig. 3e. To be more precise, the process begins with two 
times erosion, followed by a dilation. Then it uses a con-
nected component operator followed by an erosion and 
a dilation. The continuous boundaries were created and 
outliers were removed as depicted in Fig. 3f [40]. In order 
to skeletonize and get a curve-shape for IPL and OPL 
identifiers, we create two separate lists of pixels, the first 
is according to the far most upper white pixels in a col-
umn considered as IPL and the second stores the lowest 
white pixels in each column considered as OPL. It is pos-
sible for these two lists to have common points, it occurs 
whenever the IPL and OPL stick together in the original 
OCT slabs, in these cases this common pixels appear in 
both IPL and OPL lists, separately.

In the final step, due to discontinuity of pixels in the 
resulted lists, we need approximation methods for filling 
the gaps, that we will describe in the following sections.

A modeling-based technique was utilized to achieve 
precise segmentation of the IPL and OPL layers. Two 
approaches were investigated for this purpose: clas-
sic and machine learning-based methods. In the clas-
sic technique, cubic spline interpolation is employed to 
determine the exact target layers’ (IPL and OPL) loca-
tions. Cubic spline interpolation is a method for mode-
ling objects with curved shapes [41]. On OCT slabs with 

relatively regular and organized layers, this approach 
produces satisfactory results (Fig.  4c). However, as seen 
in Fig. 4, it fails in OCT slabs with relatively disorganized 
layers (Fig. 4f ).

To address this issue, we presented a machine learn-
ing technique based on support vector regression (SVR). 
SVR, as a supervised-learning technique, works utiliz-
ing points on layers and a prediction function. When the 
labelling is wrong, the model predicts and replaces the 
missing values, which is an advantage of employing SVR.

Since our model was a nonlinear function, the data was 
transformed into a higher-dimensional space known as 
kernel [42]. SVR can be achieved by using various ker-
nels such as polynomials [43], sigmoid [44], Radial Basis 
Functions (RBF) [45], and wavelet functions. The per-
formance of SVR largely depends on the selection of the 
kernel. One of the interesting features of the kernel-based 
approach is its ability to use feature mapping with infi-
nite dimensions. For this purpose, a class of functions 
known as radial basis functions (RBF) can be used [46] 
as follows:

In the above equation, x and x′

∈ R
N , where RN rep-

resents input space and σ is the RBF kernel parameter. 
After mapping the data to an infinite-dimensional space, 
the SVR tries to fit a hyperplane in the feature space to 
the training data. So, our prediction function is mapped 
as Eq. (4):

where y ∈ R and we seek to estimate (4) based on inde-
pendent uniformly distributed data

(

x
′

1.y1
)

,…, 
(

x
′

n.yn
)

 by 
finding function y(x) as sum of weighted kernels with a 
small error. The terms α+

k  and α−

k  are the corresponding 
Lagrange multipliers for the SVR model and b is a penalty 
parameter used to suppress the noise and obtain a soft 
margin to create a more appropriate and accurate model.

In our work, input x and its corresponding target value 
y explicitly include the horizontal and vertical coordinates 
of inner and outer plexiform layer data in the OCT images. 
Although SVR with RBF kernel is excellent for layer seg-
mentation in noisy images, it performed poorly in OCT 
slabs with disorganized layers, as demonstrated in Fig. 5d.

(3)K
(

x.x′
)

= exp

(

−

∥

∥x − x
′
∥

∥

2

2σ 2

)

,

(4)y(x) =

n
∑

k=1

(

a+k − a−k
)

K
(

x.x′k
)

+ b,

(5)

b =
1

Nv

∑

v∈V

[

yv − ε −

n
∑

m=1

(a+m − a−m)K (xv , xm)

]

.
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Zhang et al., showed that SVR with wavelet kernel has 
an accurate and acceptable performance against irregu-
larities and fluctuations [47]. The wavelet kernel is a 
kind of multidimensional wavelet function that can esti-
mate arbitrary nonlinear functions. So kernel function in 
Eq. (4) should be replaced with Eq. (6) as below:

With the newly used kernel and fixing the epsilon, pen-
alty parameters and the appropriate choice of σ , which is 

(6)

K
(

x, x′
)

=

m
∏

i=1

cos(1.75
xi − x

′

i

σ
) exp(−

x − x
′2

2σ 2
),

the degree of sensitivity of the kernel to small oscillations, 
significant results were obtained in dealing with small 
and large fluctuations in the IPL and OPL layers. To vali-
date the automated algorithm’s agreement with manual 
segmentation of IPL and OPL and also SI measurement 
in these layers, 50 OCT images with varying levels of ret-
inal layer regularity were chosen (from relatively regular 
and organized layers in OCT slabs to highly disorganized 
layers in patients with diabetic retinopathy and diabetic 
macular edema). Two experts (EKP and HRE) manually 
segmented IPL and OPL using ImageJ’s freehand tool and 
SI manually computed in each layer of the related OCT 

Fig. 4 Segmentation results using cubic spline interpolation. a An OCT slab with relatively regular and organized layers. c The labelling of IPL and 
OPL for a, e Final segmentation for a, and b an OCT slab with disorganized layers, d the labelling of IPL and OPL for b, and f Final segmentation of 
the image b which shows incorrect segmentation of IPL
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slab. The gold standard (GS) for segmentation of the lay-
ers and SI calculation was considered by averaging the 
results of two experts. Additionally, IPL and OPL layers 
were segmented using the SVR method with a wavelet 
kernel, and SI was calculated automatically for each layer 
in all OCT slabs. We utilized the Bland–Altman plot to 
determine agreement between two experts’ manual seg-
mentation and also between the automated method and 
the manual segmentation.

The results of applying the SVR with wavelet kernel 
and comparison of segmentation with two experts are 
shown in Fig. 6.

Quantitative analysis of IPL and OPL layers
To analysis the IPL and OPL quantitatively, we intro-
duced smoothness index (SI) that can be used to evaluate 
abnormalities in these layers under pathologic conditions 
like AMD, Epiretinal Membrane (ERM), and Diabetic 
Macular Edema (DME) [17–19, 27, 29]. SI was used to 
evaluate the quantitative smoothness of IPL and OPL lay-
ers in macular OCT images and is defined as follows:

(7)Smoothness Index (SI) =
LE

LA

Fig. 5 Segmentation using SVR with RBF kernel. a Relatively regular layers, c The labelling for a, e Final segmentation for a, and b Irregular case d 
the labelling IPL and OPL for b, f Final segmentation of (b)
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where LE indicates the Euclidean distance between the 
beginning and the end of each layer in the final output 
image (the length of the straight line connecting the start 
and the end of IPL or OPL) and, LA is the actual length of 
the layer, obtained by calculating the sum of the Euclid-
ean distance between all the pixels that make up the layer 
(Fig. 7).

Results
In this study, 50 OCT B-scans from 21 patients with 
varying stages of diabetic retinopathy were analyzed and 
two retina experts (EKH and HRE) rechecked and con-
firmed accurate automated segmentations of IPL and 

OPL. As previously stated, these 21 patients had varying 
stages of diabetic retinopathy, with 8 having mild, 9 hav-
ing moderate, and 4 having severe diabetic retinopathy. 
Those with mild to moderate diabetic retinopathy have 
parallel IPL and OPL, whereas patients with severe dia-
betic retinopathy have disorganized and non-parallel 
OPL and IPL. We used 42 foveal OCT rasters from 21 
patients’ both eyes. Meanwhile, we added 8 OCT ras-
ters with disorganized IPL and OPL from the superior or 
inferior foveal regions of four patients with severe dia-
betic retinopathy to test the accuracy of the algorithm in 
segmenting IPL and OPL in circumstances of unorgan-
ized OCT images.

Fig. 6 Illustrations of final segmentation results in three different patients with mild, moderate, and severe diabetic retinopathy (rows) with variable 
irregularity of IPL and OPL by expert 1 (continuous red line), expert 2 (continuous blue line), and fully automated method using SVR with wavelet 
kernel (continuous green line)
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The participants’ mean age was 61.8  years (range: 
47–78 years), and 11 (52.4 percent) were male.

The gold standard (GS), was obtained individually by 
averaging the layer points marked by two experts. in all of 
50 selected OCT slabs with variable fluctuation of layers. 
IPL and OPL layers were segmented using the SVR method 
with a wavelet kernel, and SI was calculated automatically 
for each layer in all 50 OCT slabs. We utilized the Bland–
Altman plot to determine agreement between two experts’ 
manual segmentation and automated method. Additional 
file 1 illustrates the segmentation of all 50 OCT images by 
two experts and also by automated technique. For valida-
tion, the mean unsigned error border position and SI val-
ues for each layer were computed and presented in Table 2. 
The evaluation algorithm is used to test on 50 B-scans. The 

root mean square error (RMSE) for layer border detec-
tion is calculated by Eq. (8), mean absolute error (MAE) is 
calculated by Eq. (9) and signed error (SE) is calculated by 
Eq. (10):

(8)RMSE =

√

∑w2
w1

(xi − yi)2

abs(w2 − w1)
,

(9)MAE =

∑w2
w1

abs(xi − yi)

abs(w2 − w1)
,

(10)SE =

∑w2
w1

(xi − yi)

abs(w2 − w1)
,

Fig. 7 a Automated calculation of SI, yellow straight line indicates the Euclidean distance between the beginning and the end point of each layer 
in the final output image (the length of the straight line connecting the start and the end of IPL or OPL) and, green curves shows the actual length 
of the layers, obtained by calculating the sum of the Euclidean distance between all the pixels that make up the layer. The results of SI calculation in 
IPL and OPL for patients with mild, moderate, and severe diabetic retinopathy are depicted in b, c and d respectively

Table 2 MSE, MAE and signed error border position (in pixels) between our proposed fully‑automated method and the GS

RMSE MAE SE

IPL OPL IPL OPL IPL OPL

Between two experts 1.24 1.42 0.2 0.25 − 0.013 0.027

Between proposed method and GS 1.79 1.89 0.37 0.49 0.03 − 0.042
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where w1 and w2 are respectively the common starting 
point (The first pixel to be marked as the start of the layer 
in both automatic and GS and the common end point in 
the automatic methods and GS in each layer. xi , yi rep-
resent the i th point of the two acquired boundaries for 
automatic method and GS.

Also, the MAE for SI is calculated by:

where N is number of our 50 B-scans used for test and 
xi , yi represent the i th SI of the two acquired bounda-
ries calculated for automatic method and GS. The value 
of MAE calculated for SI, between the proposed method 
and GS, for the two layers IPL and OPL shows the values 
of 0.016 pixel and 0.025 pixel, respectively.

Bland–Altman plots for two experts in manual seg-
mentation of IPL and OPL are shown in Fig. 8a–b. As can 

(11)MAE =

∑N
i=1 abs(xi − yi)

N
,

be seen, acceptable agreement is achieved between two 
experts for IPL and OPL segmentation. The total agree-
ment between the automated method (SVR with wavelet 
kernel) and the GS (average of two experts) in IPL and 
OPL segmentation were also satisfactory, being as shown 
in Fig.  8c–d. Despite the occurrence of the fluctuations 
and irregularities in these layers, there was acceptable 
agreement between the fully-automated method and the 
GS.

Figure 9 depicts the Bland–Altman plots of two experts 
in manual SI calculation as well as level of agreement 
between the automated approach and the GS in evalu-
ating the SI measurement. To determine SI value in IPL 
and OPL layers by two experts, a total agreement of 94 
percent is attained. As shown in Fig. 9c–d, there is a high 
degree of agreement between the automated and manual 
computation of SI, with 96 and 94 percent agreement in 
IPL and OPL, respectively.

Fig. 8 Bland–Altman plots for correlating two experts in manual segmentation of IPL a and OPL b, also our proposed fully automated algorithm 
with the GS (average of two experts) for IPL c and OPL d 



Page 12 of 16Saeidian et al. BMC Medical Imaging           (2023) 23:21 

In general, the Bland–Altman plots showed no substan-
tial difference between manual segmentation technique 
and our proposed automated approach could be success-
fully replaced with typical manual segmentation method.

Finally, the execution times for all three methods, 
including spline interpolation, SVR (RBF kernel), and 
SVR (Wavelet kernel) are shown in Table 3, which shows 
that all three perform faster than the manual method for 
layers’ segmentation.

Discussion
In this study, we developed a fully-automated algorithm 
using machine learning methods to segment the IPL and 
OPL and calculate the SI in each of these retinal layers. In 

general, the Bland–Altman plots demonstrated an excel-
lent level of agreement between the two experts and our 
fully automated method for segmentation and SI calcula-
tion in the above-mentioned layers.

We hypothesized that the IPL and OPL would grow 
increasingly irregular before complete disorganization 
and the emergence of DRILs. Because of the difficulty in 
quantifying these abnormalities, prior researches have 
not looked into the relationship between the irregularity 
of these layers as a biomarker and visual acuity prognosis 
or response to therapy. As a result, in order to explore the 
presence of these connections, an algorithm to quantify 
the abnormalities of these layers must be designed. We 
previously incorporated a new biomarker, iris smooth-
ness index (SI), into anterior segment optical coherence 
tomography (AS-OCT) images of Fuchs uveitis patients 
and created an automated technique for measuring it 
[38, 39]. We performed the present research in order to 
integrate a similar method into retinal layers. The man-
ual segmentation of retinal layers in OCT images using 
ImageJ software, which is time-consuming and needs a 
skilled operator, may restrict the practical applicability 
of SI quantification in retinal layers. To overcome these 

Fig. 9 The Bland–Altman plots for the agreement of SI calculation between two experts in IPL (a) and OPL (b), and also proposed automated 
method with GS (average of two experts) in SI calculation for IPL (c) and OPL (d)

Table 3 A comparison between the required amount of time (in 
seconds) for all methods and manual method

Layer Cubic Spline 
Interpolation

SVR (RBF) SVR (Wavelet) manual

IPL 2.5 4.1 4.3 22

OPL 2.7 4.1 4.3 25
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limitations, the goal of the current study was to create 
an automated algorithm for calculating the smoothness 
index in two hyperreflective inner retinal layers (IPL) and 
(OPL) in patients with varying stages of diabetic retin-
opathy and diabetic macular edema and compare the 
results to those obtained using the manual method. In 
the present research, we attempted to incorporate OCTs 
with varying degrees of irregularity in order to enhance 
the algorithm’s performance in situations when the pres-
ence of macular edema causes severe irregularities in the 
retinal layers. We enhanced the algorithm’s accuracy in 
IPL and OPL segmentation, as well as SI measurement, 
by using a machine learning technique called SVR with a 
wavelet kernel that exhibited consistent agreement with 
experts and a manual approach.

Figures 4 and 5 show the qualitative representation of 
IPL and OPL layers segmentation, using classic (cubic 
spline) and machine learning (SVR) algorithms. Although 
cubic spline, was a faster way to split layers than other 
methods (see Table 3), but it failed in OCT images with 
significant irregularity of layers. SVR with wavelet kernel 
is shown to be a powerful and robust method for seg-
mentation of the layers with irregularities which could 
be due to the prediction of the missing values. Also, 
Fig.  6 depicts an illustration of segmentation results in 
three different patients (mild, moderate, and severe dia-
betic retinopathy) with variable irregularity of IPL and 
OPL, which shows an acceptable agreement between the 
results obtained by our proposed method and experts’ 
manual segmentation.The comparisons is available in 
Additional file 1.

Qualitatively, these results in our study are comparable 
to those of Chiu et al. [48, 49], Dufour et al. [50], Kugel-
man et  al. [51], who implemented and analyzed differ-
ent automatic segmentation methods to detect retinal 
layers in optical coherence tomography (OCT) or spec-
tral-domain OCT (SD-OCT) images. Their studies also 
corroborate this fact that the segmentation challenges 
increase with the increasing abnormality and irregularity 
in diabetic retinopathy patients.

Table  2 also shows quantitative results of error meas-
urement for the border position (in pixels) between our 
proposed fully-automated method and those obtained 
by experts using the manual method as the ground truth. 
These measurements were done for three types of error, 
including root mean square error (RMSE), mean absolute 
error (MAE), and signed error (SE). Overall, as we can 
see, low errors were obtained for estimated borders (IPL/
OPL) in comparison with the ground truth. RMSE is the 
standard deviation of the residuals between the estimated 
and real data. Residuals are a measure of how far from 
the regression line data points are; RMSE is a measure 

of how spread out these residuals are. In other words, it 
tells you how data is concentrated around the line of best 
fit. In addition, MAE represents the absolute error of our 
estimation, point by point, and finally, the SE can tell us 
how well an estimated data matches the quantity that it 
is supposed to estimate, in which positive and negative 
errors represent regression situated above and under the 
line of best fit, respectively.

As a quantitative comparison, these calculations are 
consistent with the study by Chiu et al. [48, 49], Dufour 
et al. [50], Kugelman et al. [51], Bilc et al. [52], in which 
authors provided values of retinal layers segmentation 
errors obtained from comparison between their auto-
matic algorithm and expert manual segmentation. Also, 
comprehensive comparisons between these works and 
our proposed algorithm, including methods, dataset, ret-
inal conditions, retinal layers, segmentation errors, and 
execution time are listed in Table 4. It can be shown that 
our observed errors are acceptable and near to the total 
errors in previous studies, although in our study patients 
with different stages of diabetic retinopathy were evalu-
ated and might be attributed to the more complicated 
nature of our segmentation.

Although, to the best of our knowledge, the measure-
ment of the smoothness (irregularity) of retinal layers has 
only been done semi-automatically or manually in ERM 
[30], this potential biomarker of retinal layers in vari-
ous vascular and structural diseases of the retina can be 
investigated using the algorithm developed in the current 
study. In addition to the overall thickness of the retina, 
which is a popular biomarker, the smoothness index may 
be used to quantify the response to therapy and progno-
sis of various patients by conducting longitudinal com-
parative studies. Although in the current study, SI was 
calculated in the OCT images of patients with varying 
stages of diabetic retinopathy, to conclusively determine 
whether or not this index is a novel biomarker, larger-
scale investigations will be required.

While we have developed a relatively reliable and con-
venient technique for detecting hyperreflective OCT lay-
ers and corresponding smoothness index, it should be 
warned that in certain situations when layer irregular-
ity and oscillation are significant and layers are indistin-
guishable like in cases of DRIL, this method may not give 
a correct answer.

Although, we added 8 OCT rasters with disorganized 
IPL and OPL from the superior or inferior foveal regions 
of four patients with severe diabetic retinopathy to test 
the accuracy of the algorithm in segmenting IPL and OPL 
in circumstances of unorganized OCT images. Some 
of these OCT rasters were so unstructured that iden-
tifying IPL and OPL was impossible even with manual 
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segmentation (Fig.  10a), therefore they were omitted 
from the study. Our implemented algorithm, on the other 
hand, failed to correctly separate the IPL / OPL in two 
scans when layer irregularity and oscillation are high 
and layers are fade due to poor image quality or contrast 
(Fig. 10b).

On the other hand, we have just recruited patients with 
diabetic retinopathy in order to evaluate the performance 
and accuracy of the proposed algorithm. To address this 
restriction, an investigation of the current algorithm’s 
accuracy on a large sample size of individuals with vari-
ous retinal diseases should be conducted.

Conclusion
In conclusion, in the current study we developed a reli-
able, fast and convenient algorithm based on machine 
learning method to automatically segment two hyper-
reflective inner retinal layers and calculate smoothness 
index (SI) in the corresponding layers. Results prove 
that there is an acceptable agreement between our pro-
posed algorithm and those obtained by experts using the 
manual method as the ground truth and therefore, the 
SI can be used to quantify the response to therapy and 

Table 4 A comprehensive comparison between related works

*GT Graph Theory, DP Dynamic Programming, KR kernel regression, WGD weighted Geodesic Distance, CSCR Central Serous Chorioretinopathy

Year Study Dataset Method Layers Error Time (S)

2010 [48] Healthy adults GT + DP 8 boundaries Layer thickness difference
MAE
GCL‑IPL = 0.77 ± 0.65 px
OPL = 1.48 ± 1.05 px
(px = 3.29 um)

9.74

2013 [50] Healthy GT + energy minimization 6 boundaries MAE
IPL‑INL = 4.67 ± 0.83 um
SE
IPL‑INL =  − 3.59 ± 0.93 um
(1px = 3.9 um)

18

2015 [49] Healthy and DME KR + GT + DP 8 boundaries
 + fluid

Layer thickness differences
GCL‑IPL = 4.84 ± 5.12 um
OPL = 6.35 ± 6.11 um
(px = 3.87 um)

11.4

2018 [51] Healthy children’s and AMD RNN‑GS 7 boundaries of 
healthy, 3 of AMD

SE
INL/IPL = − 0.13 ± 1.10 px 
OPL/INL = − 0.10 ± 1.31 px
MAE
INL/IPL = 0.56 ± 0.95 px
OPL/INL = 0.69 ± 1.12 px
(px = 3.9 μm)

145

2021 [52] Chiu dataset, Healthy, AMD, 
CSCR and DME

GT + WGD 8 boundaries SE
IPL‑INL =  − 8.12 ± 5.59
INL‑OPL =  − 8.33 ± 7.68
OPL‑ONL =  − 1.41 ± 3.51
MAE
IPL‑INL = 12.67 ± 3.49
INL‑OPL = 7.88 ± 6.96
OPL‑ONL = 1.84 ± 3.28

–

Fig. 10 An example of OCT raster was so unstructured that 
identifying IPL and OPL was impossible even with manual 
segmentation, therefore they were omitted from the study (a). An 
example of segmentation error in OPL in a case with high level of 
irregularity and oscillation and poor OPL contrast (b)
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prognosis of various patients by conducting longitudinal 
comparative studies.

Abbreviations
OCT  Optical coherence tomography
SD‑OCT  Spectral‑domain optical coherence tomography
ERM  Epiretinal membranes
IPL  Inner plexiform layer
OPL  Outer plexiform layer
AMD  Age‑related macular degeneration
ILM  Internal limiting membrane
RPE  Retinal pigment epithelium
DRIL  Disorganization of the retinal inner layers
SVR  Support vector regression
RBF  Radial basis functions
SI  Smoothness index
RMSE  Root mean square error
MAE  Mean absolute error
SE  Signed error
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