
Xie et al. BMC Medical Imaging           (2023) 23:22  
https://doi.org/10.1186/s12880-023-00973-z

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Medical Imaging

Lung nodule pre-diagnosis and insertion 
path planning for chest CT images
Rong‑Li Xie1†, Yao Wang2†, Yan‑Na Zhao3, Jun Zhang1, Guang‑Biao Chen2, Jian Fei1* and Zhuang Fu2* 

Abstract 

Medical image processing has proven to be effective and feasible for assisting oncologists in diagnosing lung, thyroid, 
and other cancers, especially at early stage. However, there is no reliable method for the recognition, screening, 
classification, and detection of nodules, and even deep learning‑based methods have limitations. In this study, we 
mainly explored the automatic pre‑diagnosis of lung nodules with the aim of accurately identifying nodules in chest 
CT images, regardless of the benign and malignant nodules, and the insertion path planning of suspected malignant 
nodules, used for further diagnosis by robotic‑based biopsy puncture. The overall process included lung parenchyma 
segmentation, classification and pre‑diagnosis, 3‑D reconstruction and path planning, and experimental verification. 
First, accurate lung parenchyma segmentation in chest CT images was achieved using digital image processing tech‑
nologies, such as adaptive gray threshold, connected area labeling, and mathematical morphological boundary repair. 
Multi‑feature weight assignment was then adopted to establish a multi‑level classification criterion to complete the 
classification and pre‑diagnosis of pulmonary nodules. Next, 3‑D reconstruction of lung regions was performed using 
voxelization, and on its basis, a feasible local optimal insertion path with an insertion point could be found by avoid‑
ing sternums and/or key tissues in terms of the needle‑inserting path. Finally, CT images of 900 patients from Lung 
Image Database Consortium and Image Database Resource Initiative were chosen to verify the validity of pulmonary 
nodule diagnosis. Our previously designed surgical robotic system and a custom thoracic model were used to vali‑
date the effectiveness of the insertion path. This work can not only assist doctors in completing the pre‑diagnosis of 
pulmonary nodules but also provide a reference for clinical biopsy puncture of suspected malignant nodules consid‑
ered by doctors.

Keywords Multiple pulmonary nodules/diagnosis, Diagnostic imaging*, Tomography, X‑ray computed, Humans, 
Lung neoplasms*/pathology

Introduction
Affected by factors such as smoking, air pollution, and 
the occupational environment, lung carcinoma is one of 
the most malignant tumors that poses a threat to human 
health and life and is the major killer across all cancers 
[1, 2]. As per the global cancer data, the number of new 
cases and deaths of lung carcinoma in 2018 were 2.1 and 
1.8 million, respectively, and both its morbidity and mor-
tality are among the highest amongst all cancers [3]. The 
5-year survival rate of patients with advanced lung carci-
noma is only about 16%, but for early patients with effec-
tive treatment, the 5-year survival rate can be increased 
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by approximately 4–5 times [4]. Therefore, early diagno-
sis, screening, and clinical treatment of lung carcinoma 
are of great significance. Generally, lung carcinoma is 
characterized by pulmonary nodules at an early stage; 
however, lung nodules are not necessarily cancer, and 
most nodules are benign. Therefore, the accurate detec-
tion of pulmonary nodules is a prerequisite for reliable 
clinical treatment.

Usually, pulmonary nodules are < 2  cm in diameter, 
size > 3  cm is considered a mass, and only a small per-
centage of small pulmonary nodules may be lung carci-
noma or precancerous lesions [5, 6]. With the popularity 
of imaging techniques such as ultrasound, CT, positron 
emission tomography (PET), and magnetic resonance 
imaging (MRI), the detection rate of malignant pulmo-
nary nodules has increased significantly [7]. Although 
CT or PET-CT examinations scan the patient’s body to 
form images that can be used to judge benign or malig-
nant nodules, the accuracy is still limited. In clinical 
practice, the first major method for detecting pulmonary 
nodules is to obtain a series of medical images of the 
patient, such as chest CT images, and the doctor judges 
whether there are nodules, that is, suspected nodules, 
based on their experience through observation. This 
process is defined as pre-diagnosis, and involves more 
time and relies too much on the experience of the doc-
tor for a preliminary judgment of benign and malignant 
nodules to be made. For uncertain suspected malignant 
nodules, it is necessary to perform pathological exami-
nation of cells in the nodules by puncture and deter-
mine the properties of suspected malignant nodules after 

comprehensive evaluation. Therefore, the use of digital 
image processing technology to assist doctors in diagnos-
ing can quickly and accurately achieve the segmentation 
of lung parenchyma and suspected nodules and accom-
plish the pre-diagnosis of nodules, greatly reducing the 
doctor’s diagnostic burden. At the same time, an opti-
mized feasible insertion path is then suggested for sus-
pected malignant nodules, which helps to reduce trauma 
to the patient and the risk of puncture surgery.

It should be noted that numerous published studies 
have different definitions for detecting pulmonary nod-
ules, most of which are based on machine learning for 
benign and malignant detection. However, the scope 
of this work is limited to recognizing whether there are 
nodules (that is recognizing suspected nodules), aiming 
to realize the automatic pre-diagnosis of lung nodules, 
which can be considered a prerequisite procedure for 
benign and malignant detection. In other words, benign 
and malignant detections were excluded from the scope. 
A brief summary of the literature on the description and 
detection of pulmonary nodules is presented in the fol-
lowing sections.

Pulmonary nodules
Figure 1a–c show chest CT images of typical pulmonary 
nodules, which can be divided into three major catego-
ries: juxta-pleural, juxta-vascular, and solitary pulmonary 
nodules, similar to those described in earlier studies [1, 
8].

The first two types of pulmonary nodules are often dif-
ficult to screen and identify because they adhere to the 

Fig. 1 Lung parenchyma segmentation. Typical categories for pulmonary nodules: a juxta‑pleural pulmonary nodule. b Juxta‑vascular pulmonary 
nodule. c Solitary pulmonary nodule. An example of chest CT image, d original image, e gray histogram. The numbers represent as below: 1‑outside 
visual field, 2‑air, 3‑lung parenchyma, 4‑other lung tissues such as muscle, fat, trachea, vessels, etc., and 5‑bone. f Workflow diagram of lung 
parenchyma segmentation. g Flow chart of preliminary segmentation with adaptive thresholding method



Page 3 of 16Xie et al. BMC Medical Imaging           (2023) 23:22  

pleura and blood vessels, respectively. On the other hand, 
for solitary pulmonary nodules, the diagnosis is relatively 
easy because of their shape and size, presenting solid or 
sub-solid opaque spheres. However, it is still a common 
challenge when the atypical nature of ground-glass nod-
ules or mixed ground-glass nodules with a solid com-
ponent are encountered [9]. Thus, the detectability of a 
pulmonary nodule depends mainly on its size, location, 
attenuation, as well as other characteristics.

Medical image analysis
Medical imaging technologies have proven to be effective 
for pulmonary nodule detection and have been regarded 
as the procedure of choice for screening lung carcinoma. 
Many imaging devices have evolved depending on the 
different modalities such as CT, PET and MRI as men-
tioned above; each having its own pros and cons [10, 11]. 
For instance, PET can show the metabolic level of the 
lesion, but the measured standardized uptake value is not 
absolute because sometimes the metabolism of inflam-
matory cells can also increase this value leading to mis-
diagnosis [12]. PET-CT has certain advantages in judging 
the benign and malignant aspects of small pulmonary 
nodules [13], but there is controversy in the academic 
community about the possible harm to the patients due 
to the amount of radiation exposure. Among these imag-
ing devices, CT is currently one of the most cost-effective 
methods for pulmonary nodule detection, with high sen-
sitivity and provision of more detailed information about 
lung disease; the low-dose CT especially can reduce the 
radiation in patients.

In this study, we primarily focused on the automatic 
pre-diagnosis of pulmonary nodules. In this regard, the 
entire imaging process for original chest images typically 
consists of two steps: lung parenchyma segmentation 
and suspected nodule classification and diagnosis. Lung 
parenchyma segmentation is used for nodule detection 
and is the basis of nodule positioning and percutane-
ous lung biopsy. It mainly involves initial segmentation 
and boundary repair. Common methods for the initial 
segmentation of lung parenchyma include the threshold 
method, clustering method, and region-growth algo-
rithm. John and Mini [14] proposed an approach for 
pulmonary nodule segmentation and feature extraction 
using multilevel thresholding, and their results showed 
that the proposed method is best suited for the detec-
tion of isolated solid nodules. Later, in 2019, Khan [15] 
used a combination of fuzzy logic and a color feature-
based fuzzy C-means clustering method to segment 
the lung parenchyma. For the boundary repair method, 
there are the rolling ball method, mathematical mor-
phology method, convex hull, and snake algorithm [16–
20]. When the boundary defect is large, the rolling ball 

method to repair the boundary easily fails, and the con-
vex hull algorithm is also ineffective. Additionally, the 
snake-algorithm-based repair method is too sensitive to 
the initial position and easily falls into the local optimum. 
Lung parenchyma segmentation is not only the key pro-
cedure of imaging processing to eliminate impurities or 
other tissues such as muscle, fat, trachea, sternum, and 
varied vessels, but also has a great impact on the classi-
fication and diagnosis of suspected nodules owing to the 
complexity and similar intensity of lung structures.

Since the time of AI, in the case of known nodules being 
labeled, a great deal of research concerning the benign 
and malignant detection of pulmonary nodules has been 
reported, and some valuable references can be used for 
other steps of imaging processing, suspected nodule clas-
sification, and diagnosis. However, because of the spar-
sity and imbalance of medical image databases, existing 
research on the application of medical image analysis 
toward the accuracy and efficiency of identification is 
still a challenge. To the best of our knowledge, detection 
methods for benign and malignant pulmonary nodules 
can be divided into two major categories: machine learn-
ing-based and rule-based classification methods [21–24]. 
Machine learning methods such as deep neural networks, 
convolutional neural networks, support vector machines, 
and Bayesian classifiers have high classification accu-
racy, but they require large-scale CT image datasets with 
markers of nodular and non-nodular regions to train and 
are computationally inefficient. As for the rule-based 
classification method, it primarily establishes a multi-
level binary classification system by summarizing the 
doctor’s diagnosis experience, which has the advantages 
of high computational efficiency and effective integration 
of experience. It is well known that for nodule classifica-
tion and diagnosis, it is critical to detect true nodules as 
much as possible, thereby ensuring detection sensitivity 
and accuracy. Thus, the rule-based classification method 
can be recognized as a useful reference for suspected 
nodule classification and diagnosis in this work.

Assisted robot for lung puncture
In the traditional diagnosis and treatment process, if the 
doctor thinks that the small pulmonary nodules are very 
likely to be lung carcinomas and meet the indications for 
surgery, direct surgical resection is usually performed, 
which is the mature and universal medical treatment. 
The development of society and advancements in sci-
ence and technology have increased the demand for 
precision medicine. Consequently, minimally invasive 
surgery has made great contributions in the medical field 
in recent years [2, 25], and percutaneous lung puncture 
has become the main method of sampling biopsy for sus-
pected pulmonary nodules or tumors. This especially 
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applies in cases wherein the probability of pulmonary 
nodules as lung cancer is not very high but it is not clear 
what can confirm the diagnosis not only earlier but at the 
same time does not cause a relatively large trauma to the 
patient. Compared with manual puncture [26], robot-
assisted percutaneous lung puncture has the advantages 
of a higher success rate and positioning accuracy and is 
now the most common technology acceptable to patients.

At home and elsewhere, the study of surgical robots 
used for percutaneous lung puncture started earlier and 
developed rapidly, obtaining many good findings, such 
as a number of products for robot-assisted systems. For 
example, Ishii et  al. [27] developed a remote-controlled 
5-degree of freedom (DOF) robot for resolving the radia-
tion issues of CT navigation during the puncture pro-
cess. Similarly, Hungr et  al. [28] designed and validated 
a percutaneous puncture robot based on CT and MRI 
navigation and Wang et  al. [29] presented an automatic 
medical tele-robotics system that was used in percuta-
neous puncture surgery. It should be noted that in this 
work, we mainly focus on suspected nodule pre-diag-
nosis and insertion path planning, and will not describe 
in detail the design and evaluation of surgical robots for 
minimally invasive percutaneous lungs.

In our previous work, we designed a 6-DOF CT-guided 
surgical robotic system used for percutaneous lung punc-
ture and manufactured a physical prototype. The relevant 
technical parameters are as follows: The working ranges 
of x, y and z axes are 440, 400, and 470 mm, respectively, 
and the working ranges of α, β and γ axes are −  120○ 
to  5○, ±  80○, and  0○–360○, respectively. The maximum 
working velocity of linear motion is 0.4 m/s, and the max-
imum angular velocity of rotational motion is  144○/s. 
Based on the kinematic and inverse dynamic analyses on 
the designed surgical robot, the Virtual Remote Center of 
Motion movement of the needle-tip had been achieved 
by position compensation. For motion control accuracy, 
it has shown that the position errors of x, y and z axes are 
0.4, 0.2, and 0.1  mm, respectively; the posture errors of 
α, β and γ axes are all within 0.2○. Moreover, the repo-
sitioning accuracy of the robot end is within ± 0.03 mm. 
Thus, the designed surgical robot satisfied the require-
ments for practical use.

During actual clinical puncture surgery, in order to 
make the needle tip successfully reach the lesion point, 
avoid obstacles such as blood vessels, key tissues, or 
organs, and reduce the positioning error, insertion path 
planning is very significant [2, 30, 31]. Unreasonable 
path planning can reduce puncture accuracy, not only 
leading to additional tissue damage, but also causing 
misdiagnosis or unsatisfactory treatment effects [32]. 
At present, rigid or semi-rigid needles are used in most 
cases [33, 34] as these have a relatively high hardness, 

which can reduce the needle deflection caused by 
straight-line insertion. There have been many studies 
related to the path planning of flexible needles used in 
special applications.

From the perspective of algorithms, current inser-
tion path planning methods can be roughly divided into 
three groups: numerical, search, and inverse solution 
methods; among these, the numerical methods include 
probability and objective function methods [35–38].For 
instance, Lee et al. [36] adopted the path of probability 
algorithm to develop a systematic planning method for 
the automated operation of a designed tube-wire flexi-
ble needle enabling the needle to easily reach the lesion 
point while efficiently avoiding obstacles. Fauser et  al. 
[37] presented two suitable RRT-connect algorithms: 
one based on Bezier–Splines and the other on circu-
lar arcs and 3D Dubins Paths, to solve nonlinear path 
planning for temporal bone surgery with limited space 
and time constraints. The inverse solution method usu-
ally uses the idea of inverse kinematics to calculate the 
effective trajectory from the entry point to the lesion 
point; however, the path calculated by this method is 
not necessarily the optimal one, and there may even 
be cases where the path cannot be calculated [38]. In 
this study, a 13G rigid beveled needle manufactured by 
Precisa Corp., Italia, was used to perform the puncture 
experiment and validate the effectiveness of the inser-
tion path. Therefore, the objective function method 
employed in this study can be used to determine and 
solve the insertion path planning, and this will be 
described in detail later.

The remainder of this study is structured as fol-
lows. First, accurate lung parenchyma segmentation is 
achieved in chest CT images using digital image pro-
cessing technologies, such as adaptive gray threshold, 
connected area labeling, and mathematical morpho-
logical boundary repair. Based on lung parenchyma 
segmentation, the gray judgment criterion is used to 
extract the suspected nodule areas and analyze their 
features, including size, shape, and gray value. Next, a 
multilevel classification criterion is established based 
on multi-feature weight assignment to realize the 
automatic pre-diagnosis of nodules. Then, based on 
a series of CT images stored in DICOM format, we 
perform the 3-D reconstruction of lung regions using 
voxelization, and the insertion path planning for the 
suspected malignant nodule and the appropriate inser-
tion position of the needle on the surface of the thorax 
are obtained. Finally, some conclusions are drawn that 
assist doctors diagnose and provide a reference for fur-
ther study of interaction mechanics between the needle 
and tissue.
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Materials and methods
In this section, a detailed image-processing method for 
lung parenchyma segmentation is introduced, includ-
ing image preprocessing, to improve the quality of the 
original chest CT images. Subsequently, a multi-feature 
weight assignment was adopted to establish a multilevel 
classification criterion to perform the classification and 
diagnosis of suspected nodules. Additionally, combined 
with a 3-D model of the reconstructed lung regions, the 
insertion path planning for the suspected malignant nod-
ule is implemented based on the rule of the shortest path. 
Of note, we selected publicly available CT datasets from 
Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC-IDRI, the most commonly 
used dataset for early diagnosis of lung cancer) [1, 23, 39, 
40] for this study.

Lung parenchyma segmentation
Figure  1d, e show representative chest CT images. The 
lung parenchyma represents a darker area in the middle 
of the original chest image, as shown in Fig. 1d. In fact, 
lung parenchyma segmentation is the procedure used to 
extract the left/right lung parenchyma from the back-
ground of the original chest image. Figure 1e shows the 
gray histogram of the chest CT image. It can be seen that 
the gray-scale distribution appears to be obvious peak-
valley-like character. The first peak refers to the external 
visual field, the second corresponds to the lung paren-
chyma and air, and the third represents the other lung 
tissues.

Figure  1f shows a workflow diagram of lung paren-
chyma segmentation. In addition to the explanatory 
information, interference factors such as noise exist for 
the inputted original chest CT images. Therefore, before 
the initial segmentation, pre-processing, including crop-
ping, enhancing, and denoising the original image, is 
required. Histogram equalization was used to improve 
image contrast, and a Gaussian filter was employed to 
eliminate noise and make the filtered image as close as 
possible to the original [16, 41, 42]. As a linear smoothing 
filter, the Gaussian filter is highly effective for suppressing 
noise that conforms to a normal distribution. The stand-
ard deviation of the Gaussian function σ , determines the 
width of the filter, and in this study, 6σ was chosen as the 
total width.

For the initial segmentation of the lung parenchyma, 
the aim was to classify pixel points whose gray value is 
smaller than the threshold into lung parenchyma, and the 
pixel points whose gray value is larger than the threshold 
into irrelevant areas. Therefore, the effect of the thresh-
olding method depends on the threshold selection. Fur-
thermore, to eliminate the influence of the outside visual 

field in the CT image on the segmentation, the initial seg-
mentation in this study was performed using the adap-
tive gray thresholding method, as shown in Fig. 1g. First, 
the given threshold,T0 , is shown in Fig.  1e. The thresh-
old T0 is determined by the maximum and minimum 
gray values of the initial image, and the stopping criteria 
value is  10–3. The appropriate threshold is then automati-
cally determined by continuous iteration until the error 
requirement is met. Finally, the initial segmentation was 
performed using the final threshold, and the result was 
the output.

As can be seen from Fig. 2a, b, the output is a binary 
image. The white area in the middle represents the lung 
parenchyma. The thresholding method divides param-
eters such as the air, trachea, into the lung parenchyma, 
causing interference to further extract the left/right lung. 
However, there were significant differences in the areas of 
air, trachea, and lung parenchyma. Generally, the area of 
the air region is larger than that of the lung parenchyma, 
and that of the lung parenchyma is much larger than 
that of the interference region such as the trachea. Thus, 
based on the area of the connected region, we established 
a screening criterion to extract the left/right lung. In this 
study, the 4-neighborhood connected method [43], cor-
responding to the bwlabel function in MATLAB, was 
used to mark the connected domain of the binary image 
(Fig.  2b) and record its area to obtain a set represent-
ing the connected domain s . The area set s is sorted in 
descending order to obtain the set S , and then the follow-
ing screening criteria was established based on the set S.

The maximum value of S , the first element of S1 , rep-
resents the air region. The second element S2 and third 
element S3 of S represent the left and right lungs, respec-
tively. The elements after S3 denote the interference 
regions, such as the trachea, where the area is relatively 
small. Therefore, the screening criteria S3 ≤ s ≤ S2 , is 
defined to extract the left/right lung. However, consid-
ering extreme cases, such as the left and right lung con-
nected as a whole, or only the left lung or the right lung 
in the field of vision, the screening criteria need to be 
revised. The scale factor � , is employed to solve this prob-
lem. Note that the value of � is related to the CT image, 
and in this study, �= 50 could meet the requirement. 
When S2/S3 > � , the left and right lungs are connected as 
a whole or when only one lung is considered the screen-
ing criteria is rewritten as s = S2 . Additionally, S3≤ s ≤ S2 
is universally applicable. Figure  2c shows the extracted 
result for the left/right lung from the binary image.

Because the lung contains complex tissues such as 
blood vessels, more holes appear inside the extracted 
lung parenchyma, as depicted in Fig. 2c. Moreover, there 
may be a phenomenon wherein the blood vessels, pul-
monary nodules, and contour of the lung parenchyma 
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are adhered to the lung, so that the extracted lung paren-
chyma is defective leading to missed detection with a 
high probability in later work. Thus, it is necessary to 
perform internal hole filling and boundary repair dur-
ing the initial segmentation of the lung parenchyma. In 
our work, we complete the above two steps based on 
mathematical morphology, and then multiply the binary 
image of repaired lung parenchyma segmentation and 
the pre-processing CT gray image to obtain a complete 
segmentation.

The specific process was as follows: First, we adapted 
the morphological reconstruction method to realize 
hole filling. Specifically, the pixel value of the hole area is 
changed up to its boundary by calling the imfill function 
in MATLAB software, as shown in Fig. 2d, and the math-
ematical morphology is used to perform the boundary 
repair. In other words, boundary repair can be achieved 
by various operations, such as corrosion, expansion, 

opening, and closing (morphology) operations [44, 45]. 
The morphological operators are named erosion and dila-
tion, which can be used one after the other, namely open-
ing is erosion + dilation; and closing is dilation + erosion. 
Considering that in the actual repair process, there is a 
case where adhesion is likely to occur when the distance 
between the left and right lungs is relatively close. There-
fore, we individually repaired and combined the sepa-
rated left and right lungs. The structural elements of the 
opening operation and corrosion operation are first con-
structed, and then for the left/right lung, the boundary is 
repaired by the opening operation, and the smoothing of 
the boundary is achieved by the corrosion operation. Fig-
ure 2e shows the mask of the lung parenchyma obtained 
after combining the results for the left and right lungs. 
Figure  2f illustrates the final result of the lung paren-
chyma, which was obtained by multiplying Fig.  2a, e. It 
can be seen that the gray-scale of the lung parenchyma 

Fig. 2 Classification and diagnosis. Results of preliminary segmentation, a CT gray image after Gauss filtering. b Initial segmentation of 
lung parenchyma. c Left/right lung extracted from initial segmentation of lung parenchyma Lung parenchyma segmentation based on the 
mathematical morphology, d holes filling, e boundary repairing, f final result of lung parenchyma, g possible pulmonary nodules located in 
segmentation region. h–j Sketch of some pulmonary nodules
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is significantly different. For most regions of the whole 
image, the gray scale is lower, but the gray scale of pul-
monary nodules or blood vessels is higher and brighter.

where S1 is the final result of lung parenchyma segmenta-
tion using the method established in this study and S2 is 
the manual segmentation of the lung parenchyma.

In addition to the subjective observation with the 
naked eye, manual segmentation of original CT images 
was used as a reference, and an assessment of lung paren-
chyma segmentation was conducted by calculating the 
dice similarity coefficient, defined in Eq.  (1). The sam-
ple is selected as 400 random images, and the accuracy 
of the calculated lung parenchyma segmentation was 
97.4%. Next, compared with the other methods for lung 
parenchyma segmentation, such as the adaptive concave 
hulls with active contours and the graph cu, it can be 
noted that the accuracy in this study is lower than 98.07% 
as reported in one study but greater than 95.9% docu-
mented in another report [46, 47]. Our results indicate 
that the performance of the established method for lung 
parenchyma segmentation is acceptable, which could 
assist in building the region of interest used to search for 
when identifying the nodules, and be convenient for gen-
erating 3D visualizations for path planning.

Classification and diagnosis
Based on lung parenchyma segmentation, we then clas-
sified and diagnosed pulmonary nodules to segment the 
suspected nodule region. The adaptive grey threshold-
ing method was used to make an initial selection of the 
suspected nodule region, as shown in Fig. 2f. Then, a for-
mula for gray judgment was employed and added to each 
initial selected nodule region to optimize the bounda-
ries of the suspected nodule region. Based on the idea of 
regional growth, the formula for gray judgment can be 
defined as Eqs. (2), as shown below,

where g
(

i, j
)

 represents the gray value at pixel points 
of i, j  , gmax is the maximum gray value in a single sus-
pected nodule region, gmin is the minimum gray value in 
a single suspected nodule region, and τ is the adjustment 
parameter which varies from 0 to 1. The τ is a variable 
value, which depends on image characteristics. Usually, 
we first set it to 0.5, and then try other values.

Figure 2g shows the segmentation results for the pos-
sible pulmonary nodules. It can be seen that the regions 
of possible pulmonary nodules contain components 

(1)Dice(S1, S2) = 2×
|S1 ∩ S2|

|S1| + |S2|

(2)

g
(

i, j
)

=

{

g
(

i, j
)

if g
(

i, j
)

≥ (1− τ) ∗
(gmax+gmin)

2
0 else.

,

such as nodules, vessels; therefore, further screening is 
needed to combine the clinical features of pulmonary 
nodules.

Clinical experience has shown that malignant pulmo-
nary nodules are often characterized by irregular edges 
accompanied by protrusions and burrs, uneven distri-
bution of internal grayscale, large volume, and diameter 
generally exceeding 3 mm; however, benign pulmonary 
nodules present smooth edges with no obvious protru-
sions and burrs. In view of the above, a multilevel clas-
sification criterion has been established based on the 
shape and grayscale features of pulmonary nodules [48, 
49].

The shape features are the most intuitive features of 
pulmonary nodules. The size of the pulmonary nod-
ule and the marginal burr are the main features that 
characterize benign and malignant nodules, and quasi-
roundness can be used to differentiate round-like 
nodules and strip vessels owing to their difference in 
circular proximity. In this study, four shape features 
of area (SR) , quasi-roundness (CR) , marginal burr rate 
(MBR) , and marginal burr magnitude (MBM) , were 
selected to describe the size, shape, and edge informa-
tion of nodule region (R).

The nodule region (R) is irregular in shape, and calcu-
lation of its real area is difficult. Thus, the total number 
of pixels contained in the region is used to characterize 
the area SR , which can be expressed as SR = Count(R) . 
The larger the area, the higher the probability that the 
region is a malignant nodule. The quasi-roundness 
(CR) , indicates the proximity of the region to the circle, 
which can be expressed as Eq. (3), as shown below,

where PR is the perimeter of region (R) , that is, the length 
of the region boundary.

The marginal burr rate, MBR , is the ratio of the num-
ber of burrs on the boundary ( nb ) to the total number 
of boundary points ( n ), which is defined as Eq.  (4), as 
shown below,

The marginal burr magnitude, MBM, represents 
the mean of all changes in the radial distance at each 
burr point relative to the average radial distance of the 
boundary, which can be written as Eq.  (5), as shown 
below,

(3)CR =
4πSR

(PR)2

(4)MBR =
nb

n

(5)MBM =

∑nb
i=1[RD(i)− RD(ave)]

nb
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with Eqs. (6), as shown below,

where 
(

xR, yR
)

 is the centroid coordinates of region R , 
RD(i) is the normalized distance from the boundary 
point of region (R) to the center of mass of region (R) , 
and RD(ave) is the average radial distance of all boundary 
points.

In general, for nodule region (R) , the larger MBR, the 
greater the probability that it is a true positive nodule, and 
the larger the MBM, the greater the probability that it is a 
malignant nodule.

Gray-scale features are simple to calculate and are not 
sensitive to image translation, rotation, and scaling. To 
describe the distribution characteristics of grayscale in 
region (R) , three gray-scale features, gray mean (GM) , gray 
variance (GV ) , and gray entropy (GE) , are selected.

For each pixel of region R , its grey value can be directly 
read and obtained. Therefore, the gray mean GM can be 
expressed as Eq. (7), as shown below,

The gray variance, GV  , indicating the deviation ampli-
tude between the gray-scale distribution and gray mean in 
region (R) , can be written as Eqs. (8), as shown below,

The gray entropy, GE , which indicates the amount of 
grayscale information of the image, can be expressed as 
Eq. (9), as shown below,

where A(k) represents the number of pixels in region (R) 
whose gray value is k.

(6)















RD(i) =

�

((x(i)− xR)
2 +

�

y(i)− yR
�2

RD(i) = RD(i)

max
�

RD(i),i=1,...,n
�

RD(ave) = mean(RD(i)), (i = 1, . . . , n)

(7)GM =

∑

(i,j)∈R g
(

i, j
)

SR

(8)GV =

∑

(i,j)∈R

[

g
(

i, j
)

− GM
]2

SR

(9)GE = −

255
∑

k=0

A(k)

SR
log

(

A(k)

SR

)

Based on the shape and grayscale features mentioned 
above, we performed feature extraction of pulmonary 
nodules confirmed by clinical practice. Table  1 shows 
the feature data of some pulmonary nodules, as shown in 
Fig. 2h–j.

Based on the extracted features of doctor-confirmed 
pulmonary nodules (Table  1), a multilevel classifica-
tion criterion was established to perform the classifica-
tion and recognition of suspected pulmonary nodules, 
thereby assisting the doctor in completing the diagnosis. 
The classification criteria results are collected from the 
selected datasets, i.e., shape and grayscale feature data of 
pulmonary nodules marked by doctors. Specifically, the 
classification criteria included the following:

(1) As described previously [1], the identified lesions 
are usually marked by radiologists as non-nod-
ules, < 3  mm nodules, and ≤ 3  mm nodules. Since 
nodules < 3 mm are mostly benign and are difficult 
to diagnose automatically, the subsequent sample 
statistics are ≤ 3 mm nodules. The threshold of the 
area (SR) , TS , was defined to distinguish nodules 
and eliminate interference factors, such as nod-
ules < 3 mm.

(2) The image of the nodule in the CT cross-section 
was round. The threshold of quasi-roundness (CR) , 
TC , was employed to distinguish between the nod-
ules and elongated vascular tissues.

(3) The most significant interference factor for nod-
ule classification is the larger vascular tissue per-
pendicular to the CT cross-section, and its image 
also appears to be round-like. However, compared 
with the nodules, the blood vessels of this type 
have larger grayscales and an uneven gray distribu-
tion, and the boundaries are smoother. Hence, the 
threshold of the gray mean (GM) , TGM , the thresh-
old of the gray entropy GE , TGE , and the threshold 
of the marginal burr rate (MBR) , TMBR , can be used 
to distinguish between the nodules and larger vas-
cular tissue.

(4) The large nodules with diameters > 10  mm, cor-
responding to the area of approximately 300, are 
highlighted for medical reference.

Table 1 Extracted features of some pulmonary nodules

Sketch of pulmonary 
nodules

Shape features Gray-scale features

(SR) (CR) MBR MBM (GM) (GV) (GE)

(a) 846.5 0.54 0.28 0.13 100.66 126.41 4.42

(b) 271.5 0.7653 0.19 0.10 139.02 119.49 4.84

(c) 39.0 0.858 0.41 0.13 95.24 77.74 4.50
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(5) The key procedure for classification is selection 
with TS , TC , TGM , TGE and TMBR . In our previous 
work, the above multi-level classification param-
eters were normalized based on the statistical the-
ory, and a better combination was obtained based 
on the 3σ rule; however, for the first two types of 
pulmonary nodules (as seen in Fig. 1a–c), the clas-
sification quality was not good. Hence, we used the 
weighted average method for the above parameters 
to complete the multi-feature weight assignment, 
that is, Ti = ξi ∗ Ti(i = S,C ,GM,GE,MBR) , where 
∑

ξi = 1 , and the neural network algorithm was 
used to search for global optimal solutions.

Based on the above criteria, the final optimization 
results are TS = 30, TC = 0.6, TGM = 196, TGE = 3.5, and 
TMBR = 0.16. In addition, a confusion matrix was used to 
describe the performance of the suspected nodule pre-
diagnosis established in this study.

It was assumed that the nodule was defined as positive 
and the non-nodule was considered as negative. TP indi-
cates that the diagnosis is positive and itself is positive. 
False positive ( FP) indicates that the diagnosis is positive 
and itself is not positive. TN  indicates that the diagno-
sis is negative, and itself is negative; in this case, TN  = 0. 
False negative ( FN ) indicates that the diagnosis is nega-
tive and itself is not negative. Therefore, four evaluation 
metrics–sensitivity (Fse ), specificity (Fsp ), accuracy (Fa ), 
and computational efficiency (Fce)–were employed and 
used, as shown in Eq. (10).

where t is the time required to process a CT image. Note 
that Fsp = 0 because TN  = 0.

Insertion path planning
The results of the automatic classification and diagno-
sis of suspected pulmonary nodules in the previous sec-
tion can not only be used as a pre-diagnosis before the 
final diagnosis by doctors, but also further assist them 
in determining the location of the suspected malignant 
nodules. For cases in which benign and malignant tumors 
cannot be diagnosed, biopsy puncture is required. As a 
result, finding an optimized feasible insertion path is 
another important aspect of this study.

3-D reconstruction technology based on 2-D medical 
images can better express the form, structure, and spa-
tial relationships, providing further image information 
for biological medical studies [50, 51]. Obviously, the 
intuitive 3-D structure and its adjacent relationship are 

(10)
Fse =

TP

TP + FN
, Fsp =

TN

FP + TN
,

Fa =
TP

TP + TN + FP + FN
, Fce = t.

of great benefit to the insertion path planning of biopsy 
puncture. It is not difficult to imagine that designing the 
insertion path based on the 3-D model is very likely to be 
significantly similar to clinical practice, such as whether 
key tissues are avoided, the feasibility of inserting points, 
and so on, which does not include the influencing factors 
such as breathing, heartbeat, in puncture research [2, 34]. 
Therefore, we should first obtain the 3-D model of the 
reconstructed lung regions to design and complete rea-
sonably optimized path planning.

The main steps of 3-D reconstruction are as follows: 
First, a series of 2-D chest original images require pre-
processing, such as image enhancement and denoising, 
which is the same as the previous lung parenchyma seg-
mentation. Second, threshold, morphology, and bound-
ary repair operations are performed on the pre-processed 
images to extract the lung parenchyma, as described in 
Sect.  "Lung parenchyma segmentation". Based on lung 
parenchyma segmentation, the point cloud was calcu-
lated using voxelization to obtain 3-D volume data. Affine 
transformation was also used for the volume data to get 
interpolated 3-D volume data. Third, the MC algorithm 
(i.e., the marching cubes algorithm [52] was adopted to 
perform the 3-D reconstruction of the interpolated 3-D 
volume data. Although the point cloud reconstruction 
algorithm [53] in authors’ work can make the recon-
struction effect better, the common method we adopted 
has met the clinical requirements, so we did not pur-
sue higher accuracy requirements. After extracting the 
iso surfaces, a triangular patch with the same threshold 
is formed, the smoothing process is performed, and the 
lighting model is used for shading rendering.

By selecting an appropriate gray threshold, 3-D recon-
struction models of different tissues or pulmonary nod-
ules can be achieved. Figure 3a shows the internal tissues, 
such as the blood vessels, tracheae, and pulmonary nod-
ules. Different selections of the grey threshold can clearly 
distinguish these internal tissues. The entire chest model 
referring to the lung regions is depicted in Fig.  3b. The 
thoracic ribs can be clearly seen, which is useful for 
inserting a path design for biopsy puncture.

According to clinical experience, the insertion path plan-
ning for biopsy puncture needs to follow two principles: 
one to observe the initial entry point in detail through the 
3-D reconstruction model to reasonably avoid key tissues 
or organs, and the other to shorten the puncture distance 
as much as possible under the premise of effective obstacle 
avoidance. Thus, the optimal puncture path should theo-
retically select the shortest distance from the center of the 
mass of the nodule to the external boundary surface of the 
chest model. The shortest distance of the puncture path, 
dmin , is expressed as:
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where 
(

xl , yl , zl
)

 are the centroid coordinates of the sus-
pected pulmonary nodule; 

(

xi, yi, zi
)

 are the coordinates 
of the boundary point on the external surface of the chest 
model ( Bc ); Sc represents an aggregate of all boundary 
points; and nc is the number of all boundary points.

(11)







dmin = min

�

�

(xi − xl)
2 +

�

yi − yl
�2

+ (zi − zl)
2

�

Sc =
��

xi, yi, zi
�

∈ Bc

�

, (i = 1, 2, . . . , nc)

It can be calculated using Eq. (11), the boundary points 
corresponding to the shortest distance of the punc-
ture path are the designed insertion points (i.e., the ini-
tial entry points), and the lines connecting the insertion 
points to the center of the suspected pulmonary nodule 
are the optional insertion paths. In this study, we first 
found the chest CT slice on which the most suspected 
malignant nodule was displayed, then established the 
objective function of the sum of straight-line pixels on 

Fig. 3 Insertion path planning. 3‑D model of reconstructed lung regions: a internal tissues, and b whole chest model. c Illustration of finding 
the optimize feasible insertion path. d Designed surgical robotic system used for minimally invasive percutaneous lung. The numbers represent 
as below: 1‑noumenon structure, 2‑force sensor, 3‑camera, 4‑video surveillance, 5‑needle, 6‑thoracic model, 7‑controller, and 8‑emergency stop 
button. e Graphic of simulating nodule used to represent suspected nodule in experiment. f Description of in‑vitro puncture experiments for 
verifying path planning
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this slice to search for the minimum value, and finally 
determined the feasible solution based on the 3-D recon-
struction model, thereby obtaining the optimal insertion 
path. Figure 3c illustrates the optimized feasible insertion 
path. Based on the objective function method, the math-
ematical description for determining the optimal inser-
tion path can be expressed as

where g
(

xi, yi, zi
)

 represents the gray value at pixel points 
of 

(

xi, yi, zi
)

 which belongs to the insertion path (that is, 
the shortest straight line calculated from Eq. (11)), gmin is 
the minimum gray value of the sum of the pixels.

As shown in Fig. 1d, e, different tissue structures have 
different grey values. In other words, the sum of the 
gray values of all the pixels on different insertion paths 
is different. It can be seen from Fig.  3c that at the CT 
slice on which the largest size of the suspected malig-
nant nodule is displayed, there could be four shortest 
paths solved by Eq. (11); however, from Eq. (12), it can 
be found that the sum of the gray values of Nos. 1 and 
2 is smaller than that of Nos. 3 or 4. Subsequently, it is 
necessary to combine the established 3-D reconstruc-
tion model, ensuring that key blood vessels are com-
pletely avoided, and the insertion path (No. 1) can be 
determined as the optimal insertion path. Thus, with-
out considering the relevant influencing factors in the 
puncture study, Eqs. (11–12) and the 3-D reconstructed 
model, a better insertion path can be found by avoiding 
the sternum and/or key tissues from the aspect of path 
planning. A MATLAB program was developed to solve 
these equations.

Based on our previous work for minimally invasive per-
cutaneous lung, as shown in Fig.  3d [54], the designed 
surgical robotic system was used to perform in  vitro 
experiments and to verify the effectiveness of insertion 
path planning for biopsy puncture. The main technical 
parameters and the performance of the designed robotic 
surgical system are introduced in Sect. "Assisted robot for 
lung puncture". The robot design and prototype manu-
facturing are not described here, the details are as in the 
earlier study [54].

It should be noted that in this study, a thoracic model 
from the 3-D reconstructed model of one patient was 
custom-made, mainly consisting of a human skeleton 
model on a 1:1 scale and an artificial silicone gel with 
three layers used to simulate soft tissue on the surface 
of the thoracic ribs. After determining the positions of 
suspected pulmonary nodules from CT slices, the simu-
lating nodule points (the lesion points) were set inside 
the model using bolts of different lengths, where the 

(12)
{

gmin = min
∑

g
(

xi, yi, zi
)

s.t.
(

xi, yi, zi
)

∈ dmin

coordinates of the end center point of the bolts were 
the same as the positions of the suspected pulmonary 
nodules (Fig.  3e). Although our previous work involv-
ing in vitro puncture experiments has been published [2, 
54], the necessary description is explained below for easy 
understanding of the readers, and also shown in Fig. 3f.

For robot-assisted puncture, lesion positioning and 
needle positioning are the basis to ensure the accuracy 
of the puncture and are the key techniques for inser-
tion operation. As per a report [54], a lesion positioning 
method based on three noncollinear markers aiming to 
be realized only by the robot-CT system without using 
an external positioning system was established. Using 
this lesion positioning method, the needle tip can easily 
reach the initial entry point, that is, the entry point of the 
planned insertion path. In a previous study [54], an omni-
directional needle positioning method was developed 
and realized using the Virtual Remote Center of Motion. 
Using this needle-positioning method, the needle axis 
can always be along the direction of the planned inser-
tion path. It should be noted that the shortest distance 
and smallest gray-value sum for the planned insertion 
path can, theoretically (Eqs.  (11–12) and visually (3-D 
model) avoid obstacles, such as the key blood vessels. In 
an actual insertion operation, the azimuth angle of the 
puncture needle in the omnidirectional needle position-
ing method can easily be adjusted to avoid unexpected 
obstacles in the planned insertion path.

It is well known that the coordinates of the suspected 
pulmonary nodule (the lesion point) in the CT coordi-
nate system can be directly output from the above nod-
ule recognition result. The specific verification steps for 
the insertion path are as follows: First, by using the lesion 
positioning method, the positioning of the lesion point 
in the robot coordinate system can be obtained, and the 
initial entry point and insertion path can be mapped to 
the robot coordinate system. Subsequently, after using 
the designed surgical robotic system to finish the in vitro 
puncture experiments, the effectiveness of the insertion 
path can be verified by comparing the error between 
the theoretical and actual experimental positions of the 
lesion point.

Results and Discussion
The publicly available database of chest CT images from 
LIDC-IDRI was used to verify the validity of the estab-
lished method for pulmonary nodule pre-diagnosis. 
Moreover, a CT-guided surgical robotic system used for 
minimally invasive percutaneous lung and a custom tho-
racic model were designed and made to perform in vitro 
puncture experiments to validate the effectiveness of the 
insertion path planning.
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Pulmonary nodule detection
LIDC-IDRI contains a series of original CT images of 
over 1000 patients, and the median slice thickness of 
the images with an interval of [0.6, 5.0 mm] is approxi-
mately 2 mm. Taking one of the patients as an example, 
nine original CT images at equal intervals in the lung 
region, as shown in Fig. 4A, were selected to extract the 
lung parenchyma segmentation. Then, the CT images 
were processed using the established image process-
ing method for lung parenchyma segmentation as dis-
cussed in Sect.  "Lung parenchyma segmentation". The 
obtained results are shown in Fig. 4B.

As shown in Fig. 4B, all CT images successfully seg-
mented the lung parenchyma with clear edges, which 
removed the background of the thoracic contour in 
the original images. As the experience we met in the 
process of work, the repair effect in the case of con-
tour adhesion among blood vessels, pulmonary nod-
ules, and lung parenchyma was better, and the loss rate 
of gray information in the extracted lung parenchyma 
was lower. In other words, the lung parenchyma in 
chest CT images can be accurately identified using the 
established method for lung parenchyma segmentation, 

which is useful for ensuring the effects of later pulmo-
nary nodule detection.

Based on lung parenchyma segmentation, the clas-
sification and diagnosis of pulmonary nodules were 
performed on CT images of a total of 900 patients. The 
four-evaluation metrics in Eq.  (10), sensitivity (Fse), 
specificity (Fsp), accuracy (Fa), and computational effi-
ciency (Fce) were obtained after completing all studies 
on pulmonary nodule detection. Figure  4C shows some 
representative automatic recognition experiments for 
pulmonary nodules.

After the comprehensive analysis, we draw the follow-
ing conclusions:

(1) The time for processing a single CT image is about 
5  s, i.e., the computational efficiency, Fce, is rela-
tively high.

(2) Unlike the definition of negative for benign and 
malignant detection of nodules, in this study, the 
non-nodule is defined as negative, TN = 0, so the 
specificity, Fsp, is 0.

(3) The average sensitivity, Fse, was 88.2%, indicat-
ing that only 11.8% of all the annotated nodules 

Fig. 4 Pulmonary nodule detection. A CT gray images at different slices for the same patient. B Results of lung parenchyma segmentation 
corresponding to gray images in Fig. 4A. C Automatic recognition experiments for pulmonary nodules, where I to III represent original images, 
doctor‑marked nodules, and diagnostic results in this paper, respectively. D A cross‑section of the reconstructed 3‑D model. E Path planning of 
nodules used for biopsy puncture.
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remained unrecognized, and a few errors occurred 
in unclear CT images.

(4) The average accuracy, Fa, was 82.1%, indicating that 
although the established suspected nodule pre-
diagnosis method was able to recognize the vast 
majority of all the nodules in 900 patients, the num-
ber of false positives (FP) was slightly higher.

As mentioned in the Introduction section, in recent 
years, most of the published literature on the detection of 
pulmonary nodules has been based on machine learning 
for benign and malignant detection of pulmonary nod-
ules, and there is few research on recognizing nodules. 
Here, compared with the other methods for pulmonary 
nodule recognition, such as the multi-view convolu-
tional networks (ConvNets) [39] and the front-end detec-
tor/segmentor [55], it was seen that the sensitivity (Fse) 
of nodule recognition in our work is larger than 81.3% 
reported [39], but the improvement of the candidate 
detection algorithm based on multi-view ConvNets as 
proposed by Setio et  al. could reach a higher detection 
sensitivity (approximately 90.1%), which would be suited 
to be used for FP reduction and might give us a refer-
ence to reduce FP in our follow-up work. Additionally, 
the sensitivity (Fse) in our work was > 82.66% documented 
earlier [55]. Although the accuracy (Fa) was lower than 
92.8% reported [55], the LIDC data used in that study 
just comprised of 84 CT scans that contained only 143 
nodules, and for different selected features, the accuracy 
changed from 92.8% to other values [80.4% of the nodules 
(115/143)] using 40 features. Obviously, the comparison 
of the magnitude of accuracy, or for that matter, the other 
evaluation metrics, is only a qualitative analysis, and 
there are many differences pertaining to the conditions 
that prevailed for varied research focuses such as only for 
recognizing solitary pulmonary nodules. Similarly, even 
in the same datasets, sample selection and the amount 
also contribute to problem of randomness, and cannot be 
completely consistent.

In summary, the accuracy shown in the results is not 
only related to the recognition of small pulmonary nod-
ules, but also to the misidentification of blood vessels, in 
which the difference in features between the nodules and 
the vessels perpendicular to the CT cross-section is not 
fully excavated. However, combined with the feedback 
from senior experts, it can be concluded that although 
the average sensitivity and accuracy are 88.2% and 
82.1%, respectively, the results can basically meet clini-
cal requirements. Subsequently, in further 587 patients, 
we plan to apply the generative adversarial network algo-
rithm to achieve medical image data augmentation [56, 
57], and thus to pursue better detection of pulmonary 
nodules.

Path planning
Figure 4D shows the cross section of the reconstructed 
3-D model. Based on the 3-D reconstructed model, 
we can easily and quickly check the segmentation of 
the lung parenchyma in any cross-section and the spa-
tial position of each structure. This also allows for the 
effective screening of optional insertion paths.

Figure 4E depicts an example of path planning of nod-
ules used for biopsy puncture. The green five-pointed 
star indicates the insertion point corresponding to each 
nodule, and the yellow dotted line represents the opti-
mal insertion path. The centroid coordinates of each 
nodule in the CT coordinate system are given along 
with those of the insertion point. Next, the lesion posi-
tioning error was used to evaluate the effectiveness of 
the designed insertion path. Experimental studies have 
shown that the positioning error of each lesion are 
2.015, 2.421, and 2.145 mm, respectively, and are within 
3  mm. This also reveals the validity of the path plan-
ning, which can provide reference for clinical biopsy 
puncture [58].

This study demonstrates that the established auto-
matic pre-diagnosis method, including lung paren-
chyma segmentation, classification, and pre-diagnosis, 
is effective for the recognition or detection of suspected 
pulmonary nodules, regardless of the benign and malig-
nant nodules, and that the use of a CT-guided surgical 
robotic system and a custom thoracic model is feasible 
for the validation experiment of insertion path plan-
ning. However, there are still some limitations as dis-
cussed below:

(1) While the results were observed from the CT 
images of 900 patients, the performance of the 
automatic pre-diagnosis method in this study has 
scope for further improvement. The evaluation 
metrics (i.e., Fse, Fa) imply that it is able to recognize 
the vast majority of all annotated nodules, but the 
number of FPs should be reduced based on the lat-
est advances in AI, such as deep learning, and war-
rants continued future research.

(2) The experiment for verifying insertion path plan-
ning in this work is an in vitro study, performed in a 
custom thoracic model and an artificial silicone gel 
with three layers, with no in vivo or ex vivo effects 
in humans or animals. It is well known that all the 
results observed from in  vivo human experiments 
are the most convincing, but they are difficulties in 
implementing them both practically and ethically. 
Therefore, it would be interesting to explore the 
extent to which ex vivo animal experiments can be 
used and the artificial biological tissue that can be 
prepared for follow-up work.
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For the early diagnosis and screening of lung carci-
noma, accurate detection of pulmonary nodules is cur-
rently the most effective approach for preventing and 
providing reliable clinical treatment schema. In this 
study, we explored the automatic pre-diagnosis of sus-
pected nodules and insertion path planning of suspected 
malignant nodules for biopsy puncture. The overall 
process includes lung parenchyma segmentation, clas-
sification, pre-diagnosis, 3-D reconstruction, and path 
planning. The extraction of lung parenchyma from chest 
CT images is achieved using digital image processing 
technologies, such as adaptive gray threshold, connected 
area labeling, and mathematical morphological boundary 
repair. A multilevel classification criterion is established 
based on the shape and grayscale features of pulmo-
nary nodules, and the multi-feature weight assignment 
is used to determine the thresholds of selected param-
eters, where the global optimal solutions are searched 
using a neural network algorithm. Based on these, the 
classification and pre-diagnosis of suspected nodules can 
be obtained. Although doctors still need to be involved 
in judging benign and malignant nodules, the automatic 
pre-diagnosis process in this work has greatly reduced 
the doctor’s diagnostic burden. Finally, 3-D reconstruc-
tion of lung regions is performed using voxelization, and 
on this basis, the optimized feasible insertion path with 
an insertion point can be found by avoiding sternums 
and/or key tissues in path planning. Additionally, in vitro 
puncture experiments were conducted to validate the 
effectiveness of planned insertion path. It can be con-
cluded that the lung parenchyma segmentation in this 
study is acceptable, which is helpful in building the region 
of interest used to identify nodules. The average sensitiv-
ity and accuracy are 88.2% and 82.1%, respectively. The 
established suspected nodule pre-diagnosis method can 
recognize vast majority of all nodules in 900 patients, 
but the number of FPs was slightly higher. Nevertheless, 
combined with feedback from senior experts, the results 
can meet clinical requirements. In future work, the gen-
erative adversarial network is planned to adapt to pursue 
better accuracy with fewer FPs. Moreover, as experiments 
showed the position errors of lesion points after insertion 
to be within 3 mm, revealing the validity of path planning 
can provide a reference for clinical biopsy puncture.

Acknowledgements
We gratefully acknowledge all the support from Ruijin Hospital, Shanghai Jiao 
Tong University School of Medicine and State Key Laboratory of Mechanical 
System and Vibration, Shanghai Jiao Tong University.

Author contributions
R‑LX conceived the overall idea of this study, designed the research plan in 
detail, and revised the manuscript. YW sorted all relevant work and wrote 
the manuscript. G‑BC undertook the MATLAB program for lung parenchyma 
segmentation, nodule classification and diagnosis, and 3‑D reconstruction. 
Y‑NZ designed the experiments to validate the effectiveness of the insertion 

path and revised the manuscript. JZ contributed the needles/materials/analy‑
sis tools and performed the CT scanning experiments on the thoracic model. 
ZF and JF verified the established model, and supervised the entire study. All 
authors approved the final version of the manuscript.

Funding
We gratefully acknowledge the financial support from the Medical Engi‑
neering Cross Projects of SJTU (Grant Nos. YG2019ZDA17; ZH2018QNB23), 
Shanghai Collaborative Innovation Center for Translational Medicine (Grant 
No.TM201804), and Scientific Research Project of Huangpu District of 
Shanghai (Grant No. HKQ201810), National Natural Science Foundation of 
China (Grant No. 61973210), Project of Science and Technology Commission 
of Shanghai Municipality (Grant No. 17441901000), and Project of Shanghai 
Municipal Commission of Health and Family Planning (Grant Nos. 201640230, 
20144Y0084, and 20214Y0223).

Availability of data and materials
The datasets analysed during the current study available from the correspond‑
ing author on reasonable request.

Declarations

Ethics approval and consent to participate
All the procedures were implemented based on the principles of the Declara‑
tion of Helsinki. All human chest CT images were approved by LIDC‑IDRI, 
confirming that informed consent was obtained from all participants or, if 
participants were under 18 years of age, from a parent and/or legal guardian. 
The formal consent for this type of study was approved by the Academic 
Ethics Committee of Shanghai Jiao Tong University, Shanghai, China. And the 
experimental protocols for biopsy puncture using a custom‑made thoracic 
model were approved by the Academic Ethics Committee of Shanghai Jiao 
Tong University, Shanghai, China. This article does not contain any studies 
involving human participants or animals performed by any of the authors.

Consent for publication
Not applicable.

Competing interests
The authors declare no potential conflicts of interest with respect to the 
research, authorship, and/or publication of this article.

Received: 7 May 2022   Accepted: 19 January 2023

References
 1. Zhang J, Xia Y, Cui H, Zhang Y. Pulmonary nodule detection in medical 

images: a survey. Biomed Signal Process. 2018;43:138–47.
 2. Chen GB, Fu Z, Zhang TF, Shen Y, Wang Y, Shi W, Fei J. Robot‑assisted 

puncture positioning methods under CT navigation. J Xi’an JiaoTong 
Univ. 2019;53:85–92, 99.

 3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 
cancer statistics 2018: GLOBOCAN estimates of incidence and mor‑
tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2018;68:394–424.

 4. Baldwin DR. Prediction of risk of lung cancer in populations and in 
pulmonary nodules: significant progress to drive changes in paradigms. 
Lung Cancer. 2015;89:1–3.

 5. Bo L, Li C, Pan L, Wang H, Li S, Li Q, et al. Diagnosing a solitary pulmonary 
nodule using multiple bronchoscopic guided technologies: a prospec‑
tive randomized study. Lung Cancer. 2019;129:48–54.

 6. Zhang R, Tian P, Chen B, Zhou Y, Li W. Predicting lung cancer risk of 
incidental solid and subsolid pulmonary nodules in different sizes. Cancer 
Manag Res. 2020;12:8057–66.

 7. Kadir T, Gleeson F. Lung cancer prediction using machine learning and 
advanced imaging techniques. Transl Lung Cancer Res. 2018;7:304–12.

 8. Krishnamurthy S, Narasimhan G, Rengasamy U. Three‑dimensional lung 
nodule segmentation and shape variance analysis to detect lung cancer 



Page 15 of 16Xie et al. BMC Medical Imaging           (2023) 23:22  

with reduced false positives. Proc Inst Mech Eng Part H J Eng Med. 
2015;230:58–70.

 9. China D of RBH National Center of Gerontology, Beijing, Tao G, Jingying 
Y, Tan G, Xiaotao D, Min C. A novel CT‑guided technique using medical 
adhesive for localization of small pulmonary ground‑glass nodules and 
mixed ground‑glass nodules (≤20 mm) before video‑assisted thoraco‑
scopic surgery. Diagn Interv Radiol. 2018;24:209–12.

 10. Reilly RM. Medical Imaging for Health Professionals. 2019:1–9.
 11. Ohno Y, Kauczor H, Hatabu H, Seo JB, Beek EJR, (IWPFI) for the IW for PFI. 

MRI for solitary pulmonary nodule and mass assessment: current state of 
the art. J Magn Reson Imaging. 2018;47:1437–58.

 12. Bamji‑Stocke S, van Berkel V, Miller DM, Frieboes HB. A review of metab‑
olism‑associated biomarkers in lung cancer diagnosis and treatment. 
Metabolomics. 2018;14:81.

 13. Ambrosini V, Nicolini S, Caroli P, Nanni C, Massaro A, Marzola MC, et al. 
PET/CT imaging in different types of lung cancer: an overview. Eur J 
Radiol. 2012;81:988–1001.

 14. John J, Mini MG. Multilevel thresholding based segmentation and 
feature extraction for pulmonary nodule detection. Proc Tech. 
2016;24:957–63.

 15. Khan ZF. Automated segmentation of lung parenchyma using colour 
based fuzzy C‑means clustering. J Electr Eng Technol. 2019;14:2163–9.

 16. Javaid M, Javid M, Rehman MZU, Shah SIA. A novel approach to CAD 
system for the detection of lung nodules in CT images. Comput Methods 
Programs Biomed. 2016;135:125–39.

 17. Sridhar B, Reddy KVVS, Prasad AM. Mammographic image analysis based 
on adaptive morphological fuzzy logic CAD system. Int J Biomed Eng 
Technol. 2015;17:341.

 18. Dai S, Ke L, Zhai R, Dong J. Lung segmentation method based on 3D 
region growing method and improved convex hull algorithm. J Electron 
Inf Technol. 2016;9:2358–64.

 19. Toz G, Erdoğmuş P. A novel hybrid image segmentation method for 
detection of suspicious regions in mammograms based on adaptive 
multi‑thresholding (HCOW). IEEE Access. 2021;9:85377–91.

 20. Ma J, Song Y, Tian X, Hua Y, Zhang R, Wu J. Survey on deep learning for 
pulmonary medical imaging. Front Med. 2020;14:450–69.

 21. F G, ML D, J Q. Classification of lung nodules by ensemble learning 
based on Bootstrap‑Heterogeneous SVM. J Tianjin Univ (Sci Technol). 
2017;3:321–7.

 22. Jia AJ, Liu BJ, Gu CY. Computer‑aided diagnosis of pulmonary nodules 
on CT scan images. In: 2018 10th Int Conf Model Identif Control Icmic. 
2018;00:1–6.

 23. Monkam P, Qi S, Ma H, Gao W, Yao Y, Qian W. Detection and classification 
of pulmonary nodules using convolutional neural networks: a survey. 
IEEE Access. 2019;7:78075–91.

 24. Dodia S, Annappa B, Mahesh PA. Recent advancements in deep learning 
based lung cancer detection: a systematic review. Eng Appl Artif Intel. 
2022;116:105490.

 25. Tse ZTH, Chen Y, Hovet S, Ren H, Cleary K, Xu S, et al. Soft robotics in 
medical applications. J Med Robot Res. 2018;03:1841006.

 26. Burgner‑Kahrs J, Rucker DC, Choset H. Continuum robots for medical 
applications: a survey. IEEE Trans Robot. 2015;31:1261–80.

 27. Ishii H, Kamegawa T, Kitamura H, Matsuno T, Hiraki T, Gofuku A. Develop‑
ment of a prototype of puncturing robot for CT‑guided intervention. In: 
2016 IEEE 11th Conf Industrial Electron Appl ICIEA. 2016;1020–5.

 28. Hungr N, Bricault I, Cinquin P, Fouard C. Design and validation of a CT‑ 
and MRI‑guided robot for percutaneous needle procedures. IEEE Trans 
Robot. 2015;32:973–87.

 29. Wang L, Hu T. The design of a dual channel synchronous control system 
based on a new percutaneous puncture surgical robot. Multimed Tools 
Appl. 2020;79:10405–25.

 30. Scali M, Breedveld P, Dodou D. Experimental evaluation of a self‑pro‑
pelling bio‑inspired needle in single‑ and multi‑layered phantoms. Sci 
Rep‑UK. 2019;9:19988.

 31. Li P, Jiang S, Liang D, Yang Z, Yu Y, Wang W. Modeling of path planning 
and needle steering with path tracking in anatomical soft tissues for 
minimally invasive surgery. Med Eng Phys. 2017;41:35–45.

 32. Abayazid M, Moreira P, Shahriari N, Patil S, Alterovitz R, Misra S. Ultra‑
sound‑guided three‑dimensional needle steering in biological tissue 
with curved surfaces. Med Eng Phys. 2015;37:145–50.

 33. Huang D, Tang P, Wang Y, Li H, Tang W, Ding Y. Computer‑assisted 
path planning for minimally invasive vascular surgery. Chin J Electron. 
2018;27:1241–9.

 34. Yang C, Xie Y, Liu S, Sun D. Force modeling, identification, and feedback 
control of robot‑assisted needle insertion: a survey of the literature. Sen‑
sors. 2018;18:561.

 35. Xiong J, Li X, Gan Y, Xia Z. Path planning for flexible needle insertion 
system based on improved rapidly‑exploring random tree algorithm. IEEE 
Int Conf Inf Autom. 2015;2015:1545–50.

 36. Lee J, Wang J, Park W. Efficient mechanism design and systematic 
operation planning for tube‑wire flexible needles. J Mech Robot. 
2018;10:065001.

 37. Fauser J, Sakas G, Mukhopadhyay A. Planning nonlinear access paths for 
temporal bone surgery. Int J Comput Ass Radiol Surg. 2018;13:637–46.

 38. Zhang R, Wu S, Wu W, Gao H, Zhou Z. Computer‑assisted needle trajec‑
tory planning and mathematical modeling for liver tumor thermal abla‑
tion: a review. Math Biosci Eng. 2019;16:4846–72.

 39. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, et al. Pulmo‑
nary nodule detection in CT images: false positive reduction using multi‑
view convolutional networks. IEEE Trans Med Imaging. 2016;35:1160–9.

 40. Armato SG, McLennan G, Bidaut L, McNitt‑Gray MF, Meyer CR, Reeves AP, 
et al. The Lung Image Database Consortium (LIDC) and Image Database 
Resource Initiative (IDRI): a completed reference database of lung nod‑
ules on CT scans. Med Phys. 2011;38:915–31.

 41. Meng W, Wang Y. Comprehensive analyses of the elasto‑plastic oblique 
contact‑impact with vibration response. Proc Inst Mech Eng Part K J 
Multi‑body Dyn. 2018;233:441–54.

 42. Wang Y, Fu Z. Analytical study of babbitt/steel composite structural 
bars in oblique contact‑impact with a solid flat surface. Mech Sci. 
2019;10:213–28.

 43. Feng H, Xu G, Han Y, Liu Y. A lane line segmentation algorithm based on 
adaptive threshold and connected domain theory. Ninth Int Conf Graph 
Image Process ICGIP. 2017;2018(10615):1061521.

 44. Santamaría‑Pang A, Hernandez‑Herrera P, Papadakis M, Saggau P, 
Kakadiaris IA. Automatic morphological reconstruction of neurons from 
multiphoton and confocal microscopy images using 3D tubular models. 
Neuroinformatics. 2015;13:297–320.

 45. Legland D, Arganda‑Carreras I, Andrey P. MorphoLibJ: integrated library 
and plugins for mathematical morphology with ImageJ. Bioinformatics. 
2016;32:btw413.

 46. Soltaninejad S, Cheng I, Basu A. Robust lung segmentation combining 
adaptive concave hulls with active contours. IEEE Int Conf Syst Man 
Cybern SMC. 2016;2016:004775–80.

 47. Ming JTC, Noor NM, Rijal OM, Kassim RM, Yunus A. Enhanced automatic 
lung segmentation using graph cut for interstitial lung disease. IEEE Conf 
Biomed Eng Sci IECBES. 2014;2014:17–21.

 48. Han F, Wang H, Zhang G, Han H, Song B, Li L, et al. Texture feature analysis 
for computer‑aided diagnosis on pulmonary nodules. J Digit Imaging. 
2015;28:99–115.

 49. Wang Z, Xin J, Sun P, Lin Z, Yao Y, Gao X. Improved lung nodule diagnosis 
accuracy using lung CT images with uncertain class. Comput Methods 
Progams Biomed. 2018;162:197–209.

 50. Cline HE, Dumoulin CL, Hart HR, Lorensen WE, Ludke S. 3D reconstruc‑
tion of the brain from magnetic resonance images using a connectivity 
algorithm. Magn Reson Imaging. 1987;5:345–52.

 51. Li X, Wang X, Dai Y, Zhang P. Supervised recursive segmentation of volu‑
metric CT images for 3D reconstruction of lung and vessel tree. Comput 
Methods Program Biomed. 2015;122:316–29.

 52. Newman TS, Yi H. A survey of the marching cubes algorithm. Comput 
Graph. 2006;30:854–79.

 53. Jian WZ, Zhuang FU, Chenzhuo LU, Yanna Z, Rongli X, Jun Z, Zhuang F, 
Chenzhuo L, Yanna Z, Rongli X, Jian ZJ, et al. Research on supersonic thy‑
roid piercing three dimensional navigation based on three dimensional 
reconstruction technology. Mach Electron. 2021;6:56–60.

 54. Zhang TF, Fu Z, Wang Y, Shi WY, Chen GB, Fei J. Lesion positioning method 
of a CT‑guided surgical robotic system for minimally invasive percutane‑
ous lung. Int J Med Robot. 2020;16: e2044.

 55. Messay T, Hardie RC, Rogers SK. A new computationally efficient CAD 
system for pulmonary nodule detection in CT imagery. Med Image Anal. 
2010;14:390–406.



Page 16 of 16Xie et al. BMC Medical Imaging           (2023) 23:22 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 56. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: 
a review. Med Image Anal. 2019;58: 101552.

 57. Zhu Y, Fu Z, Fei J. An image augmentation method using convolutional 
network for thyroid nodule classification by transfer learning. In: 2017 3rd 
IEEE int conf comput commun ICCC. 2017:1819–23.

 58. Ji Z, Wang G, Chen B, Zhang Y, Zhang L, Gao F, et al. Clinical application 
of planar puncture template‑assisted computed tomography‑guided 
percutaneous biopsy for small pulmonary nodules. J Canc Res Ther. 
2018;14:1632.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Lung nodule pre-diagnosis and insertion path planning for chest CT images
	Abstract 
	Introduction
	Pulmonary nodules
	Medical image analysis
	Assisted robot for lung puncture

	Materials and methods
	Lung parenchyma segmentation
	Classification and diagnosis
	Insertion path planning

	Results and Discussion
	Pulmonary nodule detection
	Path planning

	Acknowledgements
	References


