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Abstract 

Background Slot-scan digital radiography (SSDR) is equipped with detachable scatter grids and a variable copper 
filter. In this study, this function was used to obtain parameters for low-dose imaging for whole-spine imaging.

Methods With the scatter grid removed and the beam-hardening (BH) filters (0.0, 0.1, 0.2, or 0.3 mm) inserted, the 
tube voltage (80, 90, 100, 110, or 120 kV) and the exposure time were adjusted to 20 different parameters that pro-
duce equivalent image quality. Slot-scan radiographs of an acrylic phantom were acquired with the set parameters, 
and the optimal parameters (four types) for each filter were determined using the figure of merit. For the four types 
of parameters obtained in the previous section, SSDR was performed on whole-spine phantoms by varying the tube 
current, and the parameter with the lowest radiation dose was determined by visual evaluation.

Results The parameters for each filter according to the FOM results were 90 kV, 400 mA, and 2.8 ms for 0.0 mm thick-
ness; 100 kV, 400 mA, and 2.0 ms for 0.1 mm thickness; 100 kV, 400 mA, and 2.8 ms for 0.2 mm thickness; and 110 kV, 
400 mA, and 2.2 ms for 0.3 mm thickness. Visual evaluation of the varying tube currents was performed using these 
four parameters when the BH filter thicknesses were 0.0, 0.1, 0.2, and 0.3 mm. The entrance surface dose was 59.44 
µGy at 90 kV, 125 mA, and 2.8 ms; 57.39 µGy at 100 kV, 250 mA, and 2.0 ms; 46.89 µGy at 100 kV, 250 mA, and 2.8 ms; 
and 39.48 µGy at 110 kV, 250 mA, and 2.2 ms, indicating that the 0.3-mm BH filter was associated with the minimum 
dose.

Conclusion Whole-spine SSDR could reduce the dose by 79% while maintaining the image quality.

Keywords Slot-scan technology, Whole spine, Radiation dose, Beam-hardening filter, Whole spine radiography

Background
Slot-scan digital radiography (SSDR; Shimadzu, Kyoto, 
Japan) can remove scatter grids and automatically vary 
beam-hardening copper filters (BH filters). The filter 
material is copper, which may reduce X-rays in the low-
energy region, thereby reducing the dose.

X-rays are incident perpendicular to the subject or 
patient such that seamless images with little distortion 
can be obtained, which is useful for alignment measure-
ment in orthopedics and preoperative and postopera-
tive evaluations. During imaging, the X-ray tube and flat 
panel detector move simultaneously from the head to the 
foot at the same speed while delivering X-rays. X-rays are 
delivered in the form of a beam through a narrow 4-cm 
slit. The X-ray preparation is completed by confirming 
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the starting position (head side) and the ending position 
(foot side) with X-ray fluoroscopy. After acquisition, doz-
ens of images acquired using the workstation are super-
imposed and combined into a single long image. The 
scatter grid is attached and detached manually, and the 
BH filter is controlled by a console at hand [1–7].

In general, the image quality is dependent on tube volt-
age, tube current, and exposure time. The auxiliary fac-
tors include scatter grids, filters, distance, and image 
processing. There is no fixed method to reduce the dose; 
however, the characteristics of the device and the tools 
associated with the device can be used to reduce the radi-
ation dose [8–22]. In this study, the parameters of low-
dose whole-spine imaging were investigated.

Methods
Ethical approval was obtained from the Fussa Hospital 
Ethics Review Committee (Number: 41). The system, 
phantom, and dosimeter used are shown in Table 1.

First, the scatter grids were removed, a BH filter (0.0, 
0.1, 0.2, or 0.3  mm) was inserted, and the tube voltage 
(80, 90, 100, 110, or 120  kV) and exposure time were 
adjusted to create 20 different parameters that would 
provide equivalent image quality. The tube current was 
kept constant at 400 mA.

The Shimadzu Sensitivity (SS) value, which is a sensi-
tivity index used to stabilize the density that was used in 
Shimadzu’s equipment, was used in this study to obtain 
equivalent image quality. The SS values are similar to 
the S values used in X-ray digital imaging, but the con-
cept differs slightly depending on the equipment of the 
manufacturer.

An SS value of 200 is defined as the value obtained 
when 2.58 ×  10−7  C/kg of radiation reaches the detec-
tor at a tube voltage of 80 kV. The optimal image has an 

SS value of 200 to 300. In this study, the SS value was 
adjusted to be in the range of 250 ± 20%. The 20 different 
parameters are listed in Table 2.

Method 1
SSDR was performed using 20 different parameters on an 
acrylic phantom (20  cm thick) with an X-ray chart and 
dosimeter probe placed on it, and images and entrance 
surface dose (ESD) were measured (Fig. 1; Table 1). From 
the images acquired, the “Mean ROI-A” and “Mean ROI-
B” of the region of interest were defined in ImageJ (ver. 
1.41; National Institutes of Health, Bethesda, MD), as 
shown in Fig. 2, and the standard deviation (SD) for noise 
(N) was used to obtain the contrast-to-noise ratio (CNR) 
(Eq. (1)).

The figure of merit (FOM) was then determined for 
each filter using Eq.  (2) to determine the best scoring 
parameters (four types).

FOM is a widely used tool to evaluate or compare the 
performance of a device, material, or procedure. As a tool 
for the quantitative evaluation of digital images, it is used 
for the comparative evaluation of X-ray equipment and 
parameters in the field of radiography. It is defined as the 
ratio of the X-ray dose to the square of the CNR, which 
indicates the image quality; a higher score indicates a 
better evaluation [23–25]. FOM was used as the slot-scan 
images are acquired through a narrow 4-cm slit, leading 
to less scattered radiation and acquisition of images that 

(1)CNR =

Mean ROI-A−Mean ROI-B

SD

(2)FOM =

(CNR)2

ESD

Table 1 Slot-scan digital radiography equipment and parameters

Imaging unit SONIALVISION G4; Shimadzu, Kyoto, Japan

High-voltage equipment DR-300

Flat panel detector (inch) 17

Pixel size (µm) 139

Focus-receptor distance (cm) 110, 120, 150

Grid ratio 10

Beam-hardening filter (copper) (mm) 0.1, 0.2, 0.3

Tube voltage (kV) 40–150 (Fluoroscopy: 50–125)

Tube current (mA) 10-1000 (Fluoroscopy: 0.3–20.0)

Exposure time (s) 0.001–10.0

Density resolution (bits) 16

Whole-body phantom PBU-60; Kyoto Kagaku, Kyoto, Japan

Dosimeter Ray Safe X2, Unfors Ray Safe AB, Billdal, Sweden
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maintain contrast even at high voltage. Using this feature, 
it would be possible to find low-dose parameters by set-
ting a high tube voltage.

Method 2
For each of the four parameters of each filter obtained in 
Method 1, the tube current was reduced to 400, 320, 250, 
and 125 mA, and the whole-spine phantoms were imaged 
for ESD and visual evaluation (Table 1).

A visual evaluation was performed using a visual 
analog scale (VAS) for each BH filter (Fig.  3). The VAS 
is a tool for objectively evaluating subjective ratings that 
are difficult to measure. It is one of the most frequently 

Table 2 Measurements obtained from the imaging parameters

The tube current is constant at 400 mA on parameters

BH beam hardening, ESD entrance surface dose, CNR contrast-to-noise ratio, FOM figure of merit

BH filter (mm) Tube voltage (kV) Tube current (mA) Exposure time 
(ms)

ESD (µGy) CNR FOM

0.0 80 400 4.5 151.01 0.012476 10.3073 ×  10−7

90 400 2.8 128.51 0.011805 10.8441 ×  10−7

100 400 2.0 110.87 0.010008 9.0340 ×  10−7

110 400 1.4 104.02 0.009008 7.8011 ×  10−7

120 400 1.0 93.11 0.008111 7.0657 ×  10−7

0.1 80 400 6.3 118.60 0.009911 8.2829 ×  10−7

90 400 3.2 88.99 0.008880 8.8610 ×  10−7

100 400 2.0 69.76 0.008497 10.3496 ×  10−7

110 400 1.6 67.13 0.006588 6.4653 ×  10−7

120 400 1.2 62.50 0.005658 5.1221 ×  10−7

0.2 80 400 7.1 101.04 0.008222 6.6906 ×  10−7

90 400 4.5 82.42 0.007534 6.8868 ×  10−7

100 400 2.8 66.39 0.006834 7.0347 ×  10−7

110 400 1.8 60.82 0.005984 5.8876 ×  10−7

120 400 1.2 55.50 0.005572 5.5941 ×  10−7

0.3 80 400 9.0 85.55 0.006754 5.3322 ×  10−7

90 400 5.6 72.08 0.006356 5.6047 ×  10−7

100 400 3.2 66.01 0.006141 5.7131 ×  10−7

110 400 2.2 60.04 0.006026 6.0481 ×  10−7

120 400 1.4 55.99 0.005711 5.8252 ×  10−7

Fig. 1 The layout of slot-scan radiography with 20 different 
parameters is shown. The X-ray chart and dosimeter probe 
were placed on an acrylic phantom (20 cm thick), and slot-scan 
radiography was performed to obtain the chart image and dose

Fig. 2 Region of interest (ROI) settings for contrast-to-noise ratio 
(CNR) measurements. Two ROIs were established on the X-ray chart
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used methods in the assessment of pain [26–29]. When 
responding to items on the VAS, respondents select a 
position on a continuous line connecting two endpoints 
(good–bad). The specific evaluation method was based 
on whether the phantom was diagnostically observable 
from the cervical spine to the lumbar spine on imaging. 
The VAS scale was used to score the phantoms as “good” 
if observable and “bad” if unobservable. The evaluators 
were five physicians (four orthopedic surgeons and one 
radiologist) who understood and agreed with the pur-
pose of the study. Analyses were performed by multivari-
ate analysis (non-parametric, three-group comparison, 
Kruskal–Wallis test) and multiple comparisons (Steele–
Drewas method) using Easy E (EZR, ver. 1.55) [30].

Results
In Method 1, the ESD was the highest at 151.01 µGy 
when the filter thickness was 0.0 mm and the tube volt-
age was 80 kV; the ESD was the lowest at 55.50 µGy when 
the filter thickness was 0.2 mm and the tube voltage was 
120 kV, showing a decrease of about 60%. The ESD tended 
to decrease as the tube voltage increased (Table 2; Fig. 4). 
The CNR was best at 0.012476 when the filter thickness 
was 0.0 mm and the tube voltage was 80 kV, and it was 
the lowest at 0.005572 when the filter was 0.2  mm and 
the tube voltage was 120 kV. The CNR tended to decrease 
as the tube voltage between the filters increased (Table 2; 
Fig.  5). When the BH filter thickness was 0.0  mm, the 
FOM was the highest at 10.841 ×  10−7 at a tube voltage of 
90 kV. For a BH filter thickness of 0.1 mm, the FOM was 

the highest at 10.3496 ×  10−7 at a tube voltage of 100 kV. 
For a BH filter thickness of 0.2  mm, the FOM was the 
highest at 7.0347 ×  10−7 at a tube voltage of 100 kV. For 
a BH filter thickness of 0.3 mm, the FOM was the high-
est at 6.0481 ×  10−7 at a tube voltage of 110 kV (Fig. 6). 
Method 2, which used the abovementioned four param-
eters, was considered for use since the highest score in 
the FOM results can be defined as the optimal parameter.

As a result of Method 2, Table 3 shows the 16 param-
eters obtained by reducing the tube current for the 
four parameters obtained from Method 1. Using these 

Fig. 3 Visual analog scale (VAS) used for visual assessment. Scores 
were given by moving the scale from good to bad (continuous 
confidence method). Five physicians (four orthopedic surgeons and 
one radiologist) oversaw the evaluation. The purpose of the test was 
fully explained prior to the evaluation, which was conducted in the 
same environment, under the same conditions (time, room light, 
monitors)

Fig. 4 Entrance surface dose (ESD) for each filter in phantom 
imaging with 20 different parameters

Fig. 5 Contrast-to-noise ratios (CNRs) based on 20 different 
parameters (X-ray chart analysis)



Page 5 of 8Ichikawa et al. BMC Medical Imaging           (2023) 23:17  

parameters, a whole-body phantom was photographed, 
and the results of the visual evaluation and dosimetry are 
shown in Figs. 7 and 8. In the visual evaluation, no signif-
icant difference was observed in the images with respect 
to the change in tube current when the filter was 0 mm 
(p = 0.06). When the filter was 0.1, 0.2, and 0.3 mm, sig-
nificant differences were observed in the 125-mA cur-
rent range and other ranges (p < 0.05) (Fig.  7). The ESD 
decreased with decreasing tube current (Fig. 8).

Discussion
The parameters obtained by FOM aim to reduce the dose 
by varying the tube voltage. This system is characterized 
by low scattered rays and good contrast images even in 

the high-voltage region as imaging is performed with a 
4-cm wide slit; this could be the reason why the FOM 
results were better in the high-voltage region.

The copper filter also attenuates X-rays in the low-
energy region. Typically, aluminum or copper is used to 
attenuate X-rays in the low-energy region. Copper has a 
larger atomic number and is more effective in attenuat-
ing X-rays than aluminum, thereby lowering the overall 
dose without changing the effective dose. Since this study 
was conducted in the high-voltage region, the effect of 
copper can be considered to be demonstrated. Further-
more, it was considered that parameters with a good bal-
ance between the image quality and dose were obtained 
using FOM, compared with the output obtained when 
the parameters recommended by the manufacturer were 
used in the past.

As for the radiation dose of the whole-body phantom 
during visual evaluation, the dose decreased at a constant 
rate when the tube current was decreased to 400, 320, 
250, and 125 mA. This is because the tube current is pro-
portional to the radiation dose.

Visual evaluation using the VAS showed no significant 
difference when the tube current was lowered if the BH 
filter was 0.0 mm (p = 0.06) as the low-energy component 
is not removed when the BH filter is not used; therefore, 
it was considered that a decrease in radiation dose does 
not make a difference in the evaluation.

However, a significant difference (p < 0.05) was 
observed at a tube current of 125 mA for 0.1-, 0.2-, and 
0.3-mm BH filters. This was considered to be a significant 
difference at a certain boundary as the low-energy com-
ponent is removed and the radiation dose is reduced. As 
a result, the lowest dose was obtained with a 0.3-mm BH 
filter (Fig. 9).

Fig. 6 ESD, CNR, and FOM obtained from 20 different parameters. 
ESD: Entrance surface dose; CNR: contrast-to-noise ratio; FOM: figures 
of merit

Fig. 7 Visual evaluation results for each filter. When the filter thickness is 0.0 mm, no significant difference was observed between the different tube 
currents. For filter thicknesses of 0.1, 0.2, and 0.3 mm, significant differences were observed for tube currents of 125, 250, 320, and 400 mA (multiple 
comparison, Steel–Dwass method)
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The lowest radiation (scatter grid uninstalled, 0.3-mm 
BH filter installed, 110  kV/250 mA/2.2 ms, and ESD of 
39.48 µGy) dose was 79% lower than that with the param-
eters used in conventional examination (scatter grid 
installed, no filter installed, 85  kV/400 mA/6.3 ms, and 

ESD of 191.1 µGy; measured beforehand). In addition, 
there was no difference among the evaluations performed 
by the physicians involved in the evaluation; therefore, 
the validity of the evaluation result was considered guar-
anteed. There is no fixed method for dose reduction.

Although there are many systems for imaging the 
entire spine, some systems make it difficult to reduce the 
dose as the scatter grid cannot be removed or a BH filter 
cannot be installed. In addition, it is assumed that some 
devices cannot guarantee image quality due to increased 
scattered radiation at high voltage settings; therefore, 
SSDR may be useful.

Fig. 8 Entrance Surface Dose (ESD) for the 16 parameters shown in 
Table 3

Table 3 Parameters obtained from varying tube current for each 
filter (16 types)

BH beam hardening

BH filter (mm) Tube 
voltage (kV)

Tube current (mA) Exposure 
time (ms)

0.0 90 400/320/250/125 2.8

0.1 100 400/320/250/125 2.0

0.2 100 400/320/250/125 2.8

0.3 110 400/320/250/125 2.2

Fig. 9 Whole-spine images at a beam-hardening (BH) filter thickness of 0.3 mm. The tube currents were 400, 320, 250, and 125 mA. The tube 
voltage was 110 kV, and the exposure time was 1.4 ms. The lumbar spine and pelvic region are obscured at a tube current of 125 mA and can be 
observed at tube currents of 250, 320, and 400 mA
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In addition, when considering dose reduction, it is dif-
ficult to examine the tube voltage and tube current simul-
taneously. Therefore, the tube voltage was examined first, 
and the tube current was examined based on the results 
of that examination. Under these circumstances, FOM is 
a useful tool.

Since the main purpose of whole-spine imaging is 
to measure the alignment and observe the entire spine, 
some degradation of image quality is considered accept-
able. In addition, imaging is performed in all age groups 
and includes radiosensitive areas, such as the breast, 
spine, and gonads. Radiation doses should be reduced as 
much as possible based on the ALARA (“as low as rea-
sonably achievable”) concept. This study is effective as 
a dose-reduction method. However, this study does not 
include data based on patient-specific body shape or age, 
or disease-specific bone density. Therefore, its use in clin-
ical practice requires further study. Notably, the potential 
for dose reduction is great, and a reduction in exposure 
dose is expected to significantly reduce the risk from 
radiation exposure.

Conclusion
Compared with conventional parameters, a 79% dose 
reduction was achieved when a 0.3-mm BH filter was 
used in this study. The image quality was determined 
to be the same via visual evaluation. During the imag-
ing of the entire spine with SSDR, dose reduction can 
be achieved without compromising the image quality by 
using high voltage, low current, removal of scattering 
grids, and BH filters.

Abbreviations
BH  Beam-hardening
CNR  Contrast-to-noise ratio
ESD  Entrance surface dose
FOM  Figure of merit
SSDR  Slot-scan digital radiography
VAS  Visual analog scale
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