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Abstract 

Background  The aim was to compare the diffusion tensor imaging (DTI) indices derived from human hearts 
between 1.5 T and 3.0 T scanners. Additionally, the reproducibility of DTI indices was assessed between 1.5 T and 3.0 T 
scanners.

Methods  A total of 18 ex-vivo hearts were derived from patients who underwent heart transplantation. The DTI 
schemes were performed at 1.5 T and 3.0 T, respectively. Then, the same slices from each ex-vivo heart were selected 
for image analysis. The student’s t-test or Wilcoxon-rank test was used to compare the statistical differences. The 
agreement of DTI indices was mainly reported as the interclass correlation coefficient (ICC).

Results  No significant differences (all P > 0.05) were found in the DTI indices between 1.5 T and 3.0 T scanners. Inter-
estingly, the ICC of all DTI indices was relatively lower with a low b-value. The reproducibility of the helix angle (HA) 
was relatively lower when compared to the other DTI indices.

Conclusion  The DTI indices of ex-vivo human hearts between 1.5 T and 3.0 T scanners had no significant differences. 
The consistency of DTI indices needed caution using a low b-value with different field strengths, and the relatively low 
reproducibility of HA should be considered.
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Background
Recently, cardiovascular magnetic resonance (CMR) 
diffusion tensor imaging (DTI) has emerged as a prom-
ising technique for the determination of myocardial 
fiber orientation [1, 2] and tissue characterization. DTI 
could investigate water diffusion within the tissue and 
derive additional scalar metrics for quantifying struc-
tural integrity [3, 4]. Consequently, CMR DTI has 
become a non-invasive method to illustrate the altera-
tions of cardiac microstructure in patients with dilated 
cardiomyopathy (DCM), amyloidosis, and hypertrophic 
cardiomyopathy in recent studies [1, 2, 5–7].

Theoretically, the DTI indices should remain constant 
at different field strengths [8]. Since DTI is inherently a 
low-resolution and low-signal-to-resolution technique, 
the image quality needs to be seriously concerned [9]. 
DTI is sensitive to the translational motion of water 
molecules and a small amount of subject motion can 
lead to a significant signal phase shift or signal loss, 
which severely affects image quality [9, 10]. In addi-
tion, DTI with single-shot echo-planar imaging (EPI) 
sequence is commonly used. The EPI sequence is par-
ticularly sensitive to susceptibility artifacts and mag-
netic field inhomogeneities due to a long echo train. 
Moreover, the magnetic field inhomogeneities and 
related artifacts that increase with rising field strength 
probably cause the difference of DTI indices in CMR 
DTI protocols with different field strengths.

With the growing interests of CMR DTI, it has been 
performed in human hearts with various MRI systems 
at different field strengths, mainly at 1.5 T [6, 11, 12] or 
3.0 T [2, 13]. The comparison between 1.5 T and 3.0 T 
DTI scanners, however, is an important and essen-
tial procedure for adoption in clinical routine [8, 10, 
14]. Because DTI indices should not be influenced by 
the external magnetic field theoretically, the difference 
of signal-to-noise ratios caused by field strength may 
affect the DTI indices [8, 15]. If CMR DTI is sought to 
be clinically useful, the DTI indices should be robust 
for the external field strength, which may be helpful for 
the initial diagnosis and monitoring of the therapeutic 
effects. However, little is known about the reproduc-
ibility and consistency of DTI indices in cardiac at dif-
ferent field strengths. Therefore, the purpose of this 
prospective study was to acquire the CMR DTI data 
from ex-vivo human hearts, and compare the DTI indi-
ces between 1.5 T and 3.0 T scanners. Furthermore, we 
investigated the impact of different b-values on the DTI 
indices, and assessed the consistency and reproducibil-
ity of these DTI indices.

Methods
Study population
A total of 18 ex-vivo hearts were derived from patients 
who had undergone heart transplantation due to vari-
ous cardiovascular causes in Guangdong Provincial 
People’s Hospital from April 2020 to January 2021. This 
study was approved by the Institutional Review Board 
of Guangdong Provincial People’s Hospital (reference 
number: KY2020-039–01-01).

Ex‑vivo human heart preparation
The ex-vivo hearts from patients were collected and 
fixed in 10% buffered formalin within 1  h of excision 
from the recipients at the time of heart transplantation. 
All ex-vivo hearts were fixed in 10% buffered formalin 
for at least 24 h before the CMR examination, and the 
average time between fixation and CMR examination 
was three days. It has been reported that CMR DTI 
indices remained constant 24  h after the initial cross-
linking by formalin fixation for several weeks [16].

Image acquisition
The DTI sequence was scanned at a 3.0  T scanner 
(Ingenia, Philips Healthcare, Amsterdam, The Neth-
erlands) and a 1.5 T scanner (Achieva, Philips Health-
care, Amsterdam, The Netherlands), respectively. A 
sixteen-channel receiving array coil was used for the 
3.0  T MRI scanner and an eight-channel receive array 
coil was used for the 1.5 T MRI scanner. The DTI was 
performed with a multi-shot spin-echo sequence with 
an EPI readout. Multi-slice short axis views of the heart 
were acquired covering the entire left ventricular. And 
a 4-chamber 3D T1WI scan was performed to local-
ize the ex-vivo hearts, and ensured that imaging planes 
were placed in short-axis view orientation at apical, 
mid-ventricular and basal. Five diffusion series with 5 
different b-values were performed separately on ex-vivo 
hearts, including b-values of 200  s/mm2, 400  s/mm2, 
600  s/mm2, 800  s/mm2 and 1000  s/mm2, respectively. 
The detailed imaging parameters are shown in Table 1.

Image analysis
Diffusion tensors were calculated on a pixel-by-pixel 
basis from the CMR diffusion images and diagonal-
ized to yield three eigenvalues (L1, L2 and L3, sorted 
in descending order and commonly referred to as pri-
mary, secondary and tertiary diffusivities, respectively) 
and eigenvectors (the corresponding eigenvectors E1, 
E2 and E3). The mean diffusivity (MD), fractional ani-
sotropy (FA), helix angle (HA), E2 angle (E2A), HA 
transmural gradient and transverse angle (TA) were 
obtained by the diffusion tensor eigensystem, and E2A 
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values were stated as absolute from 0 to 90 degrees 
[17–19]. The HA transmural gradient was calculated 
by dividing the myocardium into five transmural con-
centric rings. The mean HA for each ring against the 
transmural depth was obtained, and the gradient was 
defined as the slope extracted from the linear regres-
sion of the mean HA [19].

In the present study, we selected only one slice without 
any myocardium excision for the image analysis of each 
ex-vivo heart. All the DTI indices were reported as the 
average values over the entire left ventricular myocardial 
area on the selected slice for each ex-vivo heart. All the 
post-processing computation was performed as Fig.  1 
using custom codes written in Matlab (Version R2019a, 
Mathworks, Natick, MA, USA).

Statistical analysis
Continuous variables were described as mean ± standard 
deviation. The normal distribution of variables was tested 
using the Shapiro–Wilk test. The Student’s t-test was 
used to compare the means of normally distributed vari-
ables, while the Wilcoxon-rank test was used to compare 
the median of skewed variables. The agreement of DTI 
indices between 1.5 T and 3.0 T scanners was tested by 
calculating mean bias and 95% limits of agreement on a 
Bland–Altman test, and interclass correlation coefficient 
(ICC).

For the reproducibility analysis, we randomly selected 
one slice from each ex-vivo heart and sketched the 
region of interest (ROI) on the left ventricular myo-
cardium. To assess intra-observer reproducibility, the 
first experienced observer was blinded to the clinical 
information, and then sketched ROIs twice at 2-week 
intervals. For inter-observer reproducibility, another 
experienced observer did the same thing in the selected 
images. The agreement of reproducibility was also tested 
by calculating mean bias and 95% limits of agreement 

on a Bland–Altman test, and ICC. All tests were two-
sided, and P values < 0.05 were considered statistically 
significant.

All statistical analyses were performed with the statis-
tical software GraphPad Prism (version 6.0; GraphPad 
Software, San Diego, California, USA) and in R version 
3.4.1 (R Foundation, Vienna, Austria).

Results
Study Population
A total of 18 patients (41 ± 17  years, 11 males) were 
included in the analysis who had undergone heart trans-
plantation. In detail, nine patients had dilated cardiomyo-
pathy, five had coronary heart disease, one had rheumatic 
heart disease, one had Arrhythmia right ventricular car-
diomyopathy, one had cardiac malignancy, and one had 
myocarditis proven by pathology.

The comparison between 1.5 T and 3.0 T
Among the DTI indices analyzed, no significant differ-
ences (all P > 0.05) were found between 1.5  T and 3  T 
scanners (Table 2). Interestingly, the ICCs of all DTI indi-
ces between 1.5 T and 3.0 T scanners were relatively low 
with a low b-value. In detail, the ICC of FA, MD, HA, 
E2A, HA transmural gradient, and TA between 1.5 T and 
3.0 T were 0.395 (− 0.074, 0.721), 0.319 (− 0.160, 0.676), 
0.726 (0.403, 0.888), 0.556 (0.134, 0.807), 0.024 (− 0.437, 
0.474), and 0.107 (− 0.367, 0.536), respectively, when the 
b-value was 200 s/mm2. The ICC of FA, MD, HA, E2A, 
HA transmural gradient, TA between 1.5  T and 3.0  T 
were 0.903 (0.760, 0.963), 0.937 (0.841, 0.976), 0.957 
(0.889, 0.984), 0.835 (0.613, 0.935), 0.400 (− 0.067, 0.724), 
and 0.306 (− 0.174, 0.668), respectively, when the b-value 
equaled 1000 s/mm2 (Table 3). The mean absolute differ-
ence and 95% confidence interval of the mean difference 
of measurements between 1.5 T and 3.0 T were shown in 
Table 4 and Additional file 1: Figure S1.

Table 1  Overview of the different protocols evaluated in this study

Sequence Field strength TR
(ms)

TE
(ms)

Voxel
(mm3)

Slices b-values
(s/mm2)

Diffusion
Directions

DTI_200_16d 3.0 T 2000 53 2 × 2 × 5 5 200 16

DTI_400_16d 3.0 T 2000 61 2 × 2 × 5 5 400 16

DTI_600_16d 3.0 T 2000 66 2 × 2 × 5 5 600 16

DTI_800_16d 3.0 T 2000 70 2 × 2 × 5 5 800 16

DTI_1000_16d 3.0 T 2000 74 2 × 2 × 5 5 1000 16

DTI_200_16d 1.5 T 2000 55 2 × 2 × 5 5 200 16

DTI_400_16d 1.5 T 2000 63 2 × 2 × 5 5 400 16

DTI_600_16d 1.5 T 2000 69 2 × 2 × 5 5 600 16

DTI_800_16d 1.5 T 2000 73 2 × 2 × 5 5 800 16

DTI_1000_16d 1.5 T 2000 77 2 × 2 × 5 5 1000 16
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The difference among various b‑values
As the b-value increased, MD decreased at both 1.5 T 
and 3.0 T scanners, while FA, HA, E2A, HA transmu-
ral gradient, and TA did not show significant trend 
varied with b-values, which were shown in Fig.  2. In 
Fig.  2B, MD with a b-value of 200  s/mm2 was signifi-
cantly higher than MD with a b-value of 1000  s/mm2 
(P = 0.032) at 3.0  T. In addition, HA, E2A, HA trans-
mural gradient and TA at both 1.5 T and 3.0 T did not 
show any statistical difference with different b-values.

Reproducibility
The intra- and inter-observer reproducibility of DTI 
indices were shown in Table  5 and Additional file  1: 
Figure S2. The intra-observer ICC and inter-observer 
ICC of FA, MD, E2A, HA transmural gradient, and TA 
were all over 0.85. However, the intra-observer ICC and 
inter-observer ICC of HA were the lowest. The intra-
observer ICC of HA was 0.888 (0.726, 0.957), while the 
inter-observer ICC was 0.814 (0.569, 0.926).

Fig. 1  The region of interests of DTI images and DTI indices analysis. FA, fractional anisotropy; MD, mean diffusivity; HA, helix angle; E2A, E2 angle; 
TA, transverse angle
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Discussion
The DTI has emerged as a promising technique in CMR, 
which was mainly performed with human hearts at 
1.5  T or 3.0  T scanners. Given present trends, the DTI 

scanning in ex-vivo human hearts was performed, and 
the DTI indices and reproducibility were compared 
between 1.5 T and 3.0 T scanners. The main findings of 
our study were included as follows: (1) There were no 

Table 2  Overall comparison of DTI indices between 1.5 T and 3.0 T

*indicated the significant difference between 1.5 T and 3.0 T. Values in bold indicate significance

The E2A values were stated as absolute from 0 to 90 degrees

b-value
(s/mm2)

Field strength Fractional anisotropy Mean diffusivity
(mm2/s)

Helix angle
(degrees)

E2 angle
(degrees)

Helix angle 
transmural gradient 
(degrees/%trans)

Transverse angle
(degrees)

200 1.5 T 0.343 ± 0.054 0.00077 ± 0.00022  − 1.332 ± 8.06 36.45 ± 7.08  − 0.256 ± 0.16  − 0.347 ± 3.44

3.0 T 0.324 ± 0.088 0.00078 ± 0.00015 0.616 ± 7.80 34.86 ± 8.26  − 0.319 ± 0.19 1.419 ± 5.51

400 1.5 T 0.312 ± 0.055 0.00074 ± 0.00011  − 1.837 ± 8.75 35.09 ± 8.05  − 0.308 ± 0.13  − 0.358 ± 4.25

3.0 T 0.287 ± 0.068 0.00074 ± 0.00014 0.009 ± 8.19 33.98 ± 10.45  − 0.329 ± 0.18  − 0.051 ± 5.14

600 1.5 T 0.299 ± 0.057 0.00069 ± 0.00010  − 1.110 ± 8.10 34.19 ± 9.85  − 0.331 ± 0.14  − 0.394 ± 3.77

3.0 T 0.278 ± 0.063 0.00072 ± 0.00014 0.751 ± 8.37 33.74 ± 11.55  − 0.334 ± 0.21  − 0.624 ± 5.26

800 1.5 T 0.296 ± 0.059 0.00067 ± 0.00011  − 1.004 ± 9.11 34.57 ± 10.44  − 0.341 ± 0.13  − 0.662 ± 3.89

3.0 T 0.273 ± 0.060 0.00070 ± 0.00014 0.630 ± 8.71 33.594 ± 11.64  − 0.348 ± 0.19  − 0.726 ± 4.87

1000 1.5 T 0.286 ± 0.049 0.00066 ± 0.00012  − 0.080 ± 9.98 33.641 ± 10.82  − 0.352 ± 0.17  − 1.201 ± 4.41

3.0 T 0.273 ± 0.057 0.00067 ± 0.00013 1.021 ± 9.31 32.24 ± 11.71  − 0.350 ± 0.20  − 0.749 ± 5.18

Table 3  intraclass correlation coefficients of DTI indices between 1.5 T and 3.0 T

“()” indicated the 95% coincident interval of intraclass correlation coefficients

b-value Fractional anisotropy Mean diffusivity Helix angle E2 angle Helix angle
transmural gradient

Transverse angle

200 0.395 (− 0.074, 0.721) 0.319 (− 0.160, 0.676) 0.726 (0.403, 0.888) 0.556 (0.134, 0.807) 0.024 (− 0.437, 0.474) 0.107 (− 0.367, 0.536)

400 0.575 (0.162, 0.817) 0.715 (0.385, 0.883) 0.867 (0.680, 0.948) 0.743 (0.434, 0.895) 0.178 (− 0.302, 0.586) 0.303 (− 0.177, 0.667)

600 0.653 (0.281, 0.854) 0.887 (0.723, 0.956) 0.910 (0.777, 0.965) 0.758 (0.462, 0.902) 0.493 (0.048, 0.774) 0.415 (− 0.050, 0.732)

800 0.679 (0.324, 0.867) 0.916 (0.790, 0.968) 0.954 (0.881, 0.982) 0.821 (0.584, 0.929) 0.285 (− 0.196, 0.655) 0.368 (− 0.105, 0.705)

1000 0.903 (0.760, 0.963) 0.937 (0.841, 0.976) 0.957 (0.889, 0.984) 0.835 (0.613, 0.935) 0.400 (− 0.067, 0.724) 0.306 (− 0.174, 0.668)

Table 4  Mean absolute difference of DTI indices between 1.5 T and 3.0 T

“()” indicated the 95% coincident interval of intraclass correlation coefficients

b-value (s/mm2) Fractional anisotropy Mean diffusivity (mm2/s) Helix angle(degrees) E2 angle (degrees)

200  − 0.020 (− 0.178, 0.137)  − 0.00001 (− 0.00042, 0.00044) 1.95 (− 9.57, 13.46)  − 1.60 (− 15.80, 12.61)

400  − 0.025 (− 0.137, 0.087) 0.000005 (− 0.00018, 0.00019) 1.93 (− 6.63, 10.49)  − 1.17 (− 14.23, 12.00)

600  − 0.023 (− 0.120, 0.075)  − 0.00003 (− 0.00009, 0.00014) 1.86 (− 4.98, 8.71)  − 0.45 (− 15.08, 14.17)

800  − 0.023 (− 0.117, 0.071)  − 0.00002 (− 0.00008, 0.00012) 1.63 (− 3.69, 6.95)  − 0.98 (− 13.94, 11.98)

1000  − 0.013 (− 0.060, 0.033)  − 0.00001 (− 0.00007, 0.00010) 1.10 (− 4.44, 6.65)  − 0.41 (− 13.09, 12.27)

b-value (s/mm2) Transverse angle (degrees) Helix angle 
transmural gradient 
(degrees/%trans)

200 1.77 (− 11.64, 15.17)  − 0.063 (− 0.538, 0.411)

400 0.31 (− 10.61, 11.22)  − 0.021 (− 0.412, 0.370)

600  − 0.23 (− 9.93, 9.47)  − 0.003 (− 0.354, 0.348)

800  − 0.065 (− 9.78, 9.66)  − 0.007 (− 0.385, 0.371)

1000 0.46 (− 10.64, 11.57) 0.002 (− 0.388, 0.392)
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significant differences in DTI indices between 1.5 T and 
3.0 T; (2) the ICC of all DTI indices between 1.5 T and 
3.0 T was relatively low with a low b-value; (3) the repro-
ducibility of HA was relatively lower compared with the 
other DTI indices.

Theoretically, DTI indices should not be influenced by 
the external magnetic field. However, the comparison of 
DTI indices at 1.5 T and 3.0 T scanners seemed to reveal 
contradicting findings in clinical practice. In the evalua-
tion of the brain, Hunsche et al. concluded that MD and 
FA did not differ significantly comparing 1.5 T and 3.0 T 

[14], while Guilfoyle et  al. observed the changes of DTI 
indices varied with field length [20]. In the evaluation of 
kidneys, Notohamiprodjo et  al. concluded that none of 
the DTI indices did not differ significantly when compar-
ing 1.5 T and 3.0 T, while Kido et al. [10] found that both 
FA and MD were significantly different at different field 
strengths. The other reason might be the different set-
tings with Lohr et  al. [21] reported that there is no dif-
ference found at porcine hearts between CMR DTI at 
3.0 T and 7.0 T, similar to the present study. However, the 
comparison of field strength was different between Lohr’s 

Fig. 2  The bar chart shows DTI indices with different b-values. A fractional anisotropy; B mean diffusivity; C helix angle; D E2 angle; E helix angle 
transmural gradient; F transverse angle. The E2A values were stated as absolute from 0 to 90 degrees

Table 5  Intraclass correlation coefficients (ICC) and mean absolute difference of DTI indices measurement

“()” indicated the 95% coincident interval of intraclass correlation coefficients or mean difference using Bland–Altman test

DTI indices Intra-observer
ICC

Intra-observer
Bias (limits of agreement)

Inter-observer
ICC

Inter-observer
Bias (limits of agreement)

Fractional anisotropy 0.984
(0.957, 0.994)

 − 0.0030
(− 0.018, 0.024)

0.970
(0.922, 0.989)

0.0023
(− 0.018, 0.023)

Mean diffusivity 0.973
(0.929, 0.990)

 − 0.000020
(− 0.000061, 0.000021)

0.980
(0.948, 0.993)

0.0000007
(− 0.000026, 0.000027)

Helix angle 0.888
(0.726, 0.957)

2.21
(− 5.48, 9.91)

0.814
(0.569, 0.926)

1.44
(− 8.00, 10.87)

E2 angle 0.969
(0.920, 0.988)

 − 2.17
(− 6.52, 2.18)

0.939
(0.845, 0.977)

 − 3.18
(− 8.82, 2.47)

Helix angle
transmural gradient

0.922
(0.805, 0.970)

0.021
(− 0.124, 0.166)

0.887
(0.724, 0.956)

0.030
(− 0.149, 0.210)

Transverse angle 0.934
(0.834, 0.975)

0.688
(− 2.98, 4.35)

0.892
(0.735, 0.958)

1.379
(− 3.57, 6.33)
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and our study (3.0 T/7.0 T vs. 1.5 T/ 3.0 T). Furthermore, 
the human ex-vivo hearts were fixed in Formalin in this 
study, while the porcine hearts were not fixed in For-
malin or other substances in Lohr’s study [21]. Whether 
the DTI indices in the specimens without fixation varied 
with time was still unclear, and whether it affected their 
findings remained unknown. Further experiments are 
urgently needed before the CMR DTI technique is used 
in clinical practice.

The difference of DTI indices varied with b-value in 
CMR DTI has not been reported yet, and the b-value 
mostly ranged from 200 s/mm2 to 1000 s/mm2 in recent 
research [2, 6, 17, 22, 23]. In the present study, DTI 
indices derived from the 1.5  T and 3.0  T with 5 differ-
ent b-values were analyzed, respectively. It was shown 
that the MD was affected by b-value in the present study, 
which was similar to Chou et al. They reported that DTI 
indices were influenced by echo time and b-value, the 
variations of MD slightly increased with echo time but 
decreased with the b-value [15]. The reproducibility and 
accuracy of DTI indices were both improved by increas-
ing the b-value, when the b-value was lower than 1000 s/
mm2. In the present study, the ICC of FA and MD was 
the highest when the b-value equaled 1000 s/mm2, which 
was similar to the results of Chou et al.

The reproducibility of the DTI indices was also essen-
tial, in line with other similar studies in different organs 
[8, 24]. In the present study, we randomly selected one 
slice from each ex-vivo heart and sketched ROIs of the 
myocardium. Not surprisingly, it was shown that the ICC 
of FA and MD were all over 0.95 in CMR DTI, because 
FA and MD were the most widely used diffusion scalars 
in DTI. The reproducibility of HA has not been reported 
yet. In the present study, the ICC of HA was lower than 
the other diffusion scalars. The intra-observer ICC of 
HA was 0.888 (0.726, 0.957), while the inter-observer 
ICC was 0.814 (0.569, 0.926). Though some of the stud-
ies showed good reproducibility of HA in normal control 
and in patients with hypertrophic cardiomyopathy [25, 
26], however, in the present study, half of the patients 
who underwent heart transplantation were diagnosed 
DCM. In patients with DCM, the thickness of the myo-
cardium was commonly decreased in the end stage, and 
the thin myocardium would probably cause the value of 
HA more sensitive to the sketched ROIs. That might have 
it challenged the accurate quantification of HA, resulting 
in the relatively lower ICC of HA [5].

Limitations
There were several limitations in the present study when 
interpreting the results. First, the sample sizes of the 
study need to be improved, and the results should be also 
proved using the MRI systems from other manufacturers 

as well in the future. Second, the excision of the ex-vivo 
hearts could be found in some of the slices, but we only 
analyzed the slices without myocardium excision to 
address this problem. Third, the ex-vivo hearts were fixed 
by formalin, and the DTI indices could be different from 
the ones from in-vivo hearts. However, the present study 
focused on comparing the DTI indices between 1.5 T and 
3.0 T scanners, given the same ex-vivo hearts. At last, the 
inconsistent echo time and large slice thickness might be 
the potential limitations in the present study.

Conclusion
In conclusion, the magnetic resonance DTI indices of ex-
vivo human hearts between 1.5 T and 3.0 T showed no 
significant difference in the present study. However, the 
consistency of DTI indices needed caution using a low 
b-value with different field strengths, and the relatively 
low reproducibility of HA should be considered in clini-
cal research or clinical practice in the future using the 
CMR DTI technique.
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