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Abstract 

Background  Grading of cancer histopathology slides requires more pathologists and expert clinicians as well as it is 
time consuming to look manually into whole-slide images. Hence, an automated classification of histopathological 
breast cancer sub-type is useful for clinical diagnosis and therapeutic responses. Recent deep learning methods for 
medical image analysis suggest the utility of automated radiologic imaging classification for relating disease charac-
teristics or diagnosis and patient stratification.

Methods  To develop a hybrid model using the convolutional neural network (CNN) and the long short-term 
memory recurrent neural network (LSTM RNN) to classify four benign and four malignant breast cancer subtypes. 
The proposed CNN-LSTM leveraging on ImageNet uses a transfer learning approach in classifying and predicting 
four subtypes of each. The proposed model was evaluated on the BreakHis dataset comprises 2480 benign and 5429 
malignant cancer images acquired at magnifications of 40×, 100×, 200× and 400×.

Results  The proposed hybrid CNN-LSTM model was compared with the existing CNN models used for breast histo-
pathological image classification such as VGG-16, ResNet50, and Inception models. All the models were built using 
three different optimizers such as adaptive moment estimator (Adam), root mean square propagation (RMSProp), and 
stochastic gradient descent (SGD) optimizers by varying numbers of epochs. From the results, we noticed that the 
Adam optimizer was the best optimizer with maximum accuracy and minimum model loss for both the training and 
validation sets. The proposed hybrid CNN-LSTM model showed the highest overall accuracy of 99% for binary classifi-
cation of benign and malignant cancer, and, whereas, 92.5% for multi-class classifier of benign and malignant cancer 
subtypes, respectively.

Conclusion  To conclude, the proposed transfer learning approach outperformed the state-of-the-art machine and 
deep learning models in classifying benign and malignant cancer subtypes. The proposed method is feasible in clas-
sification of other cancers as well as diseases.
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Background
Breast cancer is the most common cancer affecting par-
ticularly women. In 2020, there were about 2.3  million 
breast cancer cases diagnosed including 685 000 deaths 
worldwide. By 2020, there were 7.8 million women alive 
in the past 5 years and became the world’s most domi-
nant cancer [1]. The need for accurate and automated 
clinical diagnosis with the help of machine learning (ML) 
based histopathological grading that will lead to effective 
treatments. Although the survival rates of breast cancer 
are drastically improving, still there is a lack of awareness, 
and screening procedures along with a shortage of medi-
cal imaging facilities. Hence, the survival rates of breast 
cancer were found to be above 80%, 60% and below 40% 
in developed countries, developing countries, and low-
income or underdeveloped countries, respectively.

Mammography and ultrasound imaging are the com-
mon imaging modalities that are used to detect cancers 
with the help of radiologists. However, for grading of 
cancer, pathologists and expert clinicians need to manu-
ally visualize whole-slide images which is a cumbersome 
task, time-consuming and may also lead to wrong deci-
sions based on the different diagnostic criteria available 
globally. Hence, an automated computer-aided decision 
(CAD) support system will help in reducing false posi-
tives and improve diagnostic accuracy with less expert 
clinician intervention. The developed ML models require 
some domain knowledge as it needs feature extraction 
and feature selection processes to build the models. 
However, the development of deep learning (DL) models 
tremendously reduces the feature extraction and feature 
engineering processes by using the applicability of con-
volutional neural networks (CNN) such as ConvNet [2], 
ImageNet [3], and DenseNet [4].

Different CNN models like VGG16, VGG19, Incep-
tionV3, and ResNet50 were compared in classifying 
benign and malignant breast cancer images [5]. A CNN 
model was proposed for the feature extraction of breast 
cancer histopathological images and classification using 
support vector machines (SVM) [6]. Recently, a novel 
deep neural network was proposed using the clustering 
method and CNN model, Long-Short-Term-Memory 
(LSTM), and a combination of CNN and LSTM models 
[7]. A DL framework that can learn features automati-
cally from mammography images [8], AlexNet as a fea-
ture extractor and applied SVM as a classification model 
[9], and, a hybrid CNN model using AlexNet, Mobile-
NetV2 and ResNet50 [10].

Various approaches have been proposed for the clas-
sification of histopathological images using a nucleus-
guided feature extraction framework based on CNN 
approach [11], and, automated segmentation of glan-
dular epithelium on haematoxylin and eosin (H&E), 

and immunohistology compatibility (IHC) stain images 
[12]. Another study proposed a weak supervised learn-
ing approach using multiple instance learning (MIL) and 
compared several MIL methods such as Axis-Parallel 
Rectangle (APR), diverse density, MIL-support vec-
tor machines, k-nearest neighbour; and reported that 
non-parametric approach using MIL-CNN deep learn-
ing model was outperformed the other methods [13]. A 
DL-based CNN approach was proposed to automatically 
segment and classify the epithelial and stromal regions 
from the microarrays of digital tumor tissue. Most of the 
approaches are based on low-level image features, such 
as color, texture, and local binary patterns (LBP) in clas-
sifying two regions. The deep CNN feature extractor 
is directly learned from the raw pixel intensity value of 
epithelial and stromal tissues unlike the low-level image 
feature-based approaches, which involve task dependent 
representation [14]. Another study proposed a segmenta-
tion method to delineate cells using gaussian-based hier-
archical voting and repulsive balloon model and classify 
adenocarcinoma and squamous carcinoma [15]. Al-Kadi 
used four texture features (two statistical features and 
two model-based) and noticed that the combined Gauss-
ian Markov random field and run-length matrix texture 
measures using the Bayesian classifier outperformed in 
classifying meningioma tissue [16]. The authors com-
pared the performance of different pre-trained models 
such as VGG16, Inception [17], ResNet, and NASNet 
[18] using a transfer learning approach and the combined 
dataset the NASNet achieved significant accuracy.

Here in this paper, we propose a hybrid CNN, long 
short-term memory recurrent neural network (CNN-
LSTM) model leveraging on ImageNet weights using a 
transfer learning approach in classifying the subtypes of 
benign and malignant breast cancer histopathological 
images. Further, we discuss the methodology of the pro-
posed hybrid CNN-LSTM model including the details of 
the dataset used for validation of our proposed method in 
classifying the subtypes of benign and malignant breast 
cancer histopathological images. In the following section, 
we report the results using the proposed approach and 
compared them with existing methods. Later, we discuss 
the advantages and limitations of the proposed approach 
over existing methodologies and finally, we conclude the 
study.

Methods
Dataset
The Breast Cancer Histopathological Image Classifica-
tion (BreakHis) [19] is a public dataset composed of 
7909 microscopic images of breast tumor tissue col-
lected from 82 patients using different magnifying factors 
(40×, 100×, 200×, and 400×). It contains 2480 benign 
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and 5429 malignant samples (700 × 460 pixels, 3-chan-
nel RGB, 8-bit depth in each channel, PNG format). This 
database has been built in collaboration with the P&D 
Laboratory - Pathological Anatomy and Cytopathol-
ogy, Parana, Brazil [19]. The more details about different 
classifications along with four distinct benign subtypes 
adenosis (A), fibroadenoma (F), phyllodes tumor (PT), 
and tubular adenoma (TA), malignant subtypes ductal 
carcinoma (DC), lobular carcinoma (LC), mucinous car-
cinoma (MC) and papillary carcinoma (PC) are given in 
Table 1.

Data augmentation
In order to avoid overfitting and unbalanced class prob-
lems, we perform multi-scale data augmentation for 
the training dataset by a random combination of inten-
sity variation, rotation, flip with horizontal and vertical 
direction, and translation. The data augmentation was 
performed using Keras built-in function ImageDataGen-
erator. The images were flipped horizontally and verti-
cally, rotated ± 20 degrees, featurewise center was set to 
‘True’. The classes of breast cancer are imbalanced due 
to a large amount of ductal carcinoma, which shows the 
Gaussian distribution, we used an over-sampling method 
using above mentioned data augmentation approaches 
to balance the number of breast cancer histopathological 
images of each class.

Proposed CNN‑LSTM model
The proposed hybrid CNN-LSTM model mainly con-
sists of two modules, the CNN with (299 × 299 × 3) input 
shape and an independent RNN module. The CNN is 
passed through a pre-trained transfer learning model 
(InceptionResNetV2, ResNet50) until it reaches the final 
convolutional layer which has the bottleneck features of 
size (batch size,2048), whereas, the independent RNN 
module has 2 LSTM layers each of which are of (batch 

size, 2048). The outputs of both modules are merged 
using element-wise multiplication. This output is fed into 
the classification layer of 8 nodes (8 classes) and SoftMax 
activation function. Since each convolutional layer can 
capture images of a fixed length, convolutional layers of 
different filter lengths can detect images of magnification 
factor. The proposed model mainly contains a convolu-
tional module, a pooling module, LSTM dense layer, and 
a fully connected module including a SoftMax activation 
functions as given in Fig. 1. Figure 2 shows the architec-
ture of the proposed hybrid CNN-LSTM model.

Model optimization
The hyperparameters were used for training and opti-
mizing or finetuning the DL models. For initial training 
and finetuning, we used model check pointers and call-
backs monitoring the loss to prevent overfitting, and, the 
weights of the best model were saved. For the final pro-
duction model of each magnification factor, both binary 
classification and the multi-class classification of benign, 
and malignant subtypes, different optimizers, learning 
rate, varying epochs and hyperparameters with tolerance 
1e−3 were chosen such that the model should not overfit.

The fine-tuned model using these optimal parameters 
was finally tested for the prediction of the benign and 
malignant stages. The parameters used in this work are 
reported in Table 2.

Run environment and implementation
The hardware used in the execution of the DL mod-
els using Google Collaboratory with 52GB of RAM, 
NVidia GeForce GPU and development tools on the 
Ubuntu 64-bit operating system using Python 3.7.13. 
In addition, keras 2.8, TensorFlow 2.8.0, CUDA 10.0, 
cuDNN 7.6.5 libraries were used for DL. Matplotlib and 
Seaborn packages were used for visualization. Figure 3 
shows the schematic illustration for the classification 

Table 1  Classification of images based on tumor subtypes along with the magnification factors

Classes Subclasses Number of 
patients

Magnification factors Total

40× 100× 200× 400×

Benign Adenosis (class 0) 4 114 113 111 106 444

Fibroadenoma (class 1) 10 253 260 264 237 1014

Tubular adenoma (class 2) 3 109 121 108 115 453

Phyllodes adenoma (class 3) 7 149 150 140 130 569

Malignant Ductal carcinoma (class 4) 38 864 903 896 788 3451

Lobular carcinoma (class 5) 5 156 170 163 137 626

Mucinous carcinoma (class 6) 9 205 222 196 169 792

Papillary carcinoma (class 7) 6 145 142 135 138 560

Total 82 1995 2081 2013 1820 7909



Page 4 of 15Srikantamurthy et al. BMC Medical Imaging           (2023) 23:19 

of benign and malignant breast cancer images using a 
hybrid CNN-LSTM DL model.

Results
We compared the outcomes of the proposed model 
with the existing state-of-the-art CNN models. After 
pre-processing data, data augmentation was applied for 

generating more image samples to train the model by 
performing translation, rotation, and scaling including 
color normalization, and, splitting the training and test 
sets. The generated training and test sets were validated 
through the leave-one-out (LOO) cross-validation strat-
egy using root-mean-square error (RMSE) as the scor-
ing function. In the learning process, the neural network 
model was repeatedly performed until the loss converges 
to 1e−03 to correct the weights for improving accuracy. 
Various pre-trained CNN model architectures such 
as ResNet50, Inception, and Inception-ResNetv2 were 
implemented with ImageNet model weights. Finally, 
based on the finetuned hybrid CNN-LSTM model, the 
prediction was performed with an untrained test set as 
input.

Evaluation of prediction results
We have evaluated various performance measures for 
the classification of benign and malignant cancer images 
such as accuracy, precision, and recall for both binary 
and multi-class classifiers as shown in.

Fig. 1  The schema of the proposed deep learning approach

Fig. 2  The architecture of the proposed hybrid CNN-LSTM model

Table 2  Model parameters for  pre-trained CNN model 
architecture

Model parameters Values

No. of filter (conv 1) 64

Pooling window size (avg 1) 2

LSTM layers 2

Batch size 32 and 16

Batch normalization (yes/no) Yes

Activation function SOFTMAX

Optimizer ADAM

Learning rate 0.001

No. of epochs 500[Binary Classification] and 300[Mul-
ticlass Classification]
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Tables 3 and 4, respectively by utilizing the confusion 
matrix with true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN) as per Eqs. 1, 2, 
3.

The proposed CNN-LSTM binary classifier for 40×, 
100×, 200× and 400× images showed an accuracy of 
99.03, 99.75, 99.64, and 98.07% respectively as shown in 
Table 3. Accuracy and error plots of the same are given 
in Fig.  4a–d. The top k-categorical accuracy for multi-
class classifiers were found to be 1.000, 0.998, 0.996 and 
1.000 for 40×, 100×, 200× and 400× images respec-
tively and these are given in Table 4. The proposed CNN-
LSTM multi-class classifier for 40×, 100×, 200× and 

(1)Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)

(2)Precision = TP/(TP+ FP)

(3)Recall = TP/(TP+ FN)

Fig. 3  The workflow of the proposed deep learning approach

Table 3  Performance indices for binary classification of benign 
and malignant cancer

Magnification Training: 
testing 
samples

Accuracy (%) Precision Recall

40× 1428:567 99.03 0.99 0.99

100× 1278:803 99.75 1.00 0.99

200× 1185:828 99.64 0.99 1.00

400× 1353:467 98.07 0.98 0.97

Table 4  Performance indices for multi-class classification of benign and malignant subtypes

Magnification Training: testing 
samples

Accuracy (%) Precision Recall Top K- 
categorical 
accuracy

40× 1428:567 96.3 0.97 0.95 1.00

100× 1278:803 92.6 0.92 0.93 0.9987

200× 1185:828 88.04 0.87 0.88 0.9963

400× 1353:467 92.51 0.92 0.93 1.00
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400× images showed an accuracy of 96.5, 92.6, 88.04 and 
92.51% respectively as shown in Table  4. The accuracy 
and error plots of the above are portrayed in Fig. 5a–d. 
We noticed that the proposed hybrid CNN-LSTM model 
outperformed the existing methods for both the binary 
and the multi-class classifiers as reported in Table 5. Fig-
ures  4a–d and 5a–d show binary and multi-class clas-
sification accuracy and error loss plots by varying the 
number of epochs for the training and validation sets 
using Adam  (best optimizer) for different magnifica-
tion factors 40×, 100×, 200× and 400× respectively. 
Figure  6a–d shows the binary classifier and Fig.  7a–d 
shows multi-class classifier precision-recall (PR) curves 
representing the tradeoff between precision (on y-axis) 
and recall (on x-axis) for various thresholds. The pro-
posed CNN-LSTM binary classifier for 40×, 100×, 200× 
and 400× images showed the precision recall curve area 
under the curve  (PR  AUC) of 0.992, 0.998, 0.999 and 
0.991 respectively as shown in Fig.  6a–d. The receiver-
operating characteristics (ROC) curves by taking the false 
positive rate (on x-axis) and true positive rate (on y-axis) 
will also be taken as the performance measure. The pro-
posed CNN-LSTM binary classifier for 40×, 100×, 200× 
and 400× images showed ROC AUC of 0.989, 0.994, 
0.995 and 0.969, respectively as given in Fig.  7a–d. Fig-
ure 8a–d shows the average PR AUC of 0.92, 0.88, 0.8 and 
0.81 for multi-class classifiers and Fig.  9a–d shows the 
ROC AUC of 0.98, 0.95, 0.91 and 0.89 for different mag-
nification factors 40×, 100×, 200× and 400×, respec-
tively. The confusion matrix for binary classifier 5 out of 

518 samples, 2 out 803 samples, 3 of 828 samples, and 9 
out of 467 samples were misclassified as shown in Fig. 10 
for 40×, 100×, 200× and 400× respectively. Similarly, 
the confusion matrix for multi-class classifier 24 of 479 
samples, 53 out of 803 samples, 93 out of 828 samples, 
49 out of 467 samples were misclassified for 40×, 100×, 
200× and 400× respectively as portrayed in Fig. 11. The 
results for the RMSprop and SGD optimizers using the 
proposed  hybrid CNN LSTM model  were provided 
in Additional file 1.

Discussion
Our proposed model achieved about 99% in binary classi-
fication (benign vs. malignant) and 92.50% for multi-class 
classifier in classifying subtypes of benign and malignant 
cancer when compared to the state-of-the-art methods 
that use four pre-trained models VGG16, VGG19, Incep-
tionV3, and ResNet50 on a dataset that consists of 5000 
breast images comprised of 2500 benign and 2500 malig-
nant cases. The InceptionV3 model achieved the highest 
AUC of 0.91 [5]. Another CNN model using the local and 
frequency domain information showed an accuracy of 
94.94% [6]. Also, the CNN model with gradient boosted 
tree classifier showed 87.20% accuracy for 4-class classifi-
cation and for 2-class classification to detect breast carci-
nomas with an accuracy, sensitivity, specificity, and AUC 
of 93.80, 97.30, 96.50, 88.00%, and 0.973 respectively [28]. 
A recent study using HIC-Net showed an accuracy, sen-
sitivity, and specificity of 96.21, 96.71 and 95.70% respec-
tively [29].

Table 5  Comparison of proposed hybrid CNN-LSTM with existing state-of-the-art models

Study Classifier Transfer learning Accuracy (%)

40× 100× 200× 400×

Binary classification

Gupta et al. [20] DR(DenseNet-169,XGB) ImageNet 94.71 ± 0.88 95.9 ± 4.2 96.76 ± 1.09 89.11 ± 0.12

Nahid et al. [21] NDCNN None 94.4 95.93 97.19 96

Wei et al. [22] NDCNN(GoogleNet) ImageNet 97.89 97.64 97.56 97.97

Das et al. [23] GoogleNet ImageNet 94.82 94.38 94.67 93.49

Han et al. [24] NDCNN(GoogleNet) ImageNet 95.8 ± 3.1 96.9 ± 1.9 96.7 ± 2.0 94.9 ± 2.8

Gandomkar et al. [25] ResNet-152 ImageNet 98.6 97.9 98.3 97

Emdt(ResNet-152) ImageNet 98.77 (overall)

Bardou et al. [26] Eiter(NDCNN) None 98.33 97.12 97.85 96.15

Proposed model CNN-RNN hybrid ImageNet 99.03 99.75 99.64 98.07

Multi-class classification

Han et al. [24] NDCNN(GoogleNet) ImageNet 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.9 ± 1.8

Gandomkar et al. [25] ResNet-152 Im-Break 95.6 94.8 95.6 94.6

Bardou et al. [26] Eiter(NDCNN) None 88.23 84.64 83.31 83.98

Nawaz et al. [27] ResNet ImageNet 95 (overall)

Proposed model CNN-RNN hybrid ImageNet 96.5 92.6 88.94 92.51
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Fig. 4  The binary classifier accuracy and error loss plots for a 40×, b 100×, c 200×, and d 400× panel using Adam optimizer
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Fig. 5  The multi-class classifier accuracy and error loss plots for a 40×, b 100×, c 200×, and d 400× panel using Adam optimizer
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There are several limitations of using less training 
data such as medical imaging datasets. To avoid this 
problem, data augmentation techniques will be used 
to train and validate more samples. A study was imple-
mented with two different approaches using a CNN and 
a transfer learning model to classify breast cancer by 
combining two different datasets. The model showed 
better performance results combining traditional and 

generative adversarial networks (GAN) augmenta-
tion techniques [30]. Slide preparation and staining 
is another limitation as histopathological slides are 
scanned at different magnification factors using bright-
field illumination, resulting in giga-pixel size for the 
entire image slice. Small square regions (called tiles or 
patches) are extracted and those that have a specified 
proportion of background pixels are removed from 

Fig. 6  The binary classifier precision-recall curves for a 40× (top left), b 100× (top right), c 200× (bottom left), d 400× (bottom right) panel 
respectively using Adam optimizer



Page 10 of 15Srikantamurthy et al. BMC Medical Imaging           (2023) 23:19 

the dataset to overcome the high dimensionality of the 
image slices.

One of the major challenges for DL training data sets 
is the annotation of data and often carried out manually. 
Consider the ImageNet database, the images contained 
in this database were annotated through crowd-sourcing. 
Moreover, in domains like medical imaging, such anno-
tations must be performed by professionals, which often 
increases the cost of such projects. The performance of 
DL models may be reduced as whole image slices contain 
both tumor and normal tissues [31]. A trained patholo-
gist is required to delineate the tumor tissue in order to 

achieve tile level annotation. The whole image segmen-
tation process comes with high cost and time which 
motivated the researchers to explore DL approaches to 
achieve automatic pixel level annotations from slide level 
labels. It has been reported that ensemble segmentation 
models with several fully connected convolutional net-
works showed a higher performance than a single neural 
network model [32]. Furthermore, tumor/normal tissue 
segmentation is required for the prediction of molecular 
genetics using DL, and molecular assays on large datasets 
are required to determine the correct labels for training 
data.

Fig. 7  The binary classifier ROC curves for a 40× (top left), b 100× (top right), c 200× (bottom left), and d 400× (bottom right) panels respectively 
using Adam optimizer
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The main challenge is the requirement of the col-
lection of huge data samples to train the models. The 
images collected across different scanners and research 
centers are integrated into a single dataset which can 
lead to bias and variance in the data. These variations 
in the dataset must be mitigated in order to avoid batch 
effects, bias reduction, and enhanced model perfor-
mance [33]. For instance, biases between image slides 
might be due to the variation of light conditions while 
staining, concentrations and volumes of stain used in 
slide preparation. Also, different resolutions and mag-
nification factor variability may further aggravate such 
biases. Recent studies also suggested that image slides 
preserve site-specific information which can be learned 
by a DL algorithm, resulting in overfitting of model 
performance [34]. Stain color normalization results to 
handle such batch effects by transforming pixel values 
from different image slides within a dataset to a com-
mon distribution (gaussian). On the other hand, color 
augmentation attempts to improve a model’s ability 
to generalize unseen data by simulating realistic color 

variations. Improved validation accuracies have been 
reported after applying color normalization and data 
augmentation such as scaling and rotation of the input 
images [35].

In order to encourage researchers to work on the DL 
models, ImageNet Large Scale Visual Recognition Chal-
lenge was conducted [36]. This challenge resulted in the 
development of various sophisticated and efficient DL 
models that proposed a variety of model architectures 
that have been re-modelled to a wide range of imaging 
applications such as computer vision, pattern recognition 
and digital pathology. In order to speed up the training 
processes, researchers can utilize domain transfer learn-
ing on the ImageNet model parameters These exist-
ing model parameters can be fixed, or in other terms, 
weights will not be updated during backpropagation. 
This approach is flexible in reducing the computational 
time and utilizing the model weights that have previously 
been shown in other image classification or pattern rec-
ognition tasks. For instance, all ImageNet layers except 
the final output layer may form the basis of a predictive 

Fig. 8  The multi-class classifier precision-recall curves for a 40× (top left), b 100× (top right), c 200× (bottom left), and d 400× (bottom right) 
panels respectively using Adam optimizer
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model in a different domain and endure model param-
eters freezing with an extra randomly initialized SoftMax 
layer generating the output for the target domain. This 
allows the training process to finetune the weights of just 
one layer as opposed to a large and arbitrary number of 
layers. Transfer learning has the advantage of extenuating 
sample size requirements in the target domain by using 
existing model parameters trained on larger data sets. 
The domain transfer learning methods are most often 
used in digital pathology in order to avoid higher compu-
tational time as well as the cost involved in curating large 
training datasets. DL models in digital pathology utilize 
the majority voting strategy of aggregating predictions 
at the local region-level in order to obtain a per-slide or 
global image level prediction from the ML approaches 
[37]. DL can even detect microsatellite instability from 
the histopathological images and conditional generative 
adversarial networks (CGANs) retain information about 
genetic alterations [38].

The main advantages of the proposed method over 
existing methods are, firstly, feature extraction as well 

as feature dimensionality reduction is not required. Sec-
ondly, most of the medical imaging datasets have imbal-
anced class samples across different subtypes which may 
impact the prediction performance and bias towards the 
majority class. Hence, to avoid this issue, data augmen-
tation was performed using random combinations of 
intensity variation, rotation, translation, horizontal and 
vertical flipping methods to avoid model overfitting or 
underfitting. Thirdly, the proposed model is feasible for 
applying to other diseases and scalable for other magni-
fication images as well. Lastly, the proposed method can 
handle color histopathological images and can be help-
ful for the automated diagnosis of multi-class benign and 
malignant breast cancer subtypes with less intervention 
of a pathologist. However, there are a few limitations in 
our study. Firstly, the current model cannot predict the 
cancer stage progression or stability over time (as longi-
tudinal data is required). Also, our current model is lim-
ited to 40×, 100×, 200× and 400× magnification images 
and however, newer models have to be built for other 
magnification images for further predictions. Another 

Fig. 9  The multi-class classifier ROC curves for a 40× (top left), b 100× (top right), c 200× (bottom left), and d 400× (bottom right) panels 
respectively using Adam optimizer
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limitation, it is computationally expensive, complex, and 
tedious to implement on a normal workstation.

The major hindrance for the prevalent acceptance 
of DL systems in healthcare diagnostics is the lack of 
interpretability of data. Meaningful conclusions of DL 
predictions are critical in healthcare in order to take 
decisions from both a clinician’s and patient’s point 
of view for further clinical translation. DL models are 
mainly capable of handling the “black-box” model typi-
cally not showing the human-interpretable features that 
were selected in the model building. Furthermore, the 
DL models are capable of handling the noise or artifacts 
in the data being exploited by models to make predic-
tions. DL models have already been developed using 
various methods such as class activation mapping [39], 
and layer-wise relevance propagation [40] including 
patch-based DL using a deep belief network [41] to sep-
arate out the localized features from the predictions. 

Thus, these methods help to identify the regions of 
input images that may influence a model’s prediction; 
however, these local features need not necessarily cor-
respond to the disease-pathological grades.

Conclusion
In this paper, we propose a hybrid CNN-LSTM method 
for the classification of histopathological breast can-
cer images. To increase the robustness of the classifier, 
we use data augmentation. Deep convolutional features 
were extracted using ResNet50, InceptionV3, CNN pre-
trained on ImageNet and applied LSTM RNN model for 
classification and compared with three different opti-
mizers and found Adam to be the best optimizer with-
out model overfitting. To our knowledge, the results for 
both the binary and multi-class classifiers are superior 
to the state-of-the-art methods. The proposed method 

Fig. 10  The binary classifier confusion matrix for a 40× (top left), b 100× (top right), c 200× (bottom left), and d 400× (bottom right) panels 
respectively using Adam optimizer
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is feasible in the classification of other cancers as well as 
diseases.
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