
McAnena et al. BMC Medical Imaging          (2022) 22:225  
https://doi.org/10.1186/s12880-022-00956-6

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

A radiomic model to classify response 
to neoadjuvant chemotherapy in breast cancer
Peter McAnena1*  , Brian M. Moloney2, Robert Browne1, Niamh O’Halloran2, Leon Walsh2, Sinead Walsh2, 
Declan Sheppard2, Karl J. Sweeney1, Michael J. Kerin1,3 and Aoife J. Lowery1,3 

Abstract 

Background: Medical image analysis has evolved to facilitate the development of methods for high-throughput 
extraction of quantitative features that can potentially contribute to the diagnostic and treatment paradigm of cancer. 
There is a need for further improvement in the accuracy of predictive markers of response to neo-adjuvant chemo-
therapy (NAC). The aim of this study was to develop a radiomic classifier to enhance current approaches to predicting 
the response to NAC breast cancer.

Methods: Data on patients treated for breast cancer with NAC prior to surgery who had a pre-NAC dynamic contrast 
enhanced breast MRI were included. Response to NAC was assessed using the Miller–Payne system on the excised 
tumor. Tumor segmentation was carried out manually under the supervision of a consultant breast radiologist. Fea-
tures were selected using least absolute shrinkage selection operator regression. A support vector machine learning 
model was used to classify response to NAC.

Results: 74 patients were included. Patients were classified as having a poor response to NAC (reduction in cellular-
ity < 90%, n = 44) and an excellent response (> 90% reduction in cellularity, n = 30). 4 radiomics features (discretized 
kurtosis, NGDLM contrast, GLZLM_SZE and GLZLM_ZP) were identified as pertinent predictors of response to NAC. A 
SVM model using these features stratified patients into poor and excellent response groups producing an AUC of 0.75. 
Addition of estrogen receptor status improved the accuracy of the model with an AUC of 0.811.

Conclusion: This study identified a radiomic classifier incorporating 4 radiomics features to augment subtype based 
classification of response to NAC in breast cancer.
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Background
Neoadjuvant chemotherapy (NAC), administered prior 
to tumor resection, plays an established role in the con-
temporary management of early stage breast cancer. 
NAC can enable less extensive surgery to be performed 
and provides valuable prognostic information [1]. NAC 
generates in-vivo data on tumor chemosensitivity, and 

response to NAC which is typically assessed by magnetic 
resonance imaging (MRI) can further inform clinicians 
of the biological characteristics of the tumor and the 
patient’s prognosis [2, 3]. Response to NAC is assessed 
primarily by post-treatment pathology and can be strati-
fied using histologic grading systems such as the Miller–
Payne system [4] which classifies response based on the 
reduction in tumor cellularity. Complete pathological 
response (pCR) is defined as having no residual carci-
noma in the breast tissue following surgery and is associ-
ated with an improved prognosis [5].
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The pCR rate in breast cancer following NAC ranges 
from 10 to 50% and is related to patient factors, tumor 
subtype and NAC regime received [6]. pCR rate is highest 
among patients with HER2 positive and triple-negative 
breast cancer (TNBC), while Luminal A breast cancer has 
the lowest rate of pCR to systemic chemotherapy [7–9]. 
There is a need for robust and reliable biomarkers to pre-
dict response to NAC in order to optimally tailor treat-
ment to individual patients. This could potentially spare 
a subset of patients, who are unlikely to derive significant 
benefit from NAC, from the deleterious effects of chemo-
therapy [10]. Biomarkers in clinical use that improve risk 
stratification and prediction of response to NAC in breast 
cancer beyond conventional clinico-pathological factors 
include Oncotype DX, Mammaprint and ProSigna [11]. 
These gene-profiling tests require tumor tissue for analy-
sis and while they have utility in recurrence prediction, 
they were not designed specifically to predict response to 
NAC. There is a currently unmet clinical need for non-
invasive methods to predict response to NAC to further 
personalize breast cancer management.

Radiomics is a developing field that involves the appli-
cation of computer-automated software to extract 
high-throughput quantitative features from radiologic/
imaging investigations that can quantify disease phe-
notype and heterogeneity [12, 13]. Radiomics features 
include conventional quantitative measurements such 
as shape/ diameter and surface area. First order fea-
tures examine the distribution of voxels in isolation and 
include kurtosis and skewness. Second order features 
are derived from the spatial relationship between voxels 
and matrices such as the grey-level co-occurrence matrix 
(GLCM) [14, 15]. Prediction models using radiomics fea-
tures incorporating machine learning have shown poten-
tial for non-invasive identification of treatment response 
in breast and other cancers [16–20]. The aim of our study 
was to develop a radiomics model to predict the response 
to NAC in breast cancer using pre-NAC breast MRI.

Methods
Clinical database
This study was undertaken at Galway University Hospital, 
a tertiary referral specialist breast cancer unit. This study 
was conducted in accordance with the granted University 
College Hospital Galway ethical approval.

Patients who were treated with chemotherapy for 
breast cancer were identified from a prospectively main-
tained institutional database including patient demo-
graphics, tumor clinicopathology, and surgical and 
medical therapeutic information. Patients were catego-
rized as receiving NAC or adjuvant chemotherapy based 
on whether they had treatment before or after their 
curative surgery. Clinical decisions relating to surgical 

intervention and neoadjuvant/adjuvant local and sys-
temic therapy are made by discussion and consensus at 
a multidisciplinary team meeting with medical, surgical, 
and radiation oncologists present. Residual tumor size 
and response to NAC were assessed using postoperative 
pathology of the resected breast specimen by a consult-
ant histopathologist at GUH.

The Miller–Payne grading system is as follows: Grade 
1: residual tumor demonstrates no change or some minor 
alteration in individual malignant cells, but no reduction 
in overall cellularity. Grade 2: minor loss of tumor cells 
but overall high cellularity with up to 30% reduction of 
cellularity. Grade 3: estimated 30% and 90% reduction 
in tumor cellularity. Grade 4: marked disappearance of 
more than 90% of tumor cells such that only small clus-
ters or widely dispersed individual cells remain (near 
pCR). Grade 5: no invasive malignant cells identifiable in 
sections from the site of the tumor (complete pCR).

Patients with multifocal breast cancer, inflamma-
tory disease and metastatic disease at presentation were 
excluded from this study (Fig. 1).

MRI protocol
Magnetic resonance imaging analyses were performed on 
a short bore 1.5 T magnet (Magnetom Espree 1.5 T, Sie-
mens Healthcare, Erlangen, Germany) using 8-channel 
breast phase array breast coil for signal reception using 
the dynamic contrast enhanced (DCE) breast MRI pro-
tocol, utilising the following protocol: Sagittal T2 (TR/TE 
6570/111, Gap 1 mm, Flip angle 160°, Matrix 340 × 75), 
Axial T2 FS fl3d pre contrast (TR/TE 5.15/2.39, Gap 
0.6  mm, Flip angle 10°, Matrix 320 × 100), Sagittal T1 
fl3d (TR/TE 5.18/1.64, Gap 0.6  mm, Flip angle 10°, 

Fig. 1 Inclusion criteria flow-chart
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Matrix 320 × 100, this sequence is repeated 6 times; 1 
pre-contrast and 5 post-contrast with peak enhance-
ment in the third run), Axial T1 FS fl3d postcontrast. The 
section thickness was 3 mm for all sequences. The con-
trast employed was Gadoterate meglumine (Gd-DOTA). 
Digitally recreated subtraction image 3-1 postcontrast 
enhanced was used for final feature analysis.

Tumor segmentation and radiomic feature analysis
MR images were evaluated by one researcher (PM) under 
the supervision of a Consultant specialist breast radiolo-
gist (SW). Tumor segmentation was performed by manu-
ally delineating the tumor border on axial slices using 
ITKSnap software (Fig.  2) [21]. Feature extraction was 
carried out on LIFEx [22], an International Biomarker 
Standardization Initiative (IBSI)-compliant [23] and vali-
dated [24, 25] software package.

An image intensity discretization applying a fixed bin 
width of 64 was used for feature extraction in MR. Voxel 
size resampling was performed before feature extrac-
tion using cubic interpolation. Images were resampled to 
isotropic voxels of size 2 × 2 × 2   mm3 by 3-dimensional 
Lagrangian interpolation.

61 features were extracted from each tumor including 
size and shape features and from several matrices includ-
ing Histogram-based matrix (HISTO), Grey-level co-
occurrence matrix (GLCM), Grey-level run length matrix 
(GLRLM), Grey-level zone length matrix (GLZLM) and 
Neighborhood grey-level dependence matrix (NGLDM).

Radiomic feature selection and machine learning model
To counteract the high throughput nature of data driven 
radiomics and the high relative correlation between the 
features produced it is important to first reduce the num-
ber of features prior to model training to prevent over-
fitting, reduce collinearity and minimize noise [26, 27]. A 
combination of least absolute shrinkage selection opera-
tor (LASSO) regression for feature selection and support 
vector machine learning (SVM) for model building pro-
vide excellent model performance in radiomics and was 
utilised for this study [28]. LASSO introduces a tuning 
parameter (λ) that penalizes large coefficients of variables 
entered into the regression model, reduces the possibility 
of overfitting [29] and reducing non-pertinent features 
to zero. In this study, λ was set at 1 and the convergence 
threshold was 0.0000001. The selected features were used 
to construct the SVM model with a linear kernel with 
standardisation pre-processing and a tolerance threshold 
of 0.001. Receiver operator curve (ROC) was built for the 
model and area under the curve (AUC) was used to clas-
sify model performance.

Statistical analysis
Data analysis was carried out using IBM SPSS statis-
tics 26.0 and R 4.0.3 with extension XLSTAT v2020.5. A 
p-value of < 0.05 was assumed to represent statistical sig-
nificance. Continuous variables were summarised using 
descriptive statistics, including mean, standard deviation, 
and median. Sensitivity as well as accuracy values were 
expressed as percentages. Adjustment for confounders 

Fig. 2 Radiomic pipeline
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was undertaken using multivariable linear or logistic 
regression for continuous or binary-dependent vari-
ables, respectively. The R package “glmnet” was used for 
LASSO regression and the machine learning module was 
used to produce the SVM model.

Results
Clinicopathological details and response to NAC
Following exclusion of patients with bilateral/ multifo-
cal disease, inflammatory breast cancer and metastatic 
disease at presentation, 74 patients were included in this 
study. The majority of patients had invasive ductal car-
cinoma (n = 56), T2/T3 tumors and luminal A biologic 
subtype (n = 40) (Table 1).

Response to NAC was assessed using the Miller–Payne 
response classification based on reduction in tumor cel-
lularity. Response was further stratified into poor (< 90%, 
n = 44) and excellent (> 90%, n = 30) response to NAC 
(Table 2).

Response to NAC differed significantly between sub-
types, with triple negative and HER2 disease achieving 
the highest rates of pCR (Table  3). Patients with lumi-
nal A breast cancer (n = 39) were significantly less likely 
to achieve a pCR compared to non-luminal A patients 
(n = 35) (5% vs. 37%, p < 0.001) and less likely to have an 

“excellent” response to NAC (> 90% reduction in cellular-
ity), (23% vs. 60%, p < 0.001).

Feature selection
61 radiomic features were extracted from each tumor. 
Following LASSO regression, 4 features were selected; (1) 
Discretized kurtosis, (2) neighbourhood grey-level differ-
ent matrix (NGLDM) contrast, (3) grey-level zone length 
matrix short zone grey level emphasis (GLZLM_SZE) 
and (4) GLZLM zone percentage (ZP) (Figs. 3 and 4).

Radiomic model
A predictive model was constructed using a SVM 
approach with the 4 above selected features to differ-
entiate patients with a poor response to NAC (n = 44) 
from those with an excellent response to NAC (n = 30) 
(Table 4). This radiomic model demonstrated good pre-
dictive performance with an AUC of 0.753 (Fig. 5).

Radiomic model with estrogen receptor status
Estrogen receptor status was added to the radiomics 
model, improving the AUC to 0.81. This improved model 
correctly identified 91% of poor responders and 70% of 
excellent responders (Table 5, Fig. 6).

Discussion
NAC is a central element of contemporary breast can-
cer management, however there is a wide spectrum of 
response to NAC between patients which can vary based 
on host, tumor and treatment factors. Patients with 
locally advanced breast cancer and selected patients with 
early stage breast cancer are offered NAC with the aim of 
down-staging the tumor size or gaining valuable informa-
tion relating to in-vivo tumor response. [30]. Appropriate 
patient selection for NAC is vital and can be informed 
by gene expression biomarkers and indexes of prolifera-
tion such as ki67. Recent evidence suggests that radiomic 
features from pre-NAC MRI imaging can be utilised to 
non-invasively predict response to NAC [31–35] and 
potentially contribute to the existing patient-selection 
paradigm.

This study has identified 4 radiomic features from pre-
NAC MRI to stratify a cohort of 74 patients with invasive 

Table 1 Patient clinico-pathological details

n = 74

Age (mean) +− SD 48.6 (7.9)

Time from NAC- surgery (m) 5.1 (1.1)

T stage

T1 5

T2 35

T3 30

T4 4

N stage

N0 21

N1 39

N2 10

N3 2

N4 2

Histological subtype

Ductal 56

Lobular 10

Mixed 8

Molecular subtype

Luminal A 39

Luminal B 16

Triple negative 15

HER2 4

Table 2 Miller–Payne response to NAC

Miller–Payne reponse to NAC Reduction in cellularity (%) N = 74

1  < 10 n = 3

2 10–30 n = 6

3 30–90 n = 35

4  > 90 n = 15

5 (pCR) 100 n = 15
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breast cancer into poor and excellent response groups. 
A machine learning approach was utilised to select 
these pertinent features and to build a model to predict 
response to NAC. The addition of estrogen receptor sta-
tus improved the overall performance of the model, with 
an AUC of 0.811, identifying poor responders with 90% 
sensitivity and 70% specificity.

Table 3 Response to NAC by subtype

Subtype Poor response to NAC 
(< 90% reduction in 
cellularity)

Excellent response to NAC 
(> 90% reduction in cellularity)

Excellent response Complete 
pathological 
response (pCR)

pCR

Luminal A n = 30 (77%) n = 9 (23%) n = 9 (23%) n = 2 (5%) n = 2 (5%)

Luminal B n = 7 (44%) n = 9 (56%) n = 21 (60%)
p < 0.001

n = 6 (38%) n = 13 (37%)
p < 0.001Triple negative n = 7 (47%) n = 8 (53%) n = 4 (27%)

HER2 n = 0 n = 4 (100%) n = 3 (75%)

Fig. 3 LASSO co-efficients

Fig. 4 LASSO cross-validation

Table 4 Radiomic model

Poor response Excellent 
response

Total %correct

Poor response 38 6 44 86

Excellent response 12 18 30 60

Total 50 24 74 76
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Fig. 5 Radiomic model ROC curve

Table 5 Radiomic model with Estrogen receptor status

Poor response Excellent 
response

Total %correct

Poor response 40 4 44 91

Excellent response 9 21 30 70

Total 49 25 74 82
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Conventional molecular subtypes help inform likeli-
hood of response to NAC. A study of 838 patients dem-
onstrated significantly different rates of pCR between 
Luminal A, Luminal B, HER2 over-expressing and Triple-
Negative subtypes (6%, 16%, 37% and 38% respectively) 
[36]. The results of this study compare favourably to simi-
lar studies investigating the role of biomarkers in predict-
ing response to NAC. Oncotype DX has been validated in 
adjuvant therapy, however its’ role in NAC is less clear; a 
2019 study of 989 breast cancer patients found that a high 
Oncotype recurrence score (> 30) was significantly asso-
ciated with pCR (Odds ratio 4.87) [37]. OncoMasTR is 
another multi-gene prognostic signature in development 
specifically to predict NAC response and incorporates 3 
master transcription regulator genes as well as tumor size 
and nodal status [38]. A 2020 study of 813 breast cancer 
patients showed that OncoMasTR score was significantly 
associated with pCR (OR 1.68) [39].

Recent evidence supports the addition of radiomic fea-
tures as potential predictors of NAC response, including 
in breast cancer [40]. A 2019 study investigating histo-
pathological residual cancer burden in 38 breast cancer 
patients utilised 23 pharmacokinetic features obtained 
from DCE-MRI in addition to conventional pathologi-
cal factors to classify response to NAC with an AUC of 
0.92 [34]. A 2020 study of 222 breast cancers utilised a 
model composed of 12 MRI-derived radiomics features 
in addition to molecular subtype to identify pCR, pro-
ducing an AUC of 0.8 using a random forest machine 
learning approach [31]. In cervical cancer, a 2019 study of 
275 patients demonstrated an AUC of 0.999 in predicting 
response to NAC [41, 42].

The radiomic features identified and tested may fur-
ther describe the intrinsic tumor environment and the 
degree of intra-tumor heterogeneity which may impact 

NAC response. Kurtosis can be used as a measure to 
assess deviation from the normal distribution of pixel 
values. Invasiveness may be explained by the degree of 
pixel-kurtosis in breast cancer [43] and has been shown 
to be associated with response to chemotherapy in pan-
creatic cancer [44]. Texture based features evaluating the 
relationship between pixels are produced by using spatial 
grey-level dependant matrices. NGLDM (neighbour-
hood grey-level different matrix) describes the difference 
in grey-levels between 1 voxel and it’s 26 neighbours in 
3 dimensions. NGLDM contrast corresponds to intensity 
difference between neighbouring regions, and this is the 
first report of this radiomic feature in association with 
cancer prognosis or response to chemotherapy.

Grey-level zone length matrix (GLZLM) provide 
information on the size of homogenous zones for each 
grey level in 3 dimensions. GLZLM_SZE (short zone 
emphasis) is a measure of the distribution of the short 
homogenous zones in an image, while GLZLM_ZP (zone 
percentage) measures the homogeneity of the homoge-
nous zones. Indices derived from the GLZLM, in addition 
with kurtosis, were significantly associated with over-
all survival in a study investigating radiomics features in 
gastric B-cell lymphoma [44]. A 2020 study that assessed 
PET scan radiomic features of patients with pancreatic 
cancer demonstrated that GLZLM non-uniformity was 
significantly associated with one-year survival and could 
stratify patients into survival categories [45].

Radiomic features alone show great promise in the 
stratifying response to NAC, and models incorporat-
ing a combination of radiomics and molecular feature 
are superior [46, 47]. It is conceivable that radiomic fea-
tures could be a component of future multi-omic panels 
including genomic and metabolomic markers to aid in 
the management of breast cancer [48, 49]. We added ER 
status to moderately improve the overall accuracy of the 
model to predict response to NAC and produce a greater 
accuracy in classifying patients into poor and excellent 
response groups than conventional molecular subtype 
alone. However, response to NAC can vary significantly 
even within subtype and is thought to be as result of 
intra-tumor heterogeneity [50]. Genomic heterogeneity 
has been shown to impact treatment response and drive 
resistance to targeted therapies in cancer [51, 52]. Image-
based assessment of tumor heterogeneity, incorporating 
quantitative descriptors of grey-level relationships men-
tioned above, could potentially reveal aggressive tumor 
sub-regions for determining prognosis and treatment 
[53, 54] and be incorporated into the multi-modal deci-
sion process of selecting patients for NAC.

This study has a number of limitations. Firstly, it is a 
single centre retrospective study. While we were able 
to establish a discrete number of radiomic features to 
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Fig. 6 Radiomic model with Estrogen receptor status—ROC curve
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predict response to NAC, a larger sample size is needed 
to validate the radiomic model. Because radiomics 
is itself a developing field, there is a paucity of large 
cohort, prospective studies assessing the clinical utility 
of radiomic models. Establishing a robust, reproduc-
ible radiomics pipeline as is demonstrated in this study, 
is vital to integrate radiomic biomarkers into clinical 
practice in the near future [55].

In our study, tumor segmentation was carried out 
manually by a single researcher, under the supervision 
of a Consultant Radiologist. Manual segmentation is 
at present the most reliable method of establishing a 
region of interest (ROI) for analysis by radiomics soft-
ware [15]. However, this method can be subject to 
inter-observer variability. Automatic segmentation by 
artificial intelligence shows great promise in solving 
this issue however is some way from being optimised 
[56].

Pre-processing of images by resampling has been 
shown to reduce more repeatable and less sensitive to 
change results [57, 58]. Here, we used a fixed bin width 
of 64 and carried out voxel resampling to isotropic vox-
els of size 2 × 2 × 2   mm3 by 3-dimensional Lagrangian 
interpolation, as described in previous studies assess-
ing breast MRI [59, 60]. Fuzzy pre-processing may 
enable standardised image pre-processing particularly 
for non-technical experts prior to performing radiomic 
analysis [61]. Optimal and standardized pre-processing 
must be established to ensure reproducibility across 
radiomics studies [62].

In terms of feature extraction software, LIFEx was uti-
lised that produces radiomics features compliant with the 
International Biomarker Standardization Initiative (IBSI) 
[63]. This 2020 initiative describes 169 standardized radi-
omics features that are reproducible across a number of 
software platforms and can potentially be investigated as 
clinical biomarkers. As radiomics evolves in the coming 
years it is likely that the number of software programmes 
available will increase and it is imperative that rigorous 
assessment of features continues to ensure reproducibil-
ity and reliability of studies.

In conclusion, this study identifies radiomic features 
that could potentially contribute to the management of 
patients receiving NAC for breast cancer.
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