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Abstract 

Background: We aimed to determine the performance of 18 F-FAPI PET/CT used for preprocedural assessment of 
glioblastoma before radiotherapy.

Methods: Twelve glioblastoma patients having undergone incomplete surgical resection or biopsy were examined 
with 18 F-FAPI PET/CT and MRI scanning before radiotherapy. All patients had confirmed tumor residues according 
to findings of histopathological and/or long-term clinical and radiological follow-ups. Lesion characterization data, 
including  SUVmax and tumor-to-background ratio (TBR) on PET/CT were attained. PET/CT and MRI findings were com-
pared in terms of number of lesions. The correlation between immunohistochemistry, molecular expression, and PET/
CT parameters was also evaluated.

Results: 18 F-FAPI PET/CT detected 16 FAPI-avid out of 23 lesions in 12 patients described on MRI. MRI was statisti-
cally different from 18 F-FAPI PET/CT for lesion detection according to the exact McNemar statistical test (P = 0.0156). 
The  SUVmax and TBR of the glioblastomas was 7.08 ± 3.55 and 19.95 ± 13.22, respectively. The sensitivity and positive 
predictive value (PPV) of 18 F-FAPI PET were 69.6% and 100%, respectively. Neither the Ki-67 index nor the molecular 
expression was correlated with the FAPI-PET/CT parameters.

Conclusion: 18 F-FAPI PET/CT detects glioblastomas at a lower rate than MRI. However, the 100% PPV of the exami-
nation may make it useful for differentiating controversial lesions detected on MRI. The 18 F-FAPI-avid lesions are 
displayed more clearly probably due to a higher TBR. 18 F-FAPI PET/CT imaging might find application in glioblastoma 
biopsy and radiotherapy planning.
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Background
Glioblastoma is reported to be the most prevalent pri-
mary brain malignancy in adults, which represents one 
of the most rapidly growing glial tumors, accounting for 
about 57% of glioma. It is associated with a worse prog-
nosis and a high recurrence rate[1]. Only some 6.8% of 
glioblastoma patients survive beyond five years [2]. As 
the most common non-invasive imaging technique to 
assess glioblastoma [3, 4], magnetic resonance imaging 
(MRI) has been employed as a diagnostic instrument for 
glioblastoma diagnosis, prognostication, and monitor-
ing of therapy response [5–9]. Other methods, such as 
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diffusion-weighted imaging (DWI), apparent diffusion 
coefficient (ADC), perfusion-weighted imaging (FWI), 
and magnetic resonance spectrum imaging (MRS) are 
also widely used in addition to conventional sequences 
[4, 6, 7, 10–13].

Positron emission tomography (PET) has been 
reported to provide additional information, which is 
helpful for identifying biological characteristics of tumor, 
differential diagnosis, and tumor size delineation and 
for an oncologist to plan a surgery, radiotherapy, and/or 
post-treatment tumor surveillance [14–17]. 18  F-fluoro-
deoxyglucose (18 F-FDG) is a commonly used PET tracer 
in clinical settings, which is known for diminished sen-
sitivity due to increased physiologic uptake in the nor-
mal brain tissue [18]. When compared with glucose 
(18 F - FDG), amino acids including 11 C-MET, 18 F-FET, 
18  F-FDOPA may be better tracers because they have 
higher specificity and lower signal/noise ratio [14, 17, 19].

Molecular-based PET-imaging that targets fibroblast 
activation protein (FAP) has been reported as a novel 
approach [20–24]. As a new diagnostic instrument, FAP-
inhibitor (FAPI) PET imaging has found applications in a 
number of FAP-positive tumors, including glioblastoma 
[20, 25–29]. High tracer uptake in glioblastoma has been 
documented [28, 30, 31]. In this work, we performed 
18  F-FAPI-PET imaging in 12 glioblastoma patients and 
attempted to evaluate its performance in pre-chemo-
therapy tumor assessment by evaluating uptake of FAP 
ligands in the tumor tissues.

Materials and methods
Patients
Patients with glioblastoma who underwent assessment 
before radiotherapy in our department between August 
2020 and March 2022 were enrolled in this study. The 
diagnoses were confirmed by biopsy or incomplete surgi-
cal resection plus histological study before imaging and/
or long-term clinical and radiological follow-up. The 
immunohistochemistry and molecular expression, such 
as Ki-67 proliferation index (Ki-67 index), O6-methyl-
guanine-DNA methyltransferase (MGMT) promoter 
methylation status, Isocitrat Dehydrogenase (IDH) and 
telomerase reverse transcriptase (TERT) status, were col-
lected. All patients were scanned with 18 F-FAPI PET/CT 
and MRI. The median time between the examinations 
was 3.5 days (range, 1 to 7 days).

Radiopharmaceutical preparation
Radiosynthesis was as follows[32, 33]: 18  F-FAPI was 
automatically synthesized with modified AllinOne mod-
ule (Trasis, Ans, Belgium). 18F-was attained on-site on a 
Sumitomo HM-10 cyclotron system (Sumitomo Heavy 
Industries, Tokyo, Japan), where  [18O]H2O was irradiated 

with 10 MeV protons, and reacted with 0.15 mg NOTA-
FAPI-04 (Paite Biotech, Beijing, China) (130  °C, 8  min, 
pH 4.0). An HLB cartridge (Waters Corporation) was 
used to collect the purified products. Quality of the 
final 18F-FAPI product was tested by HPLC (Shimadzu 
LC-15, Suzhou, China). Radiochemical purity was > 95%. 
Appearance, color, pH, and other quality controls were 
performed according to the current pharmacopoeias.

PET/CT imaging
The patients were not specially prepped on the day of 
18 F-FAPI PET/CT scanning. A Biograph mCT-64 scan-
ner (Siemens, Germany) was used. The scanning was 
performed about 60  min after intravenous injection of 
18  F-FAPI (0.12 millicurie/kg). The localizer was posi-
tioned with a scout head view. Low-dose CT (120 kV/110 
mA) was then performed for anatomical localization 
and attenuation correction. Single-bed emission scans 
were obtained in 3-dimensional mode (acquisition time, 
3 min). Reconstruction of data was done using an ordered 
subset expectation maximization iterative reconstruction 
algorithm (three iterations, 21 subsets). The emission 
data were corrected for random, scatter, and decay.

MRI acquisition
MRI scans were acquired at 3 T. The sequences were: 
T1-weighted, T2-weighted, T2-weighted fluid-attenuated 
inversion recovery (FLAIR), T1-weighted gadoterate 
meglumine contrast-enhanced (CE-T1), MRS, ADC and 
DWI. Gadoterate meglumine (Gd-DOTA, DOTAREM, 
Guerbet, France) was intravenously administered in 
CE-T1 (pre-bolus dose, 0.1 mmol/kg).

Image analysis
Two physicians with ten years of experience in brain 
tumor imaging evaluated the MRI images. Two nuclear 
medicine physicians who were experienced in PET/CT 
image assessment evaluated the PET/CT images. Disa-
greements were resolved by consensus. An abnormal 
focus of increased 18  F-FAPI uptake as compared with 
the background activity in the brain parenchyma was 
defined as positive on PET/CT. Standardized uptake 
values (SUV) were quantified using regions of interest 
(ROI). Should an area be found with increased uptake 
compared with the surrounding parenchyma, we drew 
a circular ROI over it where cystic or necrotic portions 
of the lesion was identified and avoided. Additionally, 
we drew an identical ROI over the contralateral normal 
cerebral cortex as a background. Tumor-to-background 
ratio (TBR) was calculated as the  SUVmax of the lesion 
divided by the  SUVmax of the contralateral normal cortex.
The Response Assessment in Neuro-oncology (RANO) 
guidelines were used as the MRI reference. Lesions that 
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were Gd-DOTA-enhancing, predominantly hyperintense 
with surrounding edema on the FLAIR sequence, or with 
a CHO/NAA ratio > 1.5 were considered positive on MRI 
images.

Statistical analysis
We performed the statistical analyses using SPSS (ver-
sion 22.0; IBM). Continuous variables are expressed as 
mean ± SD and categorical variables as numbers and 
percentages. The number of positive lesions was com-
pared using exact McNemar statistical test. Inter-param-
eter correlations were calculated with the Spearman test. 
P < 0.05 was statistically significant.

Results
Patients’ characteristics
Twelve patients (aged 34–73 yrs, average 52 yrs) with 
glioblastomas confirmed by incomplete surgical resec-
tion or biopsy were enrolled in this study before radio-
therapy. The characteristics are displayed in Table 1. The 
Ki-67 index of the glioblastomas was 42.92 ± 21.58%.

According to the molecular expression, MGMT pro-
moter methylation was found in 7 patients (58.3%), TERT 
mutation in 8 patients (66.7%), and IDH mutation only in 
1 patient (8.3%).

MRI image and 18 F‑FAPI PET/CT characteristics
MRI detected 23 lesions in 12 patients, whereas 18 F-FAPI 
PET/CT detected 16 FAPI-avid lesions (Table  1; Figs.  1 

and 2). Performance of MRI and 18  F-FAPI PET/CT 
was significantly different in terms of lesion detection 
(P = 0.0156). The  SUVmax and TBR were 7.08 ± 3.55 
and 19.95 ± 13.22 in the FAPI-avid lesions, respectively 
(Table 2).

The lesions were subsequently validated with biopsy 
(3, 13.0%), biopsy after complete or incomplete resection 
(10, 43.5%), and/or radiological follow-up (10, 43.5%). 
The sensitivity and positive predictive value (PPV) of 
18 F-FAPI PET/CT were 69.6% and 100%, respectively.

Neither the Ki-67 index nor the molecular expression 
was correlated with the 18  F-FAPI-PET/CT parameters. 
(P > 0.05, Table 2)

Discussion
FAP overexpression and cancer associated fibroblasts 
(CAFs) found in tumor stroma are believed to cause the 
FAP-positive signaling in extracranial tumors [21, 34]. 
Imaging techniques that target FAP are novel promising 
instruments for visualizing tumor stroma. Excellent per-
formance of FAPI PET/CT has been reported in various 
tumors including glioblastoma [21, 28].

Although fibroblasts do not exist in the brain, FAP-pos-
itive vessels in glial tumors, FAP-positive foci of neoplas-
tic cells in gliomas, as well as FAP- positive stromal cells 
that function similarly to CAFs in epithelial cancers have 
been reported by several researchers[35–38]. FAP and 
FAP mRNA are overexpressed in most glioblastomas, 
especially in the mesenchymal subtype [37]. Some 65% 

Table 1 Radiological and molecular characteristics of patients

Pt, patient; MGMT: MGMT promoter methylation; TERT: TERT mutation; IDH:IDH mutation; #: specimen undergoing biopsy or surgical resection for 
immunohistochemistry, and molecular expression

Pt Age, yr/Sex Lesions (MRI) Lesions (FAPI) TBR SUVmax Ki‑67 index (%) MGMT TERT IDH

1 48/M 4 1 16.76# 7.88 30 + + −
2 48/M 1 1 8.28# 7.52 60 + − −
3 59/M 1 1 19.21# 8.32 20 − + −
4 58/F 4 3 9.43# 7.99 40 − + −

19.56 2.82 N/A N/A N/A N/A

22.03 3.48 N/A N/A N/A N/A

5 34/F 1 1 8.88# 6.82 10 + − +
6 56/F 4 1 26.59# 8.64 50 − + −
7 48/F 2 2 10.98# 7.20 80 − + −

21.05 1.94 N/A N/A N/A N/A

8 36/F 1 1 61.69# 8.27 60 + − −
9 73/M 1 1 27.38# 8.63 20 + + −
10 58/M 1 1 13.06# 7.50 70 + − −
11 49/F 2 2 7.90# 3.41 35 + + −

16.19 5.49 N/A N/A N/A N/A

12 55/M 1 1 30.21# 17.34 40 + − −
Total 23 16 19.95 ± 13.22 7.08 ± 3.55
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of glioblastomas are FAP-positive intraparenchymally. 
In our pilot study, 18  F-FAPI PET/CT detected 69.6% 
(16/23) of all lesions, which could be attributed to the 
varying FAP expressions in different molecular glioblas-
toma subtypes [37] or the status of the blood-brain bar-
rier [19]. Although its sensitivity was not high, the PPV of 
18 F-FAPI PET/CT was up to 100%, which may be useful 
for differentiating controversial lesions detected on MRI. 
However, prospective studies based on larger samples are 
still needed to validate the findings.

To this day MRI remains the most used imaging 
modality for glioblastoma diagnosis and evaluation of 
treatment response and prognosis [1, 4, 10]. A number 
of advanced MRI techniques such as functional MRI 
(fMRI), diffusion tensor imaging (DTI), and MRS have 
been adopted for tumor treatment including preopera-
tive surgical planning or as an instrument to distinguish 

post-operative vascular damage from residual enhanc-
ing tumor[9, 12, 13, 39]. However, it is highly chal-
lenging to assess sub-regions of tumors in MRI scans 
visually because of their anatomic complexity. This 
can be even more true in post-operative settings[13]. 
It is a time-consuming task for clinicians to deline-
ate the targets and critical structures, where observer 
biases are probable. Up to 20% intra- and 28% inter-
rater variability have been reported for determining 
glioma boundaries[40]. As a result, boundary delinea-
tion of radiotherapy target volume could be inaccurate. 
Advanced molecular imaging could be helpful at this 
point[41]. Although the lesion detection rate was lower 
on 18  F-FAPI PET/CT than on MRI in our study, the 
TBR of the lesion was high (range 7.90-30.21) and the 
boundaries were better visualized due to the low FAPI 
distribution in the normal cerebral tissues. FAPI PET/

Fig. 1 The 18 F-FAPI PET/CT and MRI (T2, FLAIR, CE-T1) images of patient 6. A1–D1 were images of T2 sequence, A2–D2 were images of FLAIR, A3–
D3 were images of enhanced T1, A4–D4 were images of 18 F-FAPI PET, A5–D5 were images of non-enhanced CT, A6–D6 were images of fusion of 
18 F-FAPI PET and CT. The patient underwent incomplete surgical resection of the glioblastoma in the right frontal lobe. Four lesions were detected 
on MRI (A1-D1, short arrow, yellow arrow, red arrow, and asterisk). Only one 18 F-FAPI-avid lesion was observed on PET/CT (orange arrow, A4-A6).
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CT shows potential for application in biopsy and radio-
therapy planning for glioblastoma [28, 30, 42]. Accord-
ing to a Polish study, target volume delineation based 
on MRI and FAPI PET is differentiated[30]. Gross 
tumor volumes (GTVs) delineated using FAPI PET 
plus MRI is significantly higher compared with MRI 
alone[30]. Unfortunately, the metabolic GTVs were 
not calculated in this study due to the threshold value 

Fig. 2 The non-FAPI-avid lesions were confirmed by follow-up MRI (T2, FLAIR, CE-T1) 6 months later. A1–C1 were images of T2 sequence, A2–C2 
were images of FLAIR, A3-C3 were images of enhanced T1. All enlarged and partially mixed signals were heterogeneously enhanced (short arrow, 
long arrow, and asterisk), indicating disease progression

Table 2 Correlations between Ki-67 index, molecular expression, 
and FAPI-PET/CT parameters

TBR SUVmax

Ki-67 r = 0.018, P = 0.957 r = − 0.095, P = 0.769

MGMT status r = 0.269, P = 0.397 r = 0.073, P = 0.821

TERT status r = − 0.073, P = 0.821 r = 0.073, P = 0.821

IDH status r = − 0.306, P = 0.334 r = − 0.393, P = 0.206
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of MTV in FAPI PET/CT was still indeterminate. The 
further study is needed to analyze the different thresh-
old value of MTV in FAPI PET/CT compared with the 
GTVs on MRI or RT planning.

Ki-67 index is a quantitative measure of cell prolifera-
tion in histopathological assessment of glioblastoma and 
many other tumors [43]. Ki-67 index and TERT or IDH 
mutation are positively associated with overall survival 
of glioblastoma patients and a lower Ki-67 index and 
IDH-wildtype are linked with poor prognosis[43, 44]. 
However, our findings failed to establish any correla-
tions between the Ki-67 index or the molecular expres-
sion with the FAPI-PET/CT parameters, such as MGMT 
promoter methylation, TERT, and IDH mutation. Yet, 
only one of the glioblastoma patients in our study had 
IDH mutation. A larger sample may be needed in future 
research to further investigate our finding.

Limitation
Our sample size was limited with 12 patients and 23 
lesions. As a pilot study, our findings are preliminary and 
should be interpreted with caution. Another limitation to 
our study was that some of the lesions were not labeled 
with FAP on immunohistochemistry. This prevented us 
from evaluating the correlation between FAP expression 
and the PET/CT parameters. Further studies with larger 
samples are needed to validate our results, especially the 
correlation findings.

Conclusion
Despite a lower lesion detection rate than MRI, the PPV 
of 18 F-FAPI PET/CT was 100%, suggesting it as a useful 
examination for indeterminate lesions detected on MRI. 
18 F-FAPI PET/CT visualizes lesions more clearly with a 
high TBR, possibly because of lower FAPI distribution 
in the normal cerebral tissues. The technique may find 
applications in target volume delineation in radiotherapy 
of glioblastoma.
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