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Abstract 

Background  To establish and verify a radiomics nomogram for differentiating isolated micronodular adrenal hyper-
plasia (iMAD) from lipid-poor adenoma (LPA) based on computed tomography (CT)-extracted radiomic features.

Methods  A total of 148 patients with iMAD or LPA were divided into three cohorts: a training cohort (n = 72; 37 iMAD 
and 35 LPA), a validation cohort (n = 36; 22 iMAD and 14 LPA), and an external validation cohort (n = 40; 20 iMAD and 
20 LPA). Radiomics features were extracted from contrast-enhanced and non-contrast CT images. The least absolute 
shrinkage and selection operator (LASSO) method was applied to develop a triphasic radiomics model and unen-
hanced radiomics model using reproducible radiomics features. A clinical model was constructed using certain labo-
ratory variables and CT findings. Radiomics nomogram was established by selected radiomics signature and clinical 
factors. Nomogram performance was assessed by calibration curve, the areas under receiver operating characteristic 
curves (AUC), and decision curve analysis (DCA).

Results  Eleven and eight extracted features were finally selected to construct an unenhanced radiomics model and 
a triphasic radiomics model, respectively. There was no significant difference in AUC between the two models in the 
external validation cohort (0.838 vs. 0.843, p = 0.949). The radiomics nomogram inclusive of the unenhanced model, 
maximum diameter, and aldosterone showed the AUC of 0.951, 0.938, and 0.893 for the training, validation, and 
external validation cohorts, respectively. The nomogram showed good calibration, and the DCA demonstrated the 
superiority of the nomogram compared with the clinical factors model alone in terms of clinical usefulness.

Conclusions  A radiomics nomogram based on unenhanced CT images and clinical variables showed favorable per-
formance for distinguishing iMAD from LPA. In addition, an efficient unenhanced model can help avoid extra contrast-
enhanced scanning and radiation risk.

Keywords  Adrenal hyperplasia, Adrenocortical adenoma, Tomography, X-ray computed, Nomograms

Background
An adrenal adenoma is the most common type of adre-
nal gland tumor. It is a benign tumor derived from the 
adrenal cortical tissue [1], usually presenting as a small 
rounded or oval mass (often measuring < 3 cm) [2]. Due 
to the existence of intrinsic fat content [3], more than 70% 
adrenal adenomas can be evidentially identified using a 
threshold of ≤ 10 Hounsfield units (Hu) on unenhanced 
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computed tomography (CT), while those with > 10 Hu 
are classified into lipid-poor adenoma (LPA) [4–6].

Adrenal hyperplasia is a genetic disorder and physi-
ologic overgrowth of adrenocortical tissue that affects the 
adrenal glands. It can be nodular or diffuse. Diffuse type 
manifests as a diffuse and smooth increase in the size of 
adrenal glands [6]; the nodular forms can be further clas-
sified into the primary pigmented micronodular adrenal 
type and the isolated micronodular hyperplasia (iMAD) 
type [7]. iMAD is characterized by a hyperplasia of the 
internodular tissue [8]. Patients with iMAD can be easily 
misdiagnosed with other high-attenuation diseases, such 
as LPA [3, 9]. The diagnosis of this condition is mainly 
based on conventional clinic and radiological methods, 
which are not sensitive enough to differentiate iMAD 
from LPA.

Patients with adrenal adenoma and adrenal hyper-
plasia can have similar clinical symptoms, including 
primary hypertension, primary aldosteronism, or Cush-
ing’s syndrome [10, 11]. Thus, differentiating these con-
ditions may be challenging. While adrenal hyperplasia 
is resolved using a medication, patients with adrenal 
adenoma usually require surgery, i.e., adrenalectomy 
[12]. Adrenalectomy lowers blood pressure levels [13], 
ameliorates hypokalemia, reduces plasma aldosterone 
levels [14], and drastically increases survival in patients 
without atrial fibrillation [15]. On the other hand, the use 
of adrenalectomy in the management of adrenal hyper-
plasia is controversial. Surgery has been associated with 
certain side effects in these patients, including abnormal 
circadian rhythm [16] and corticotrophin deficiency [17]; 
also, these patients have a higher risk of having anesthe-
sia accidents and extra medical expenses. Thus, accurate 
preoperative diagnosis is of utmost importance for ther-
apy decision-making [18]. However, diagnosing based on 
conventional clinic and radiological methods remains 
challenging. Hence, a high-performance diagnostic 
approach needs to be established and certified.

Radiomics is a relatively new quantitative approach 
for medical imaging that extracts many features (e.g., 
intensity, geometry, and texture) from images using 
data-characterization algorithms.  Over the years, this 
approach has been mainly applied in oncology but also 
in some other medical areas [19, 20]. Successful studies 
on adrenal tumors have been reported using radiom-
ics to distinguish between benign adrenal tumors with 
malignant tumors [21] and pheochromocytoma with the 
other benign tumors [22, 23]. Yet, to our knowledge, no 
study have reported CT-based radiomics to distinguish 
iMAD from LPA. Thus, in this study, we developed and 
validated a radiomics nomogram incorporating the radi-
omics signature and the clinical factors for preoperative 
differential diagnosis of iMAD and LPA.

Methods
Patients
Data for all cases were acquired from two medical cent-
ers: center 1 and center 2, from May 2018 to May 2022. 
Five hundred and sixty-eight patients who accepted 
unilateral adrenalectomy were included in the study, 
and they were all diagnosed with adrenal hyperplasia or 
adenoma pathologically. All patients underwent contrast-
enhanced CT before surgery. CT images of all patients 
were further analyzed to identify iMAD or LPA using 
the following inclusion criteria: (1) patients with a sin-
gle nodular lesion; (2) CT attenuation of lesions are > 10 
Hu on unenhanced CT images. The exclusion criteria 
were: (1) patients with lesions ≤ 10 Hu on unenhanced 
CT images; (2) bilateral or diffuse lesions; (3) lesions with 
necrosis or hemorrhage based on the pathological diag-
nosis; (4) patients without complete preoperative clinical 
and imaging data before surgery. The patient recruitment 
pathway is presented in Fig. 1.

Finally, 148 patients were recruited: 108 patients from 
center 1 were divided into two cohorts (training and test-
ing cohort) according to the ratio of 2:1 using computer-
generated random numbers, and 40 patients from center 
2 were incorporated into the external validation cohort.

The institutional review board of our hospital approved 
this retrospective study. Therefore, the requirement for 
obtaining informed consent was waived.

CT image acquisition
In center 1, patients underwent CT scanning using 
multidetector-row CT systems (Ingenuity CT, Philips; 
Aquilion ONE, TOSHIBA; Somatom Force, Siemens 
Healthcare; Lispeed 64, GE Healthcare). The scanning 
parameters were as follows: 120  kV tube voltage; 250–
400 mA tube current (automatic tube current modulation 
was applied); 0.5  s or 0.6  s rotation time; 192 × 0.6  mm 
or 64 × 0.625  mm detector collimation; a matrix of 
512 × 512, and a pitch of 0.6 or 1.0. Axial images of 1 mm 
slice thickness were reconstructed. An 80–90  mL vol-
ume of iodinated contrast medium (Omnipaque 350, 
GE Healthcare, Shanghai, China) was injected via ante-
cubital vein by a power injector (at a rate of 3.0  mL/s). 
Pre-enhanced CT images were acquired before two post-
contrast CT scannning in the arterial phase (25–30  s) 
and the venous phase (60–70 s).

In center 2, patients were examined using the 
multidetector-row CT systems (Somatom Force, Sie-
mens Healthcare; Discovery 750, GE Healthcare). The 
scanning parameters were as follows: 100 or 120  kV 
tube voltage; 0.5 or 0.6  s rotation time; 250–400  mA 
tube current (automatic tube current modulation 
was applied); 192 × 0.6  mm or 64 × 0.625  mm detec-
tor collimation; a matrix of 512 × 512, and a pitch of 
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1. Axial images of 1  mm slice thickness were recon-
structed. An 80–90  mL volume of iodinated contrast 
medium (Iopromide, Ultravist 300; Bayer, Germany) 
was injected via antecubital vein using a power injec-
tor (at a rate of 2.5 mL/s). Unenhanced CT images were 
acquired before two postcontrast CT scanning in the 
arterial phase (25–30 s) and venous phase (55–60 s).

Conventional CT feature evaluation
All of the image analysis were performed by the same 
radiology resident (Reader 1, HY) and a radiologist 
(Reader 2, CJ) with 5 and 10 years of abdominal imag-
ing experience, respectively. The radiologists were 
blinded to the radiological reports and pathologic 
details. Reader 1 construed the following CT features 
by consensus: the maximum diameter (MD) and the 
CT attenuation of unenhanced phase (CTpre) and 

venous phase (CTV) on the axial CT image. All quan-
titative values were measured 3 times, and an average 
figure was applied.

Clinical factors selection and construction of the clinical 
factor model
Clinical data included specific assay indexes (cortisol, 
aldosterone, and renin) and data regarding age, sex, and 
history of hypertension. All information were obtained 
from medical records. Univariate logistic analysis was 
used to compare the differences in the clinical factors 
(including clinical data and CT features) in the train-
ing cohort between the two groups; a multiple logis-
tic regression analysis was applied to build the clinical 
model by using the significant variables from the uni-
variate analysis as inputs. Odds ratios (OR) with 95% 
confidence intervals (CI) for each independent factor 
were calculated as relative risk estimates.

Fig. 1  Study flow chart
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Three‑dimensional segmentation and radiomics feature 
extraction
Image resampling was performed before feature extrac-
tion to decrease the variability of radiomics features. 
Images were resampled to 1 × 1 × 1 mm3 voxels using 
the B-Spline interpolation method. A soft tissue CT 
window was modified with a level of 40HU and a width 
of 300 Hu. Three-dimensional lesion segmentation was 
manually delineated as a region of interest (ROI) on 
images of three phases at ITK-SNAP (http://​www.​itksn​
ap.​org/​pmwiki/​pmwiki.​php). Images of corresponding 
arterial and venous phases were used as reference when 
the contour on the unenhanced image was delineated. 
An example of manual segmentation is shown in Fig. 2.

Radiomics extraction was performed with Deepwise 
Research Portal (Deepwise Bolian, Co., Ltd.), integrated 
with PyRadiomics. A total of 1288 radiomics features 
were extracted from each phase. Twenty patients (10 
iMAD and 10 LPA) were randomly chosen for further 
evaluation of feature stability: both the two radiologists 
repeated the same delineation procedure two weeks 
later. Inter- and intra- class correlation coefficients 
(ICC) were used to assess the extracted features’ inter-
observer reliability and intra-observer reproducibility. 
It is commonly accepted that intra- and inter-class cor-
relation coefficient (ICC) < 0.5 indicates poor reliability, 
0.5–0.75: moderate reliability, and > 0.75: good or excel-
lent reliability [24]. Thus, the features with ICC < 0.75 
were excluded.

Construction and comparison of the radiomics signatures
Z-score normalization was first used to standardize the 
features before the following analysis. Dimension reduc-
tion was conducted before signature construction in 
order to eliminate features overfitting. The stable radi-
omics features were assessed by one-way analysis of vari-
ance, and the features that were significantly different 
between the two groups (p < 0.05) were enrolled into the 
least absolute shrinkage and selection operator (LASSO) 
regression model in order to select the most valuable fea-
tures in the training cohort. Then, the selected features 
were applied to build radiomics signatures. Two radiom-
ics models were established: a triphasic CT feature based 
on unenhanced and enhanced CT features and an unen-
hanced radiomics model based on unenhanced CT fea-
tures. A radiomics score (Rad-score) was calculated for 
each patient through a linear combination of selected 
features weighted by their respective LASSO coefficients.

Development of a radiomics nomogram and assessment 
of the performance of different models
Delong’s test was first used to compare two radiomics 
models before the radiomics nomogram was performed. 
The triphasic radiomics model was chosen when estab-
lishing a nomogram if there was a significant difference 
between two radiomics signatures; otherwise, an unen-
hanced radiomics model was chosen. Then, a radiomics 
nomogram was establish by incorporating the chosen 
radiomics model and the selected clinical factors. A radi-
omics nomogram score (Nomo-score) was calculated 

Fig. 2  Manual segmentation of the lesion on the axial slice. A iMAD and B LPA

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
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for each patient. The calibration of the nomogram was 
verified using a calibration curve. The Hosmer–Leme-
show test was used to validate the goodness-of-fit of the 
nomogram. The diagnostic performance of the clinical 
model, the chosen radiomics signature, and the radiom-
ics nomogram was assessed based on the area under the 
receiver operator characteristic curve (AUC) in the train-
ing, testing, and external validation sets. Decision curve 
analysis (DCA) was performed to evaluate the clinical 
usefulness of three models by calculating the net benefits 
for a range of threshold probabilities in the external vali-
dation cohort [21].

Statistical analysis
Statistical tests were performed using MedCalc statistical 
software (version 20.110, https://​www.​medca​lc.​org), R 
statistical software (version 3.3.3, https://​www.r-​proje​ct.​
org), and MATLAB (version 2021a). Student’s t-tests or 
non-parametric tests (where appropriate) were used for 
continuous variables. Chi-squared test or Fisher’s exact 
test (where appropriate) were used for categorical vari-
ables. Categorical and continuous variables are shown 
in frequency (percentages), mean ± standard deviation, 

or median (interquartile range), where appropriate. The 
AUC was compared by Delong’s test. A p value < 0.05 was 
considered to be statistically significant.

Results
Clinical baseline and construction of the clinical model
The patients’ demographic baseline characteristics are 
shown in Table 1. The rates of LPA in the training, test-
ing, and external validation cohort were 48.6% (35 of 
72), 38.9% (14 of 36), and 50.0% (20 of 40), respectively. 
The results of univariate and multiple logistic regression 
analysis are listed in Table  2. Multiple logistic regres-
sion showed that maximum diameter and aldosterone 
levels are independent predictors of LPA (all p < 0.05), 
thus were chosen to create a clinical model. Lesions with 
larger maximum diameter (OR, 1.296; 95% CI, 1.036–
1.621) or higher aldosterone (OR, 1.005; 95% CI, 1.000 
-1.010) were likely to be LPA.

Feature extraction, selection, and radiomics signature 
establishment and comparison
A total of 710 unenhanced CT radiomics features, 
863 arterial CT features and 707 venous CT features 

Table 1  Clinical and conventional CT radiological features of all cohorts

MD maximum diameter, CTpre CT attenuation of unenhanced phase, CTV CT attenuation of venous phase
a Statistical analysis performed using independent-samples T test
b Statistical analysis performed using chi-square test
c Statistical analysis performed using Mann–Whitney U test

Variable Training cohort Testing cohort External validation cohort

iMAD n = 37 LPA n = 35 p value iMAD n = 22 LPA n = 14 p value iMAD n = 20 LPA n = 20 p value

Age (years) 53.81 ± 1.93 53.4 ± 1.59 0.871a 56.14 ± 2.12 50.21 ± 2.33 0.077a 53.70 ± 2.70 44.73 ± 2.42 0.071a

Sex 0.984b 1.000b 0.749b

 Male 20 (54.10%) 19 (54.30%) 11 (50.00%) 7 (50.00%) 11 (55.0%) 12 (60.0%)

 Female 17 (45.90%) 16 (45.70%) 11 (50.00%) 7 (50.00%) 9 (45.0%) 8 (40.0%)

Hypertension 0.023b 0.956b 0.465b

 Yes 26 (70.30%) 32 (91.40%) 19 (86.40%) 12 (85.70%) 15 (80.0%) 14 (70.0%)

 No 11 (29.70%) 3 (8.60%) 3 (13.60%) 2 (14.30%) 5 (20.0%) 6 (30.0%))

Cortisol 
(nmol/L)

330.05 ± 17.70 306.66 ± 17.50 0.427a 331.33 ± 29.09 318.10 ± 30.53 0.587a 347.31 ± 27.22 308.98 ± 30.61 0.355a

Renin (pg/mL) 8.12 [5.49, 
16.52]

6.95 [2.58, 
15.56]

0.382c 11.57 [6.52, 
22.79]

3.29 [1.27, 
22.79]

0.020c 8.98 [6.24, 
16.39]

9.95 [6.85, 15.3] 0.829c

Aldosterone 
(pg/mL)

158.86 [122.63, 
210.15]

191.68 [123.21, 
358.67]

0.068c 165.99 [117.6, 
194.57]

234.10 [111.38, 
407.11]

0.269c 154.98 [104.31, 
188.13]

209.54 [141.50, 
307.37]

0.024c

Sodium 
(mmol/L)

140.71 ± 2.19 141.32 ± 1.98 0.227a 140.02 ± 1.72 141.02 ± 1.24 0.103a 140.54 ± 1.58 141.46 ± 1.72 0.083a

Potassium 
(mmol/L)

4.04 ± 0.37 4.16 ± 0.41 0.210a 3.81 ± 0.43 4.05 ± 0.39 0.083a 4.02 ± 0.49 3.99 ± 0.52 0.877a

Albumin (g/mL) 42.90 [40.90, 
44.60]

41.60 [39.70, 
45.50]

0.358c 42.05 [40.38, 
44.58]

41.65 [39.50, 
44.33]

0.685c 43.41 ± 3.19 44.53 ± 2.65 0.174c

MD (mm) 8.90 ± 0.50 10.45 ± 0.40 0.019a 7.41 ± 0.37 9.76 ± 0.95 0.012a 9.12 ± 0.78 9.57 ± 0.51 0.641a

CTpre(Hu) 25.53 ± 1.50 26.40 ± 1.80 0.711a 27.60 ± 1.78 27.64 ± 1.59 0.989a 29.41 ± 1.87 24.65 ± 2.98 0.093a

CTV(Hu) 87.98 ± 3.25 80.31 ± 4.19 0.035a 92.11 ± 6.77 85.06 ± 4.91 0.115a 90.29 ± 4.94 77.9 ± 6.38 0.087a

https://www.medcalc.org
https://www.r-project.org
https://www.r-project.org
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were considered robust features (ICCs > 0.75). Sixteen 
triphasic features and eleven unenhanced features were 
selected by LASSO logistic regression model to construct 
the triphasic radiomics model and the unenhanced radi-
omics model, respectively (Fig. 3).

For the unenhanced model, radiomics score [median 
(interquartile range)] differed significantly between 
iMAD and LAP groups in the training cohort [− 0.11 
(− 0.15, − 0.03) vs. 0.10 (0.04, 0.15), respectively, 
p < 0.001]; this was further verified in the validation 
cohort [− 0.07 (− 0.12, 0,03) vs. 0.07 (0.01, 0.19), respec-
tively, p < 0.001] and the external validation cohort 
[− 1.74 (− 4.14, − 0.38) vs. 0.65 (0.22, 4.54) respectively, 
p < 0.001]. The unenhanced model yielded an AUC of 
0.916 (95% CI 0.826, 0.968) in the training cohort, 0.860 
(95% CI 0.704, 0.953) in the validation cohort and 0.838 
(95% CI 0.687, 0.935) in the external validation cohort, 
showing favorable discriminative efficacy. The tripha-
sic radiomics model was also identified as a good classi-
fier, yielding an AUC of 0.964, 0.880, and 0.843 in three 
cohorts, respectively.

Delong’s test was performed for comparison. No sig-
nificant differences were found between the unenhanced 
and triphasic models (p = 0.949). The ROC analysis of 
two radiomics models in testing and external validation 
cohort is shown in Fig.  4. The AUC, 95% CI of AUC, 
sensitivity, specificity, accuracy, and a cut-off value are 
shown in Table  3. The radiomics score of unenhanced 
radiomics model was calculated by following formula: 
“Rad-score = 0.1324 × original_shape_LeastAxisLen-
gth + 0.1302 × gradient_glcm_ClusterTendency + 0.1020 × wave-
let-HLH_firstorder_Kurtosis +  0.0950 ×  wavelet-

LHH_glrlm_LongRunLowGrayLevelEmphasis +  0. 
0322 × square_glcm_Idmn + 0.0247 × wavelet-LLH_
glrlm_RunEntropy +  0.0201 ×  wavelet-LHH_first-
order_Range +  0.0189 ×  wavelet-HLH_firstorder_
Range −  0.0219 ×  wavelet-LHH_firstorder_Mini-
mum −  0.0323 ×  squareroot_gldm_SmallDepend-
enceEmphasis −  0.0707 ×  original_firstorder_Skew-
ness + 0.4861”.

The radiomics nomogram establishment and assessment 
of the performance of different models
Aldosterone count, maximum diameter, and Rad-score 
(unenhanced radiomics model) were incorporated to 
develop a radiomics nomogram in the training cohort 
(Fig.  5a). The calibration curve of the radiomics nomo-
gram demonstrated good agreement between the pre-
dicted and expected probabilities in three cohorts 
(Fig.  5b–d). The p values of Hosmer–Lemeshow test in 
training, validation, and external validation cohorts were 
0.077, 0.424, and 0.410, respectively.

The diagnostic performance of each model is shown in 
Table 4. The ROC curves of the clinical model and radi-
omics nomogram are presented in Fig.  6. The radiom-
ics nomogram showed the highest discrimination in the 
training cohort, with an AUC of 0.951 (95% CI 0.873, 
0.998), and also achieved satisfactory predictive effi-
cacy in the validation cohort [AUC, 0.938 (95% CI 0.805, 
0.980)] and in the external validation cohort [AUC, 0.893 
(95% CI 0.754, 0.968)]. The observed AUC value was 
higher than that of the clinical model in external valida-
tion [AUC, 0.680 (95% CI 0.514, 0.818); p = 0.030]. The 
nomo-score was acquired using the following formula: 

Table 2  Univariate and multiple logistic regression analyses of clinical factors

MD Maximum diameter, CTpre CT attenuation of unenhanced phase, CTV CT attenuation of venous phase, OR Odd ratio, 95%CI 95% Confidence interval

*p < 0.2 was selected for multiple logistic regression analysis

**p < 0.05 was selected as independent predictive factors

Variable Univariate analysis Multiple analysis

OR (95% CI) p value OR (95% CI) p value

Age 0.869 (0.954–1.041) 0.869

Sex 1.009 (0.399–2.552) 0.984

Hypertension 4.513 (1.138–17.893) 0.032* 3.932 (0.833–18.569) 0.084

Cortisol 0.998 (0.993–1.002) 0.348

Renin 1.004 (0.965–1.044) 0.850

Aldosterone 1.005 (1.001–1.010) 0.020* 1.005 (1.000–1.010) 0.036**

Sodium (mmol/L) 1.154 (0.915–1.455) 0.227

Potassium (mmol/L) 2.203 (0.642–7.563) 0.210

Albumin (g/mL) 0.974 (0.907–1.045) 0.463

MD 1.249 (1.028–1.517) 0.025* 1.296 (1.036–1.621) 0.023**

CTpre 1.009 (0.962–1.058) 0.707

CTV 0.984 (0.962–1.006) 0.155* 0.094 (0.970–1.019) 0.647
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“Nomo- score = 27.5663 × Rad-score − 0.4115 × maxi-
mum diameter + 0.0094 × aldosterone + 2.0275”.

The decision curve analyses for the clinical model, 
unenhanced radiomics model, and radiomics nomogram 
in the external validation are presented in Fig.  7. Radi-
omics nomogram had the highest overall net benefit in a 
large range of threshold probability.

Discussion
Our study established a radiomics nomogram that 
includes two clinical factors and an unenhanced radi-
omics signature for preoperative discrimination of 
iMAD and LPA. The proposed nomogram had better 
diagnostic performance than the clinical model alone 
or radiomics signature in differentiating iMAD from 

LPA. This nomogram can further the treatment deci-
sion-making and improve clinical outcomes.

In clinical practice, an isolated adrenal nodule can be 
incidentally observed in a routine abdominal or chest 
CT scan. A nodule that has a smaller (generally ≤ 4 cm) 
size, higher attenuation (generally ≥ 20Hu), or no pro-
gression during a follow-up visit can be used as an indi-
cator of the benign lesion [25]. However, the differential 
diagnosis between small benign adrenal lesions can 
be challenging, considering that patients may present 
similar symptoms, including hypokalemia, hyperten-
sion, and aldosteronism. Due to the lack of fat contents, 
LPA presents atypical features and can be easily misdi-
agnosed with iMAD [3, 9]. However, accurate diagnosis 
is extremely important considering that patients with 
LPA and iMAD require different treatment approaches 

Fig. 3  Feature selection and cross-validation using LASSO. For different values of lambda, different numbers of features will be included in the final 
model and a decision has to be made. Figures A, C illustrate the process of cross validation in order to choose the most appropriate lambda value. 
Lambda resulting in the smallest mean squared error (MSE) is chosen, as the green lines shows. Figures B, D plot different values of lambda on the 
x-axis and each line represents a feature, showing when it enters the model and its level of influence on the outcome. A Selection of the tuning 
parameter (lambda) in the LASSO of unenhanced model. B The unenhanced CT feature coefficients varied according to lambda. C Selection of the 
tuning parameter (lambda) in the LASSO of enhanced model. D The enhanced CT feature coefficients varied according to lambda
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Fig. 4  Performance of the unenhanced model and triphasic model. Receiver operating characteristic (ROC) curves of the radiomics signature in 
the testing and external validation cohorts of the unenhanced model A, B and triphasic model C, D, respectively. AUC, area under the receiver 
operating characteristic curve

Table 3  Results of unenhanced radiomics model and triphasic radiomics model predictive ability for distinguishing between iMAD 
and LPA

AUC​ Area under the receiver operator characteristic curve, 95% CI 95% Confidence interval

Model AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) Cut-off

Unenhanced radiomics model Training cohort 0.916 (0.826–0.968) 88.6 91.9 90.3  > 0.513

Testing cohort 0.860 (0.704–0.953) 78.6 72.7 72.2

External validation cohort 0.838 (0.687–0.935) 75.0 80.0 77.5

Triphasic radiomics model Training cohort 0.964 (0.892–0.994) 91.4 91.9 93.1  > 0.483

Testing cohort 0.880 (0.728–0.964) 78.6 86.3 80.6

External validation cohort 0.843 (0.693–0.938) 80.0 80.0 77.5
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[12]. Surgery in patients with adrenal hyperplasia has 
been associated with certain side effects [16]. The ben-
efit of surgery performed on iMAD patients is still 
indeterminate.

To our knowledge, only a few studies have inves-
tigated the difference between adrenal adenoma 
and hyperplasia. Leung et  al. [26] created a clini-
cal prediction score using 3 parameters (plasma 
renin activity before saline infusion in saline infusion 

test ≤ 0.26  ng/mL/h, age at diagnosis < 50  years, and 
aldosterone level after saline infusion in saline infu-
sion test ≥ 424  pmol/L) to predict aldosterone‑pro-
ducing adenoma from idiopathic adrenal hyperplasia. 
Other clinical prediction criterion also emphasized the 
effect of aldosterone [27]. This is consistent with our 
result that patients with LPA had higher aldosterone 
levels and aldosterone was an independent predictor. 
Park et  al. analyzed several CT parameters, pointing 

Fig. 5  Radiomics nomogram and calibration curves. A The radiomics nomogram, combining maximum diameter, aldosterone and Rad-score, was 
developed in the training set. B–D The nomogram calibration curves in training (B), testing (C), and external validation (D) sets. Calibration curves 
indicate the goodness-of-fit of the model

Table 4  Results of unenhanced model and triphasic model predictive ability for distinguishing between iMAD and LPA

AUC​ Area under the receiver operator characteristic curve, 95% CI 95% Confidence interval

Model AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) Cut-off

Clinical model Training cohort 0.764 (0.650–0.857) 74.3 70.3 70.8  >  − 0.226

Testing cohort 0.731 (0.557–0.864) 57.1 86.4 72.2

External validation cohort 0.680 (0.514–0.818) 75.0 60.0 67.5

Unenhanced radiomics model Training cohort 0.916 (0.826–0.968) 88.6 91.9 90.3  > 0.513

Testing cohort 0.860 (0.704–0.953) 78.6 72.7 72.2

External validation cohort 0.838 (0.687–0.935) 75.0 80.0 77.5

Radiomics nomogram Training cohort 0.951 (0.873–0.988) 85.7 97.3 91.7  > 0.363

Testing cohort 0.938 (0.805–0.980) 78.6 95.5 88.5

External validation cohort 0.893 (0.754–0.968) 80.0 95.0 87.5
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out significant differences in lesion size between adre-
nal adenoma and adrenal hyperplasia [12]. In the pre-
sent study, we found that maximum diameter was an 
independent predictive factor and LPA is larger than 
iMAD. CT attenuation of the venous phase can serve 
as a potential risk predictor. However, multiple logis-
tic regression analysis suggested that CT attenuation 
of the venous phase is not an independent risk predic-
tor. This is proved by other researches. Triphasic CT 
attenuation and percent washout could not be used 

for differentiation [12]. And an MRI-based study dem-
onstrated that the quantitative evaluation of washout 
parameters is not sensitive enough to differentiate LPA 
from other non-adenomas [9]. However, Seo et  al. [1] 
reported differences in absolute percent washout and 
relative percent washout between adenoma and non-
adenoma, which contradicts aforementioned and our 
researches. This indicates that heterogeneity may exist 
based on traditional image factors.

Fig. 6  Performance of the clinical model and the radiomics nomogram. Comparison of receiver operating characteristic (ROC) curves of the clinical 
model (A, B) and radiomics nomogram (C, D) for the prediction of iMAD and LPA in the testing and external validation cohorts, respectively. AUC, 
area under the receiver operating characteristic curve
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Radiomics has been widely applied in the field of adre-
nal tumors. For example, texture analysis was used for 
differentiating malignant from benign adrenal tumors 
[21]. Furthermore, Chen et  al. [28] and He et  al. [29] 
used radiomics signature and nomogram to confirm the 
risk of functional adenoma. Moreover, radiomics can be 
an effective medical approach for predicting subclini-
cal pheochromocytoma from lipid-poor adenoma [22]. 
In this study, radiomics was used to differentiate iMAD 
from LPA. Diffuse adrenal hyperplasia and adenoma with 
fat content can easily be identified by most radiologists, 
thus were excluded in this study. A nomogram was estab-
lished and yielded a higher AUC than the clinical model 
did, showing a favorable clinical application value.

In this study, radiomics features concerning shape, grey 
level, and texture heterogeneity conduced to the radiom-
ics signature. ‘original_shape_LeastAxisLength’ indicates 
that tumor size is an important factor. This is consist-
ent with our discovery that size is of great importance. 
It was also used in another research explaining difference 
of lesions’ shape [30]. ‘wavelet-HLH_firstorder_Kurto-
sis’ is histogram-based and represented the position of 
peak height that indicates CT attenuation value of the 
maximum number of voxels [31]. A more homogeneous 

pixel distribution reflected a more regular nodular 
architecture. In addition, ‘original_firstorder_Skewness’ 
represented pixel asymmetry, indicating different hetero-
geneity of two kinds of nodules. This was also proved in 
Caruso et  al.’s research as malignant tumor had higher 
heterogeneity [32]. Briefly, features of first-order and tex-
ture (GLCM, GLSZM, etc.) features reflected tumor het-
erogeneity and microenvironment, which is consistent 
with other studies [33–35].

We developed two radiomics signatures: an unen-
hanced radiomics model deriving from unenhanced 
CT features and a triphasic radiomics model deriv-
ing from unenhanced and enhanced CT features. Both 
models showed satisfying differential ability. Delong’s 
test indicated no significant difference between the two 
signatures, which implied that enhanced CT images 
might fail to provide more necessary texture informa-
tion compared to unenhanced CT. Whether enhanced 
radiomics signatures are useful seems to be dubious and 
needs reconsidering. Yi and colleagues [22] observed 
the similar diagnostic efficacy of the unenhanced model 
and enhanced model in differentiating subclinical pheo-
chromocytoma from adrenal lipid-poor adenoma. Sui 
et al. [36] found that the unenhanced CT model showed 

Fig. 7  Decision curve analysis for different models. The y-axis shows the net benefit; the x-axis shows the threshold probability. The decision curves 
indicate that applying a radiomics nomogram to predict LPA adds great benefit than treating all or none of the patients across the large range of 
reasonable threshold probabilities
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higher accuracy, sensitivity, and specificity in distinguish-
ing high-risk anterior mediastinal lesions. He and his 
team [37] obtained identical conclusions when examin-
ing lung diseases. The above-mentioned studies seem to 
be supportive of our conclusion. The possible interpreta-
tion was that contrast enhancement was related to angio-
genic properties of tumors [38] and both two diseases are 
rich in blood supply. So, the minor difference of angio-
genic property under the microscope between iMAD and 
LPA was not powerful enough to provide more favorable 
details in regard to the difference in vascularity for the 
enhanced model. Moreover, the biological heterogeneity 
within the tumor depicted by radiomics features may be 
confounded by the intravenously injected contrast mate-
rial, which may have trivial benefits in discrimination 
between iMAD and LPA. In brief, the cost-effectiveness 
of the enhanced-CT should be accurately assessed and 
the potential risks of an additional CT scan, such as radi-
ation hazards and the potential risks associated with con-
trast media (allergy, potential renal damage and so on), 
should be considered. The risks related to contrast agent 
have been reported to be exacerbated in the pediatric and 
elderly populations.

This study has a few limitations. First, this was a ret-
rospective study with small sample size; training and 
validation groups were also derived from one institute. 
Second, owing to the inherent deficiency of retrospective 
research, the CT images were from different scanners 
and parameters, which may influence the texture analy-
sis. Also, resampling was arranged to minimize the effect 
as much as possible. Finally, 3-D manual ROI segmenta-
tion can be time-consuming and complicated to perform. 
Accordingly, an automatic segmentation method for 
adrenal lesions with favorable reliability and reproduc-
ibility needs to be developed and applied.

Conclusions
In this study, we developed a CT-based radiomics nom-
ogram that has favorable predictive effectiveness for 
preoperative differentiation of iMAD from LPA. Unen-
hanced CT protocol is of favorable clinical use to avoid 
external radiation and potential contrast agent risk. As a 
non-invasive and quantitative method, radiomics nomo-
gram may serve as an effective tool to supplement the 
conventional imaging modalities for the clinical decision-
making process.
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