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Abstract 

Background:  Temporal lobe epilepsy (TLE) is the most common type of epilepsy associated with changes in the 
cerebral cortex throughout the brain. Magnetic resonance imaging (MRI) is widely used for detecting such anomalies; 
nevertheless, it produces spatially correlated data that cannot be considered by the usual statistical models. This study 
aimed to compare cortical thicknesses between patients with TLE and healthy controls by considering the spatial 
dependencies across different regions of the cerebral cortex in MRI.

Methods:  In this study, T1-weighted MRI was performed on 20 healthy controls and 33 TLE patients. Nineteen 
patients had a left TLE and 14 had a right TLE. Cortical thickness was measured for all individuals in 68 regions of the 
cerebral cortex based on images. Fully Bayesian spectral method was utilized to compare the cortical thickness of 
different brain regions between groups. Neural networks model was used to classify the patients using the identified 
regions.

Results:  For the left TLE patients, cortical thinning was observed in bilateral caudal anterior cingulate, lateral orbito-
frontal (ipsilateral), the bilateral rostral anterior cingulate, frontal pole and temporal pole (ipsilateral), caudal middle 
frontal and rostral middle frontal (contralateral side). For the right TLE patients, cortical thinning was only observed in 
the entorhinal area (ipsilateral). The AUCs of the neural networks for classification of left and right TLE patients versus 
healthy controls were 0.939 and 1.000, respectively.

Conclusion:  Alteration of cortical gray matter thickness was evidenced as common effect of epileptogenicity, as 
manifested by the patients in this study using the fully Bayesian spectral method by taking into account the complex 
structure of the data.

Keywords:  Cortical thickness, Markov chain Monte Carlo, Matérn correlation, Spatial dependence, Temporal lobe 
epilepsy

Introduction
Epilepsy is considered as a common chronic neurologi-
cal disorder affecting individuals of various ages, sexes, 
races, social classes, and geographical locations [1]. 
According to World Health Organization (WHO), about 
50 million people have epilepsy globally; eighty percent 
of them live in low- and middle-income countries [2]. 
Epilepsy affects brain areas and generates episodes of 
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seizure, putting a heavy neurobiological, cognitive, psy-
chological, and social burden on the patients and their 
families [1]. The most common type of epilepsy in adults 
is Temporal Lobe Epilepsy (TLE) which is the typical type 
of drug-resistant epilepsy that requires surgical treat-
ment [3, 4]. Accurate localization of seizure onset affects 
the success of the surgery, and due to the lack of a pre-
cise abnormality localization, surgery is not a solution for 
about 30% of TLE patients [5].

TLE is mainly characterized by hippocampal atrophy 
[6]. The seizures in TLE start from the temporal lobe 
and cause structural and functional abnormalities in the 
brain [7]. There have been conducted several studies on 
the gray and white matters using magnetic resonance 
imaging (MRI), including volumetry, voxel-based mor-
phometry, and cortical thickness measurement [8, 9]. 
They found structural changes “extended to temporolim-
bic and frontocentral regions” in the gray matter and 
morphological and microstructural abnormalities in the 
white matter within/beyond the temporal lobes [6, 10]. 
Brain atrophy deterioration due to the seizure-induced 
damages over time has also been reported by studies 
[11]. These changes can affect the seizure-related sur-
gery results and cognitive impairments across various 
domains [6]. Therefore, determining abnormal regions/
areas of the brain in TLE is very important [12].

Atrophy is a progressive condition in different regions 
of the cortex in patients with drug-resistant epilepsy [11], 
and widespread patterns of neocortical atrophy in peo-
ple with epilepsy have been confirmed by studies [13, 
14]. It has been well-established that structural/func-
tional changes in a TLE patient’s brain may correlate with 
alterations in cognitive function in a number of domains. 
Additionally, many patients with TLE are evaluated to 
epilepsy surgery, as they continue to have seizures despite 
optimal medical management. Therefore, it is crucial to 
lateralize the seizure focus [15–17]. In this regard, stud-
ies assessed the structural asymmetry in patients with 
TLE in the diffusion properties of brain white matter and 
the subcortical gray matter tracts [17]. Moreover, some 
attempts have been made to compare the atrophy in 
patients with left and right TLE.

Keller et al. (2002) investigated gray matter abnormali-
ties in patients with TLE [18]. They observed a reduced 
preferential gray matter concentration in the anterior 
hippocampus in patients with left hippocampal atrophy 
and posterior hippocampus in patients with the right 
hippocampal atrophy. They also observed a gray mat-
ter concentration reduction in the right dorsal prefron-
tal cortex in both left and right hippocampal atrophy 
patients. Pail et  al. conducted a study and determined 
changes in gray matter volume in patients with TLE [19] 
and Jaber et  al. (2021) reported widespread structural 

brain abnormalities and cortical thinning in patients with 
TLE [20]. These studies have examined cortical thickness 
patterns in patients with TLE. However, only a few have 
considered the potential spatial dependencies between 
different regions of the cerebral.

Brain regions are functionally correlated, and also evi-
denced to be spatially structured, reflecting the struc-
tural architecture and internally homogenous areas of the 
cortical regions of the human brain [21–26]. Accounting 
for these spatial dependencies in the cortical thicknesses 
obtained from MRI plays a crucial role in getting effi-
cient and valid inference [27]. This is also the case for the 
cortical thickness in patients with TLE due to the spatial 
patterns of regional atrophy. Studies have confirmed bet-
ter discrimination between MRI scans related to normal 
and impaired individuals by accounting for spatial pat-
terns instead of a univariate analysis of each region like 
a vertex-by-vertex regression (28). Integrating spatial 
information of the regions of interest into the cortical 
thickness information prevents the effect of noise and 
outliers on measurements. Spatial data was also previ-
ously investigated by researches using other methods 
like independent component analysis and self-organizing 
map for brain functional network analysis [29, 30].

There have been suggested several approaches for tak-
ing into account the spatial correlation between regions 
in analyzing MRI data, including low-rank models [31], 
Spatio-Spectral mixed effects model for functional mag-
netic resonance imaging (fMRI) time courses [32, 33], 
Spatio-Temporal model with spatially varying coeffi-
cients and multi-resolution error structure [34] which all 
suffer from computational expensiveness issue. Among 
others, Reich et al. (2018) introduced a new fully Bayes-
ian spectral approach for imaging data analysis that 
takes into account the spatial dependencies throughout 
brain imaging data and applied the method to investi-
gate associations between cortical thickness and Alzhei-
mer’s disease [35]. There are several advantages of using 
this model. A Bayesian approach which is considered in 
their model accounts for uncertainty in all parameters of 
the model [33, 36]. The model also allows for the effect 
of the covariates to vary spatially and shrinks it spatially 
to encourage sparseness. The functional connectiv-
ity between distant regions of the brain is captured by 
the residual covariance as “a combination of stationary 
covariance for flexible local dependence and a low-rank 
nonstationary covariance.” The large covariance matrix 
is handled through a projection into the spectral domain 
to de-correlate the outcome [35]. They conducted several 
simulation studies indicating that their model provided 
efficient estimates for the association parameters and 
a better inference compared to the settings that do not 
consider spatial dependencies. Their proposed model is 
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efficient for MRI data as the number of voxels, or ana-
tomic regions is usually greater than the number of sub-
jects (p > n). However, to the best of our knowledge, no 
study has utilized the Bayesian spectral approach to ana-
lyze the MRI data related to epilepsy patients to compare 
their cortical thickness between left and right TLE and 
healthy people. The MRI data obtained from the epi-
lepsy patients are also correlated, and previous studies 
used the typical independent samples t-test or a vertex-
by-vertex regression to compare the cortical thickness of 
patients and healthy controls region-by-region (a univar-
iate analysis). This leads to an increase in the size of the 
type I error. This study aimed to utilize a fully Bayesian 
spectral approach based on Markov Chain Monte Carlo 
sampling methods to characterize the patterns of corti-
cal atrophy and to perform cortical thickness analysis in 
TLE to investigate cortical thickness abnormalities in the 
TLE cerebral cortex. We considered a node-based corti-
cal thickness analysis.

Methods
Subjects
In this study, we used a data set consisting of information 
on refractory TLE patients, including 19 patients with 
left TLE and 14 patients with right TLE. The participants 
were enrolled among the patients referred to the epilepsy 
long-term monitoring (LTM) clinics. Also, a number of 
20 healthy controls with no history of neurological/men-
tal disorders were enrolled (see Table 1 for demographic 
characteristics of participants). A team consisting of neu-
rologists, epileptologists, neuropsychologists, and a neu-
rosurgeon collaborated to determine the side of laterality 
in a multi-disciplinary pre-surgical decision-making ses-
sion by using several criteria, including (1) descriptions/
manifestation of seizure semiology; (2)  ictal  Electroen-
cephalographic (EEG); (3) ictal epileptogenic zone; (4) 
interictal–irritative zone; and (5) MRI findings. Exclu-
sion criteria consisted of (1) having disabling cognitive 
impairments; (2) having other neurological diseases; (3) 
having any serious systemic/psychological diseases; (4) 
aged > 55 and < 16  years; (5) having substance/alcohol 
abuse history; (6) being pregnant; and (7) Breastfeeding. 

“For establishing MRI-proven mesial temporal sclerosis, 
approximated or fully recognizable abnormal alterations 
in hippocampal imaging attributes including shrinkage in 
volume and shape on T1-weighted images or hyper signal 
intensity on T2 FLAIR (fluid attenuated inversion recov-
ery) images were examined. Along with MRI evidence, to 
establish the epileptogenic side, diagnostic procedures 
have been performed based on seizure semiology and 
video-EEG monitoring compatible with TLE” [20].

Image acquisition
MRI data were acquired at the Iranian National Brain 
Mapping Laboratory (NBML) utilizing a 64-channel 
phased-array head coil on a 3-Tesla scanner (Siemens 
Prisma, Erlangen, Germany) using software version 
"Syngo MR E11" (NMBL). For clinical diagnosis, ana-
tomic pictures were acquired using a standardized 
MPRAGE IR procedure for transverse T1-weighted 
images with the following imaging parameters: 
TR = 1840 ms, TI = 900 ms, TE = 3.4 ms, flip angle = 8°, 
matrix = 224 × 224 , inplane resolution = 1.0× 1.0  mm. 
The thickness of the two slices is 1.0 mm, and the pixel 
bandwidth is 250 Hz/pixel.

Cortical thickness measurement
The cortical thickness measurement was done using 
Free-Surfer software through the following steps: (1) 
Skull stripping; (2) inflation of the folded surface tessel-
lation patterns; (3) intensity normalization; (4) segmenta-
tion; and (5) tessellation of the gray/white matter border 
as well as automatic correction. Then, the white and gray 
matter, as well as the gray/cerebrospinal fluid surfaces, 
were obtained by using a deformable surface algorithm 
so that the representations of the cortical thicknesses 
throughout the brain were obtained based on the inten-
sities and information produced in deformation pro-
cedures. The representations were determined as the 
shortest distance between the gray/cerebrospinal fluid 
border and the gray/white border at each vertex on the 
tessellated surface. Thickness measurements were then 
projected into the inflated surface of each subject’s brain 
reconstruction.

The Desikan parcellation atlas [37] was used to analyze 
all cortical thickness regions between the control and 
patient groups using the fully Bayesian spectral method. 
The mean cortical thickness of each parcellated region 
was measured in Free-Surfer using the Query Design 
Estimate Contrast (QDEC) tool.

Statistical analysis
A brief review of the fully Bayesian spectral method for 
spatial data was provided below; for a complete review 
we refer the readers to Reich et al. (2018) [35].

Table 1  Clinical and investigative characteristics of patients

HC Healthy controls, TLE Temporal lobe epilepsy

Group Number of 
cases

Gender (M/F) Age mean ± SD

HC 20 10/10 27.95 ± 6.32

Left TLE 19 11/8 32.10 ± 8.47

Right TLE 14 10/4 28.28 ± 6.28

ALL 53 31/22 29.53 ± 7.29



Page 4 of 13Sarbisheh et al. BMC Medical Imaging          (2022) 22:222 

Model description in the spatial domain
Let Yi(v) be the response (here, cortical thickness) at spa-
tial location v = (v1, v2, v3)

T for subject i . The model for 
subject i is

where the BK is the spatially varying fixed-effect process,Zj 
is a set well-known basis functions that explains the spa-
tial structure at a large scale, γi =

(
γi1, γi2, . . . , γiJ

)T is 
the vector of corresponding random effects; and Ei(v) is 
a small-scale spatial deviation. The residual spatial pro-
cess Ei is a mean-zero Gaussian process with an isotropic 
Matérn covariance function [38] as follows:

where Mν is the 3D-Matérn correlation  Mν(h) =
2
1−ν

Ŵ(ν)(
3h

√
ϕ
)ν
Rν

(
3h

√
ϕ
)
, and  R is the modified Bessel func-

tion of the second kind.

Model description in the spectral domain
To de-correlate the Matérn process and to analyze the 
entire spatial domain, the data were transformed to the 
spectral domain. Because the data are defined on a sphere, 
the spherical harmonics transformation (SHT) was utilized 
for the Bk and Ei . The Ei ( Bk is expanded similarly) is repre-
sented as follows:

where Slm(s1, s2) stands for the spherical harmonic 
functions, ω = (l , m) and ξi(ω) indicate the unknown 
coefficients.

The spherical harmonic functions are as follows:

where Pl stands for the associated Legendre polynomial. 
A full representation of the process requires L = ∞ ; nev-
ertheless, here the process was approximated with a finite 
L. Since the SHT is a linear operator, the spatial model in 
Eq. (1) becomes as follows:

(1)

Yi(v) =

p∑

k=0

XikBK(v)+

J∑

j=1

Zj(v)γij + Ei(v)

k = 0, 1, . . . , p

i = 1, 2, . . . ,m

v = 1, 2, . . . , n

(2)

Cov
[
Ei(v), Ei

(
v′
)]

= σ2I
(
v = v′

)
+ τ2Mv

(
v − v′

ϕ

)

(3)Ei(v) =

L∑

l=0

l∑

m=−l

1
√
2l+ 1

Sml (s1, s2)ξi(ω)

(4)Sml (s1, s2) = Pml [cos (s1)]e
−ims2

Let us denote the unique real values extracted from 
the complex data in the spectral domain as Ỹi(ω) , Ẽi(ω) , 
Z̃j(ω) and B̃K(ω) for the processes Yi(ν), Ei(ν), Zj(ν) and 
Bk(ν) , respectively, for frequency ω. The spectral process 
Z̃j(ω) will be nonzero for all j and ω . Therefore, to improve 
computational efficiency, we set Z̃j(ω) = 0 for terms with 
ω /∈ L and select L to include roughly J terms.

Priors and computing details
The model presented in “Statistical analysis” section and 4 
can be summarized as follows. For terms with ωǫ⊖L

βkj
indep
∼ Normal 0, δ2kj δkj ∼ halfcauchy(δk) k > 0

For terms with ω /∈ L

Ỹi(ω) and B̃l(ω) are independent across ω after the spec-
tral transformation. The Matérn parameters are re-param-
eterized from θ =

(
σ2, τ2,φ, ν

)
 (and in the same way for the 

θk ) to overall variance ν = σ2 + τ2 , the logit of the spatial 
variance proportion r = logit

[
τ2

σ2+τ2

]
 , and the log range 

and smoothness, ν′ = log (ν) and ϕ′

= log(ϕ) . The follow-
ing uninformative priors are considered to complete the 
Bayesian model.

(5)Ỹi(ω) =

p∑

k=1

XikB̃K(ω)+

J∑

j=1

Z̃j(ω)γij + Ẽi(ω)

Ỹi(ω)
indep
∼ Normal




p�

k=1

XikB̃K(ω)+

J�

j=1

Z̃j(ω)γij, �̃(ω|θ)




γi
indep
∼ Normal(0,�)

B̃k(ω)
indep
∼ Normal




J�

j=1

Z̃j(ω)βkj, �̃(ω|θk)


 k = 0, 1, . . . , p

β0j
indep
∼ Normal

(
0, δ20

)

Ỹi(ω)
indep
∼ Normal

(
p∑

k=1

XikB̃K(ω), �̃(ω|θ)

)

B̃k(ω)
indep
∼ Normal

(
0, �̃(ω|θk)

)
k = 1, 2, . . . ,P

∑
∼ InvWishart(J+ ε ,

ν3

J+ ε
IJ

)
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Analysis of the data
In the present study, the Chi-square test was used to 
check the homogeneity between groups in terms of 
gender distribution, and a one-way analysis of variance 
(ANOVA) was used to compare means of age across 
groups. A fully spectral Bayesian model was applied to 
the cortical thickness data related to the TLE (right and 
left) patients and healthy controls. The value of L = 7 
was considered, which reduced the number of observa-
tions per subject from 68 in the spatial domain to 64 in 
the spectral domain. According to exploratory analysis 
(Fig.  1), terms beyond L = 7 did not appear to have any 
additional spatial signals.

The Markov chain Monte Carlo  (MCMC) algorithm 
was run for 100,000 iterations so that the first 10,000 
iterations were discarded as burn-in period, and the rest 
of them were thinned by 10 to eliminate autocorrelations. 
Considering the Matérn correlation structure and J = 9 
basis functions, fitting the full model to the epilepsy data 
took about 2 min for every 1000 iterations.

Several settings were considered to find the best-fit-
ted models, among others. The fit of the models varies 
depending on the residual correlation, fixed and random 

ν, ν0, ν1, δ0, δk ∼ InvGamma(ε, ε)

φ
′

,φ
′

0,φ
′

1 ∼ normal

(
0,

1

ε2

)
ε = 0.1

r, rk, rk ∼ Normal(0, 1)

ν
′

, v
′

0, v
′

1 ∼ Normal(−2, 1)

effects, and the number of basis functions J  . A leave-one-
out cross-validation (LOOCV) strategy was considered 
to compare different models because the sample size was 
small. Thus, the model was applied once for each subject, 
using all other subjects as a  training set  and using the 
selected subject as a single-item  test set.  The results of 
the mean squared error of the posterior predictive means 
were provided in Table 2 to compare different methods.

The Gaussian prior for fixed effects was sufficient for 
the data used in this study, so the Gaussian priors for 
fixed effects and covariance with J = 9 basis functions 
that include both the stationary Matérn component and 
the nonstationary component were used.

For the z-score maps, the threshold produced using 
the method of Sun et  al. [39] to control the Bayesian 
false discovery rate at 0.01. In this multiple testing prob-
lem, the one-sided null and alternative hypotheses were 
H0 : βK (s) ≥ 0 and  H1 : βk(s) < 0, respectively. The 
results were declared to be statistically significant while 
controlling the Bayesian false discovery rate at 0.01 using 
the method of Sun et al., if z <  − 0.984 for age, z <  − 0.390 
for left TLE comparing to healthy controls, z <  − 0.049 
for right TLE patients comparing to healthy controls, 
z <  − 0.530 for left TLE patients comparing to right TLE.

After identifying significant regions with the fully spec-
tral Bayesian model, a multivariate analysis of covariance 
(MANCOVA) was conducted to compare the means of 
cortical thickness across groups adjusting for age and 
gender to assess if the mean of the cortical thickness of 

Fig. 1  Exploratory plot for the cortical thickness data. Legendre 
resolution, L., provides a correlation between the original and rebuilt 
data. The correlations of the 53 subjects are shown in each boxplot

Table 2  The cortical thickness data underwent cross-validation

The residual correlation of Ẽ  affects the strategies used to fit the data; the prior 
for the fixed effects (“FE”) B̃ , the inclusion of the nonstationary subject random 
effects (“nonstationary”) Z̃ , and the number of basis functions J. Methods are 
compared by the mean squared prediction error (MSE).

Residuals FE Nonstationary J MSE

Independent Gaussian No 4 4.85E−02

Independent Gaussian No 9 4.78E−02

Independent Gaussian Yes 4 4.15E−02

Independent Gaussian Yes 9 4.05E−02

Independent Horseshoe No 4 4.79E−02

Independent Horseshoe No 9 4.77E−02

Independent Horseshoe Yes 4 4.11E−02

Independent Horseshoe Yes 9 4.09E−02

Matérn Gaussian No 4 4.74E−02

Matérn Gaussian No 9 4.78E−02

Matérn Gaussian Yes 4 4.59E−02

Matérn Gaussian Yes 9 4.01E−02

Matérn Horseshoe No 4 4.83E−02

Matérn Horseshoe No 9 4.90E−02

Matérn Horseshoe Yes 4 4.16E−02

Matérn Horseshoe Yes 9 4.22E−02
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the identified regions has statistically significant differ-
ences across three groups. Also, we used artificial neu-
ral networks technique for classification of TLE patients 
and healthy controls to see the discrimination power 
of identified regions. In this regard, a commonly used 
multi-layer perceptron approach with three layers was 
considered, including an input layer (using the identi-
fied brain regions), a hidden layer and an output layer. 
In this model, the neurons applied a nonlinear activa-
tion function to calculate the outputs (here, a categori-
cal output with TLE and healthy controls as categories). 
In this study, a sigmoid function (f(x) = 1/(1 + exp(− x))) 
was used as the activation function in the hidden layer 
(achieved a better accuracy among others) and a linear 
function was used in the output layer. A LOOCV strategy 
was used to optimize the network. A classical vertex-by-
vertex linear regression was used to identify regions with 
reduced cortical thickness. The artificial neural networks 
classifiers were also constructed using the regions iden-
tified by the classical method. Comparisons were done 
based on the area under the ROC curve.

Results
Fifty percent of the healthy controls, 58% of left TLE 
patients, and 72% of right TLE patients were male, 
where the chi-square test revealed that the distribu-
tion of gender was not statistically significant across 
groups (Chi-squared = 1.56; df = 2; p = 0.458). The aver-
age ( ± standard deviation ) age of the participants was 
32.10± 8.47 , 28.28± 6.28, and 27.95± 6.32 for left TLE 
patients, right TLE patients, and healthy controls, respec-
tively. The one-way ANOVA revealed that there were not 

statistically significant differences between groups in 
terms of age (F = 1.92; df1 = 2, df2 = 50; p = 0.157).

The variables of age, gender of the participants, and 
the groups of participants (left TLE, right TLE and 
HC) were considered as the covariates in the spectral 
Bayesian model, and their local effects were evaluated. 
Posterior z-scores (i.e., the ratio of the posterior mean 
and standard deviation) of the fixed effects for corti-
cal thickness data were plotted in Fig. 2. Regions of the 
cerebral cortex that are darker blue have larger (more 
positive) posterior Z-scores. Also, the lighter colors 
indicate the more negative Z-scores. The greater nega-
tive values indicate more atrophy in each region of 
the cerebral cortex. The first row in Fig.  2 shows the 
posterior z-scores of age, the second row in Fig.  2 
shows the posterior z-scores of the left TLE, and the 
third row in Fig.  2 shows the posterior z-scores of 
the right TLE (the HC was considered as the baseline 
group). According to the threshold produced in “Sta-
tistical analysis” section (z <  − 0.984), age had strong 
associations in the anterior, specifically in the bilat-
eral Paracentral gyrus, medial orbitofrontal gyrus, lat-
eral orbitofrontal gyrus, and superior frontal gyrus. 
The first row in Fig.  3 depicts statistically significant 
regions.

Cortical thinning in left TLE compared to controls
According to the threshold produced in “Statistical 
analysis” section (z <  − 0.39), the comparison of cortical 
thickness abnormalities between control and left TLE 
patient groups revealed clusters of cortical thinning over 

Fig. 2  Posterior z-scores (i.e., the ratio of the posterior mean and standard deviation) for the fixed effects for cortical thickness data (the intercept 
effect is omitted). The medial wall, where the two hemispheres meet, is indicated in the center of the photographs in the middle two columns, 
although it does not include measures of cortical thickness. In the figure, the HC indicates the healthy controls



Page 7 of 13Sarbisheh et al. BMC Medical Imaging          (2022) 22:222 	

the left hemisphere, mainly on the cingulate lobe (cau-
dal anterior cingulate, rostral anterior cingulate), the 
frontal lobe (superior frontal, lateral orbitofrontal, fron-
tal pole) and the temporal lobe (temporal pole). In the 

right hemisphere, also, clusters of cortical thinning were 
observed on the cingulate lobe (caudal anterior cingulate, 
rostral anterior cingulate) and the frontal lobe (caudal 
middle frontal, rostral middle frontal, superior frontal). 
These significant regions are listed in Table  3, and the 
second row in Fig.  3 depicts the statistically significant 
regions.

Cortical thinning in right TLE compared to controls
According to the threshold produced in “Statistical anal-
ysis” section (z <  − 0.049), the comparison of cortical 
thickness abnormalities between healthy controls and 
right TLE patient groups revealed clusters of cortical 
thinning over the right hemisphere on the temporal lobe 
(entorhinal). This significant region is listed in Table  4, 
and the third row in Fig. 3 depicts the statistically signifi-
cant region.

Fig. 3  Regions of significant cortical thinning in patients with temporal lobe epilepsy according to the Bayesian false discovery rate. Values are 
posterior z-scores for the fixed effects for data of cortical thickness. Estimates were grayed out for the regions that were not statistically significant 
according to the Bayesian false discovery rate as clarified in the method section). In the figure, the HC indicates the healthy controls

Table 3  Cluster-based model of cortical thinning for left TLE 
patients vs. Healthy controls

HC Healthy controls, L Left, R Right, TLE Temporal lobe epilepsy

Cluster lobe Hemisphere Z-score Cortical thickness 
mean ± SD

HC Left TLE

Caudal anterior 
cingulate

L − 1.15 2.83 ± 0.23 2.73 ± 0.17

Lateral orbitofrontal L − 1.10 2.76 ± 0.12 2.72 ± 0.15

Rostral anterior 
cingulate

L − 1.52 2.97 ± 0.19 2.84 ± 0.21

Superior frontal L − 1.26 2.77 ± 0.21 2.67 ± 0.19

Frontal pole L − 1.31 2.93 ± 0.31 2.84 ± 0.25

Temporal pole L − 0.54 3.76 ± 0.26 3.65 ± 0.49

Caudal anterior 
cingulate

R − 0.82 2.68 ± 0.21 2.62 ± 0.31

Caudal middle frontal R − 0.95 2.55 ± 0.19 2.39 ± 0.09

Rostral anterior 
cingulate

R − 1.22 2.96 ± 0.20 2.90 ± 0.22

Rostral middle frontal R − 0.70 2.45 ± 0.14 2.38 ± 0.14

Superior frontal R − 1.00 2.71 ± 0.18 2.56 ± 0.18

Table 4  Cluster-based model of cortical thinning for right TLE 
patients vs. Healthy controls

HC Healthy controls, R Right, TLE Temporal lobe epilepsy

Cluster lobe Hemisphere Z-score Cortical thickness mean 
± SD

HC right TLE

Entorhinal R 0.04 2.81 ± 0.22 2.71 ± 0.17
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Cortical thinning in left TLE compared to right TLE
According to the threshold produced in “Statistical 
analysis” section (z <  − 0.53), the comparison of cortical 
thickness abnormalities between left TLE and right TLE 
patient groups revealed clusters of cortical thinning over 
the left hemisphere on the cingulate lobe (caudal ante-
rior cingulate, rostral anterior cingulate) and frontal lobe 
(superior frontal, caudal middle frontal, lateral orbito-
frontal, rostral middle frontal, frontal pole). The right 
hemisphere, also, showed clusters of cortical thinning 
on the cingulate lobe (caudal anterior cingulate, rostral 
anterior cingulate), and the frontal lobe (caudal middle 
frontal, rostral middle frontal, pars triangularis, superior 
frontal). These significant regions are listed in Table  5, 
and the fourth row in Fig. 3 depicts the statistically sig-
nificant regions.

Classification
The identified regions with decreased cortical thick-
ness were entered into a MANCOVA to compare the 
three groups. The results provided a significant dif-
ference between three groups (F = 122.799; df1 = 2, 
df2 = 48); P < 0.001) in terms of mean of the cortical 
thickness of the identified regions, confirming that the 
identified regions have different average of the cortical 
thicknesses across the three groups. Then, the artificial 

neural network-based classifiers were constructed using 
the identified brain regions with decreased cortical thick-
nesses as the inputs. Figure  4 shows the ROC curves 
related to the four neural networks. The right panel ((a) 
and (c)) illustrates the ROC curves related to the neural 
networks created by the identified brain regions with 
decreased cortical thickness using the fully Bayesian 
method and the left panel ((b) and (d)) illustrates the 
ROC curves related to the neural networks created by the 
identified brain regions based on a vertex-by-vertex lin-
ear regression (identified regions related to the left TLE 
patients versus healthy controls included caudal middle 
frontal, cuneus and supra marginal on the left and cau-
dal middle frontal, supra marginal superior parietal on 
the right hemisphere of the brain; and identified regions 
related to the right TLE patients versus healthy controls 
included superior frontal, supra marginal, medial orbit-
ofrontal and supra marginal). According to the results, 
the former provided better prediction accuracies than 
the later, so that for classification of the right TLE ver-
sus healthy controls, the AUC in classification of patients 
using neural network was 1.000, while it was 0.714 for 
the neural network created based on the regions using 
the vertex-by-vertex regression. This was also the case 
for classification of the left TLE versus healthy controls, 
where the AUC based on the regions obtained by the 
fully Bayesian model was 0.936 and it was 0.805 for the 
vertex-by-vertex regression. Moreover, the AUC in clas-
sification of left versus right TLE patients using obtained 
regions in the fully Bayesian method was 0.861, while it 
was 0.816 based on identified regions from the classical 
vertex-by-vertex regression.

Discussions
This study applied a spatial-spectral model for analyzing 
MRI data in patients with TLE to identify regions with 
changes in cortical thickness compared to healthy con-
trols. The used model utilizes the Bayesian framework 
that takes advantage of the spherical harmonics trans-
formation to deal with the spherical nature of the data-
sets. Here, the stationary Mat’ern component provided a 
better fit to the data compared to the independent struc-
ture. The used spatial model identified regions of the cor-
tex that differed by the TLE status. Due to the complex 
structure of MRI data, utilizing statistical methods that 
account for characteristics like nonstationary spatial cor-
relations between regions and local covariate effects is of 
great importance; a property that are often neglected in 
modeling these types of data.

Recently, the assessment of brain atrophy and brain 
structural changes using neuroimaging methods have 
been widely used to track the inception/progression of 
neurodegenerative diseases. In TLE, epileptogenicity can 

Table 5  Cluster-based model of cortical thinning for left TLE vs. 
right TLE patients

HC Healthy controls, L Left, R Right, TLE Temporal lobe epilepsy

Cluster lobe Hemisphere Z-score Cortical thickness 
mean ± SD

Right TLE Left TLE

Caudal anterior 
cingulate

L − 0.56 2.83 ± 0.28 2.73 ± 0.17

Caudal middle frontal L − 0.53 2.51 ± 0.14 2.39 ± 0.12

Lateral orbitofrontal L − 0.54 2.74 ± 0.12 2.72 ± 0.15

Medial orbitofrontal L − 0.52 2.52 ± 0.21 2.51 ± 0.15

Rostral anterior 
cingulate

L − 0.56 2.89 ± 0.20 2.84 ± 0.21

Rostral middle frontal L − 0.54 2.46 ± 0.16 2.44 ± 0.21

Superior frontal L − 0.55 2.69 ± 0.19 2.67 ± 0.19

Frontal pole L − 0.53 2.59 ± 0.29 2.93 ± 0.31

Temporal pole L − 0.53 3.80 ± 0.38 3.65 ± 0.49

Caudal anterior 
cingulate

R − 0.58 2.82 ± 0.28 2.62 ± 0.31

Caudal middle frontal R − 0.56 2.51 ± 0.14 2.39 ± 0.09

Pars triangularis R − 0.52 2.48 ± 0.16 2.44 ± 0.13

Rostral anterior 
cingulate

R − 0.55 2.92 ± 0.20 2.90 ± 0.22

Rostral middle frontal R − 0.56 2.46 ± 0.16 2.38 ± 0.14

Superior frontal R − 0.58 2.68 ± 0.18 2.56 ± 0.18
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produce cortical thinning in the temporal or extratem-
poral lobes neocortical regions [40–43]. Also, in patients 
with TLE, it has been shown that the structural abnor-
malities extend beyond the temporal lobe [44], and 

different patterns of neocortical atrophy or cortical thin-
ning have been reported. Studies have demonstrated that 
TLE is associated with a high degree of brain atrophy that 
extends further into the limbic system and temporal lobe 

Left 

TLE vs. 

Healthy 

controls

a) b)  

Right 

TLE vs. 

Healthy 

controls

c) d) 

Left 

TLE vs. 

Right 

TLE

e) f)

Fig. 4  ROC curves for classification of TLE patients versus Healthy controls and left versus right TLE patients using Neural Networks based on 
identified brain regions in Table 3 and 4 (figures a, c and e) as well as those obtained by a vertex-by-vertex general linear model (figures b, d, f)
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regions, including the amygdala and thalamus volumes 
[45] as well as the anteromedial regions, including the 
entorhinal cortex, temporal pole, and parahippocampal 
gyrus [46, 47] and regions that are functionally and ana-
tomically connected to the hippocampus [8, 48]. Moreo-
ver, both temporal and extra-temporal regions have been 
reported to be affected by TLE. The hippocampal atrophy 
(ipsilateral to the epileptogenic) and bilateral hippocam-
pal structural changes have been reported by several 
studies in patients with left [18, 43, 49] and right TLE [19, 
50].

Our findings about the cortical thickness revealed that 
in the left TLE patients, the cortical region of caudal 
anterior cingulate had a significant thinning compared to 
the control group, bilaterally. Ogren et al. [51] have inves-
tigated regional cortical thickness changes accompany-
ing generalized tonic–clonic seizures. However, they did 
not find a significant difference in this region between 
patients (n = 53) and healthy controls (n = 530). This 
might be due to the differences in recruited samples in 
terms of considering older patients on average (age aver-
age: 37 ± 12.6) in their study compared to the present 
study (age average: 29.53 ± 7.29). The observed disagree-
ment can also be the result of using different approaches 
to analyze the data (i.e. independent samples t-test in 
their study by ignoring spatial correlations between 
regions versus model-based in our study). Changes in 
caudal anterior cingulate (cortical thickening) have been 
reported by studies in psychosis of epilepsy compared to 
epilepsy-without psychosis patients [52]. The observed 
inconsistency highlights the need for more investigations 
using larger sample sizes and advanced statistical models 
through well-designed studies.

Moreover, our findings revealed a significant reduc-
tion (i.e., thinning) in the cortical thickness in the ipsi-
lateral lateral orbitofrontal cortex in the left TLE patients 
compared to the control group. This finding was also in 
agreement with the findings of other studies [48, 53]. 
The bilateral cortex thinning of rostral anterior cingulate 
region was observed in this study which was in agree-
ment with previous studies [54]. The bilateral cortex thin-
ning was observed in the superior frontal region as well 
in the left TLE patients compared to the control group. 
Other studies have reported a contralateral side thinning 
[20] and some others have reported the cortex thinning 
in the ipsilateral side in patients with TLE [55] and focal 
epilepsy [42]. We observed that in addition to temporal 
regions, the frontal regions are also involved in cortical 
thinning in the left TLE patients compared to healthy 
controls. For example, the cortex thinning of the frontal 
pole and the temporal pole was observed on an ipsilateral 
side. Moreover, the cortex thinning of cortical regions 
of the caudal middle frontal and the rostral middle 

frontal was observed in a contralateral side in the left 
TLE patients compared to healthy controls. These find-
ings was consistent with the results of other studies [43].

For the right TLE patients, the only cortical region with 
significant thinning was the entorhinal region (compared 
to the healthy controls) on the ipsilateral side. This find-
ing was in agreement with the results of several studies 
[8, 56–58]. Bernasconi et  al. showed that there was a 
bilateral reduction in the volume of the entorhinal cor-
tex in unilateral TLE patients compared with the healthy 
controls [59]. Our findings indicated that more regions 
had changes in the left TLE patients than the right TLE 
patients. This finding was in concordance with other 
studies [20, 30, 43, 44, 58, 60–62]. Classifications using 
the artificial neural networks technique based on the 
identified regions in this study provided a greater predic-
tion accuracies (AUCs were 1.000 for right TLE patients 
versus healthy controls and 0.936 for left TLE patients 
versus healthy controls) compared to the regions iden-
tified by the traditional statistical models (AUCs were 
0.714 for right TLE patients versus healthy controls and 
0.805 for left TLE patients versus healthy controls) indi-
cating the potential usefulness of the utilized fully Bayes-
ian model in identifying regions with thinning in the 
cortical thickness.

We, also, considered the local effect of age on different 
regions. This allowed us to have a region-by-region effect 
of age which varies over the regions considering the cor-
relation between the regions with complex structures 
[35]. Our findings suggested that age had strong effects 
on the bilateral medial orbitofrontal gyrus, lateral orbito-
frontal gyrus, and superior frontal gyrus regions. This 
finding points to a remarkable amount of cortical plastic-
ity in primary motor and visual regions which is consist-
ent with other studies [63].

In the present study, we considered a node-based cor-
tical thickness analysis. A node-based approach has 
advantages for the brain structure and function analysis 
over the voxel-based approaches, for example: reducing 
the effect of noise on the pixels of MR images and also 
mis-segmentation of gray and white matter boundaries. 
In addition, since each brain anatomical region, which 
includes several voxels, has a specific function, using the 
node-based method is preferred to the voxel-based anal-
ysis because of identifying the regions affected by TLE.

In this study, a spatial-spectral model for imaging data-
sets was used to analyze the cortical thickness in temporal 
lobe epilepsy by MRI data. This model deals with nonsta-
tionary spatial covariance structure as well as local covari-
ate effects. Also, the fully Bayesian model uses the spherical 
harmonics transformation. This feature makes the applica-
tion of the model feasible for large datasets while the spher-
ical nature of the data is maintained. Reich et  al. showed 
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that taking into account the residual spatial correlation is 
essential for efficient estimation and valid inference. They 
also demonstrated through simulation studies that the 
model with stationary covariance and independent residu-
als often gives high MSE and low coverage, and inclusion 
of nonstationarity as well as horseshoe priors improves 
performance of the model [35]. While the used Bayesian 
approach enjoys the above advantages, there is a need for 
a strong background in the Bayes and spatial data analysis 
for researchers to use it. Also, the model is computationally 
expensive compared to the classic likelihood-based analy-
sis and there is a need to use parallel computing to reduce 
the analysis time. However, regarding the small sample size 
(which is usually the case for MRI research), the Bayesian 
framework provides more reliable results compared with 
the classical methods. Also, regarding a large number of 
random effects, calculating the integrals over them would 
be very expensive, which makes the Bayesian framework an 
interesting approach for obtaining estimates [64, 65].

Limitations
This study had some limitations in the analysis of cortical 
thickness data. The data on the duration of the disease, 
severity of the disease and the number of seizures were 
not available. This would confound the results of this 
study. Also, the sample size in this study was small, so 
we were unable to find a link between gray matter atro-
phy and seizure frequency. Besides the limitations of this 
study, we used a powerful statistical model suitable for 
high dimension data to analyze MRI data that accounts 
for the spatial correlation between brain regions.

Conclusions
We used a fully Bayesian spectral method to analyze gray 
matter anomalies in the cortex for temporal lobe epi-
lepsy patients in this study. According to our findings, 
the thickness of cortical gray matter is influenced by tem-
poral lobe epilepsy, and left TLE patients had a higher 
chance of cortical thickness anomalies compared to the 
right TLE patients. More investigations using larger sam-
ple sizes are crucial to validate the results of this study.
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