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Abstract 

Purpose: To compare a deep learning model with a radiomics model in differentiating high-grade (LR-3, LR-4, LR-5) 
liver imaging reporting and data system (LI-RADS) liver tumors from low-grade (LR-1, LR-2) LI-RADS tumors based on 
the contrast-enhanced magnetic resonance images.

Methods: Magnetic resonance imaging scans of 361 suspected hepatocellular carcinoma patients were retrospec-
tively reviewed. Lesion volume segmentation was manually performed by two radiologists, resulting in 426 lesions 
from the training set and 83 lesions from the test set. The radiomics model was constructed using a support vector 
machine (SVM) with pre-defined features, which was first selected using Chi-square test, followed by refining using 
binary least absolute shrinkage and selection operator (LASSO) regression. The deep learning model was established 
based on the DenseNet. Performance of the models was quantified by area under the receiver-operating characteris-
tic curve (AUC), accuracy, sensitivity, specificity and F1-score.

Results: A set of 8 most informative features was selected from 1049 features to train the SVM classifier. The AUCs 
of the radiomics model were 0.857 (95% confidence interval [CI] 0.816–0.888) for the training set and 0.879 (95% CI 
0.779–0.935) for the test set. The deep learning method achieved AUCs of 0.838 (95% CI 0.799–0.871) for the train-
ing set and 0.717 (95% CI 0.601–0.814) for the test set. The performance difference between these two models was 
assessed by t-test, which showed the results in both training and test sets were statistically significant.

Conclusion: The deep learning based model can be trained end-to-end with little extra domain knowledge, while 
the radiomics model requires complex feature selection. However, this process makes the radiomics model achieve 
better performance in this study with smaller computational cost and more potential on model interpretability.
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Introduction
Hepatocellular carcinoma (HCC) is a common type of 
cancer and a leading cause of cancer death worldwide 
[1]. The prognosis of HCC depends largely on the stage of 
the tumor. Multiphasic computed tomography (CT) and 
magnetic resonance imaging (MRI) have been endorsed 
as first-line modalities for non-invasive diagnosis and 
staging of liver tumors [2]. A number of studies have 
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been conducted on the relationship between imaging fea-
tures with HCC histopathologic grading [3–6], and the 
liver imaging reporting and data system (LI-RADS) is a 
widely-used technique to provide standardized criteria 
for performing, interpreting, and reporting multiphase 
CT and MRI exams for HCC diagnosis [7].

Recently, with the flourishing of radiomics techniques 
in tumor analysis [8–12], there is increasing interest in 
the development of imaging-based system for automated 
liver tumor grading [13–17], where machine learning 
methods were employed to find potential pattern from 
images in differentiation of liver tumor grade. A popu-
lar technique as employed in these studies to build the 
computer-aided systems is the method of deep learning 
[18, 19], which adds more layers into conventional neural 
network architecture and represents data in a hierarchi-
cal form to capture the complexity in the data. In spite of 
good performance as reported, deep learning-based sys-
tems in medical imaging application have been of debate 
in terms of size of dataset, computational cost and model 
interpretability [20–22].

In general, deep learning is a subdomain of machine 
learning, which includes supervised learning and unsu-
pervised learning, and usually consists of two key com-
ponents: features and classifiers. Common features 
include image spatial domain feature such as texture 
information, tumor shape characteristics, image inten-
sity statistics, or image feature in a transform domain 
such as wavelet feature. Primary classifiers include deci-
sion tree, naive Bayes, neural network, support vector 
machine (SVM), etc. The basic classifiers can be ensem-
bled to arrive at a classifier with improved performance, 
as represented by random forest and AdaBoost. Different 

machine learning methods have different advantages and 
disadvantages. Interested readers can refer to [23, 24] for 
a recent review on the application of machine learning to 
medical imaging.

In cancer imaging, it is unlikely to have a dataset of 
scale in applications such as face recognition or inter-
net-based image recognition, hence, it is of interest to 
build systems taking into account the intrinsic property 
of medical imaging data and choosing machine learning 
algorithm with less requirement on the amount of data. 
This study attempted to compare a conventional radiom-
ics model based on SVM with respect to a deep learn-
ing based model using DenseNet [25] for liver tumor 
grading.

Materials and methods
The workflow of this study was illustrated in Fig.  1, as 
detailed in the following.

Study participants
This retrospective study was approved by the Ethical 
Committee of Shenzhen Longhua District Central Hos-
pital. A total of 462 patients with suspected HCC who 
underwent examination between June 2016 and June 
2021 were reviewed and included in this study. Inclu-
sion criteria were: (1) patients with clinical reports; (2) 
patients with contrast enhanced MRI (CE-MRI) exami-
nation; (3) staging of liver tumors confirmed by radiolo-
gists; (4) no history of other types of tumor. Exclusion 
criteria were: (1) incomplete clinical results; (2) incom-
plete CE-MRI scan or unsatisfactory image quality due to 
patient movement.

Fig. 1 The workflow of this study
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Data acquisition
All scans were performed using a 3.0T MRI scanner 
(Skyra, Siemens, Germany) with a sixteen-channel phase 
array coil that covered the entire liver. Routine MRI pro-
tocols included a respiratory-triggered fat-suppressed 
T1-weighted dual-echo sequence (repetition time [TR] 
4.5 ms, echo time [TE] 1.29 ms and 2.52 ms, slice thick-
ness 3 mm, gap of slice 0.6 mm, field of view [FOV] 380 
mm × 340 mm, matrix 195 ×320), a respiratory-triggered 
fat-suppressed T2-weighted fast spin-echo sequence (TR 
3000 ms, TE 84 ms, slice thickness 5 mm, gap of slice 
1 mm, FOV 380 mm × 380 mm, matrix 320 × 320) and 
a diffusion-weighted sequence (b values 0, 400, 1000 
s/mm2 , TR 3500 ms, TE 59 ms, slice thickness 5 mm, 
gap of slice 1mm, FOV 380 mm × 340 mm, matrix 108 
× 128). Contrast agents (Gadolinium-ethoxybenzyl-
diethylenetriamine pentaacetic acid [Gd-EOB-DTPA]; 
Primovist, Bayer) were administered at rate of 2 mL/sec 
and 0.1 mmol gadolinium per kilogram followed by 20 
ml saline infusion. The early hepatic arterial phase was 
omitted. The post-contrast scan was performed at 30  s 
(arterial phase), 60 s (portal venous phase), 180 s (transi-
tional phase) and 20 mins (hepatobiliary phase) after the 
injection of contrast agent using T1-weighted 3D gradi-
ent echo sequence with fat saturation and volumetric 
interpolated breath-hold examination and the param-
eters were: slice thickness 6 mm, TR 3.12 ms, TE 1.51 ms, 
matrix 290× 290, flip angle 10◦.

Image segmentation and LI‑RADS grading
The images in hepatobiliary phase were employed for 
analysis in this study. Segmentation of images into 
volume of interest (VOI) that covered lesions was per-
formed manually by two radiologists (with 6 and 10 
years of experience) using ITK-SNAP (version 3.8.0), 
while blinded to histopathological results. Each case 
was first drawn by one radiologist and then reviewed by 
the other one to ensure high-quality final segmentation 
results.

Then, these two radiologists independently analyzed 
all magnetic resonance (MR) images for assessing major 
and ancillary features, and assigned an LI-RADS category 
for each lesion according to the LI-RADS v2018 criteria 
[7]. Disagreements regarding the LI-RADS categoriza-
tion were resolved by consensus with a senior abdominal 
radiologist with over 25 years of liver imaging experience. 
According to the LI-RADS diagnostic algorithm, a liver 
lesion is assigned a LI-RADS (LR) category (LR1 to LR5) 
to reflect the likelihood of being HCC. LR-1 and LR-2 are 
definitely benign and probably benign, respectively. LR-3 
indicates intermediate probability of HCC, LR-4 indi-
cates probable HCC, and LR-5 indicates definite HCC. In 
this study, the lesions are classified as low-grade tumor 
(LR-1 and LR-2) and high-grade tumor (LR-3, LR-4 and 
LR-5) for the following analysis. Samples of images from 
patients and the corresponding segmentation and grad-
ing results were shown in Fig. 2.

Fig. 2 Samples of images from the selected patients with different LI-RADS categories
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Radiomics model construction
Radiomics feature extraction
Radiomics feature extraction based on the VOIs was 
performed using Pyradiomics software following the 
IBSI recommendation [26]. The VOIs were resampled 
with obtained isotropic voxels ( 1× 1× 1 mm). Normal-
ization was performed by subtracting the mean value 
from each voxel and dividing by the standard deviation. 
A fixed bin width of 25 was used to compute textural 
features. Moreover, a Laplacian of Gaussian (LoG) filter 
(sigma values 1.5 mm and 2.5 mm) and wavelet decom-
positions (start level = 0, level = 1, wavelet = ”coif1”) 
were employed to accentuate textural differences in the 
VOIs. The extracted features included first-order fea-
tures, shape-based features and higher-order texture 
features.

Feature selection
Feature reduction was performed using MATLAB 
(R2019b, Mathworks, Natick, USA). Chi-square test 
[27] was firstly used for univariate analysis, followed 
by binary least absolute shrinkage and selection opera-
tor (LASSO) regression [28] for multivariate analysis 
to achieve a proper combination of these radiomic fea-
tures. p-value less than 0.1 was considered statistically 
significant in the Chi-square test.

Building of radiomics model
SVM [29] was employed to construct the model for dis-
tinguishing low-grade and high-grade liver tumors. In 
model training, 10-fold cross-validation was used for 
algorithm hyperparameter tuning based on the train-
ing set. During the process, we tested two kernels (lin-
ear and Gaussian) and four box constraint parameters 
C (1, 5, 10, 100). The parameter combination with the 
highest area under the receiver-operating characteristic 
curve (AUC) value was selected to build the final SVM 
model.

Deep learning model construction
Data preprocessing
The VOIs were resampled to an isotropic resolu-
tion of voxel size ( 1× 1× 1 mm3 ) and the inten-
sity was rescaled to the range of 0 and 1. For each 
VOI, the volumes were zero-padded to the same size 
100× 100× 100 as the input for the deep networks, 
which covers the whole tumor region.

Model architectures
We employed the DenseNet for this task, which con-
nects each layer to every other layer in a feed-forward 
fashion [25]. The DenseNet has several compelling 

advantages: it alleviates the vanishing-gradient prob-
lem, strengthens feature propagation, encourages fea-
ture reuse, and substantially reduces the number of 
parameters [25]. The network outputs a probability 
number ranging from 0 to 1 for each liver lesion, with a 
number closer to 1 indicating a higher probability that 
the lesion is high-grade liver tumor, whereas a num-
ber closer to 0 indicates a greater probability of being a 
low-grade liver tumor.

Training of the deep network
The DenseNet was implemented in Pytorch. Training of 
the network was performed on a 15 GB Nvidia A16 GPU 
using CUDA 11.1 with cuDNN v8.

The network was trained end-to-end using the Adam 
optimizer with Nesterov momentum of 0.9. An initial 
learning rate of 1× 10−4 was applied and was decayed by a 
factor of 10 if the validation loss failed to improve over ten 
consecutive epochs. Training was performed in batches of 
16 randomly chosen samples at each iteration. After going 
through the entire training set, an epoch was finished, and 
50 epochs were needed to accomplish the training. Finally, 
the model with the lowest validation loss was employed, 
which was used to measure the diagnostic performance of 
the network based on the test dataset.

During the training process, data augmentation was used 
to improve the network robustness. The data augmentation 
techniques used in this study included random rotation 
(range = 10 degrees), random shear (range = 0.05), ran-
dom shift (range = 0.05) and random zoom (range = 0.05). 
Except for the random rotation range, the other parameters 
represent a fraction relative to the size of the corresponding 
dimension. When we feed images to the network during 
training, these augmentation techniques randomly operate 
on the input to provide images under different conditions, 
thereby improving network performance.

Model evaluation
The effectiveness of the model was assessed on the 
independent test set. Receiver operating characteristic 
(ROC) curve and metrics including precision, recall and 
F1-score were used to assess the diagnostic performance 
[30, 31]. Difference between models was evaluated using 
t-test and p value less than 0.05 was considered statisti-
cally significant.

ROC curve for DenseNet can be calculated based on 
the value generated by the final sigmoid activate func-
tion, which can be regarded as a probabilistic output. As 
for the SVM, the output can be expressed as Eq. (1),

where sgn indicates the sign function. h(x) is defined in 
Eq. (2), where K is the kernel function [32].

(1)y = sgn(f (x)) = sgn(h(x)+ b)
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In this study, we mapped the unthresholded outputs f (x) 
into probabilities using an additional sigmoid function 
with the strategy proposed by Platt [32]. With the output 
probabilities, the ROC curve for SVM can be achieved.

Results
Study participants
Among the 462 patients reviewed, 101 patients were 
excluded and 361 patients formed the study cohort (267 
males and 94 females, age with mean 48.6 years and range 
22 to 77 years). These HCC patients were divided into 
the training and the test set, which included 293 and 68 
patients, respectively. From the training set, 426 lesions 
were segmented, and 83 lesions were from the test set. 
These lesions were graded based on LI-RADS v2018 and 
detailed patient demographics were listed in Table 1.

Feature extraction and selection for the radiomics model
A total of 1049 features were extracted for each VOI. 
After univariate analysis, 645 features were regarded as 
statistically significant ( p < 0.1 ). The LASSO regression 
demonstrated that 8 features were effective indicators for 
discriminating low-grade and high-grade lesions, as illus-
trated in Fig. 3.

(2)h(x) =

i

yiαiK (xi, x)
Performance and comparisons of the two models
In this study, the SVM model uses the linear kernel with 
box constraint parameter C set to 5. The ROC curves of 
the radiomics model for the training and the test set were 
shown in Fig. 4a. The AUCs in differentiating low-grade 
from high-grade liver tumors were 0.857 (95% confidence 
interval [CI]: 0.816–0.888) for the training set, 0.879 (95% 
CI 0.779–0.935) for the test set. As for the deep learning 
model, the ROC curves were shown in Fig. 4b. The AUCs 
were 0.838 (95% CI 0.799–0.871) for the training set and 
0.717 (95% CI 0.601–0.814) for the test set. More detailed 
metrics to quantify the model performance were listed 
in Table 2. The two models attained similar performance 
in differential diagnosis for the training set where the 
radiomics model only achieves slightly higher AUC than 
the deep learning model. As for the test set, the radiom-
ics model shows much better performance, indicating 
the robustness of the system. The t-test shows that the 
results in both the training and the test set were statis-
tically significant (p < 0.001), which further confirmed a 
better performance of the radiomics model compared to 
the deep learning model.

Discussion
This study compared a deep learning model with a radi-
omics model in differentiating high-grade liver tumors 
from low-grade ones. The result showed that the two 
models attained close performance in the training set 
with similar metric values (Table  2) and ROC curves 
(Fig.  4), which indicated that both methods could find 
effective manifolds for describing the training data space. 
However, the radiomics model performs much better 
in the test set. One reason could be that the deep net-
work was trained based on the whole volumes of size 
100× 100× 100 , which includes intensities of 1,000,000 
voxels regarded as features. Although 426 lesions were 
employed for training, the data size was still small for the 
large input features and the complex architecture, which 
limited the generalization ability of the model. On the 
contrary, the radiomics model was established using only 
8 selected radiomics features, and the intrinsic manifold 
was much easier to model than the original volumes, thus 
resulting in a more robust predicting system.

Table 1 Characteristics of included patients

Item Training Test

Patient 293 68

Lesion 426 83

Low-grade 236 40

   LR-1 111 19

   LR-2 125 21

High-grade 190 43

   LR-3 22 10

   LR-4 35 7

   LR-5 133 26

Table 2 Metrics for the proposed model on different data sets

AUC  area under the curve, CI confidence interval

Model Data set Accuracy Precision Recall F1‑score AUC (95% CI)

Radiomics Training 0.798 0.757 0.805 0.781 0.857 (0.816–0.888)

Test 0.759 0.717 0.884 0.792 0.879 (0.779–0.935)

Deep Training 0.770 0.775 0.815 0.794 0.838 (0.799–0.871)

Test 0.659 0.617 0.690 0.652 0.717 (0.601–0.814)
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In this study, the SVM is used to build the radiomics 
model. The SVM is effective in high dimensional space 
and was widely used in the field of medical image diag-
nosis [9, 10]. Besides, it uses a subset of training points in 
the decision function, which makes it memory efficient. 
The deep learning model is established using DenseNet, 
which won the best paper award in CVPR2017 [25]. 
DenseNet has several compelling advantages: they 

alleviate the vanishing-gradient problem, strengthen fea-
ture propagation, encourage feature reuse, and substan-
tially reduce the number of parameters [25]. As a result, 
these two representative methods were employed in this 
study to provide convincing comparisons.

The requirement of sample size in deep learning was 
studied in [33] and it was pointed out that for single 
hidden-layer feedforward neural networks with number 

Fig. 3 Features selected by the LASSO regression

Fig. 4 ROC curves of a the radiomics model and b the deep learning model
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of units k, number of weights d and classification error ǫ 
( 0 < ǫ ≤ 1/8 ), the required number of training images m 
could be estimated as m ≤ O(d/ǫ, log2(k/ǫ)) . In practice, 
the architecture of deep networks involves many hidden 
layers, leading to large number of parameters needed to 
be estimated, which in turn increases the requirement 
on the size of training data. The method of deep learn-
ing model in this study was implemented using data aug-
mentation to alleviate this issue, attaining AUC of 0.838 
(0.799–0.871) and 0.717 (0.601–0.814) in liver tumor 
grading for the training and the test set. Zhou et  al. 
[34] proposed a deep neural network by combining the 
squeeze-and-excitation networks in a three-dimensional 
densely connected convolutional network, and validated 
the method in a dataset consisting of 213 HCC patients 
of contrast-enhanced MR images, attaining AUC of 0.83, 
which is close to the result of the deep network imple-
mented in this study. Nevertheless, If the training sam-
ples are from a data distribution that is very different 
from the one met in the real world, then the network’s 
generalization performance will be lower than expected 
[35].

Another major problem associated with deep learning 
is the issue of black box, as the complicated hierarchi-
cal representation of training data makes the prediction 
very difficult to understand and interpret [36]. How to 
enhance the interpretability of machine learning system 
has become a young but rapidly growing body of research 
in the domain of artificial intelligence (AI), and a lot of 
research efforts have been dedicated to this direction, 
including the explainable AI program launched by the 
defense advanced research projects agency (DARPA). 
Majority of these efforts focus on enhancing the trans-
parency of machine learning systems through visualizing 
features learned in the training process and providing 
insight into the working of deep neural networks. Inter-
ested readers can refer to [37] for a recent survey on 
interpretable machine learning. Nevertheless, the 
research on interpretable deep learning remains in an 
early stage. Neurons might learn features without equiv-
alent human concepts, and visualized features do not 
mean that the underlying reasoning mechanism of deep 
neural nets would be disclosed explicitly.

By comparison, conventional machine learning meth-
ods could be much easier to understand. For example, 
a decision tree establishes the classification based on 
a set of “if/else” rules, which is very interpretable. An 
SVM model represents different classes in a hyper-
plane in multidimensional space and divides the data-
sets into classes through maximizing the margin of 
hyperplane. Methods have been developed to facili-
tate the interpretability of SVMs by visualizing results 

as nomograms, such as the nomogram method using 
decomposable kernels in SVMs [38], the nomogram 
representation by replacing the lines by color bars with 
colors offering the same interpretation as the length of 
the lines in conventional nomograms [39]. In addition, 
non-image features such as clinical findings could eas-
ily be integrated into conventional machine learning 
systems, which is particularly important in the devel-
opment of medical AI solution. SVM is very flexible in 
handling multiple continuous and categorical variables.

One more advantage of conventional machine learn-
ing methods is the cost of computation, which is gen-
erally more cost-saving in conventional models than in 
deep-learning methods. In this study, training the SVM 
classifier took less than 5 s in MATLAB with a personal 
computer (Intel Core i7-6700 CPU, 16 GB RAM). In 
comparison, achieving a well trained DenseNet took 
about 1  h using the 15 GB Nvidia GPU. The high effi-
ciency of SVM-based radiomics model could be attrib-
uted to the use of hand-crafted features, whereas the 
end-to-end deep learning strategy saved human inter-
vention at the cost of computational resources.

The VOI that covered lesions was obtained by manual 
segmentation. The procedure is performed by two radi-
ologists. Each case was first drawn by one radiologist 
and then reviewed by the other one to reduce subjectiv-
ity. An alternative approach is using the STAPLE [40] 
tool that can produce a consolidated reference between 
different operators. Although two radiologists were 
invited to ensure a high-quality result, limitations of 
manual delineation still exist. As reported in [41], man-
ual segmentation is labor-intensive, time-consuming, 
and not always feasible for radiomics analysis requir-
ing huge datasets. Additionally, manual segmentation 
is subject to inter- and intra-observer variability [42]. 
One solution is using semi-automatic delineation algo-
rithms, such as region growing or thresholding. These 
methods may be less precise than manual segmenta-
tion, but are more efficient with better reproducibility.

This study was limited in the design of experiment 
which included only the contrast-enhanced MR images, 
and did not incorporate other information such as 
other imaging modalities, or clinical findings. As the 
present study aimed to compare the efficacy between 
deep learning models and conventional machine learn-
ing methods, the focus of experiment design was to 
ensure a fair comparison rather than to arrive at an 
optimal liver tumor grading solution. As discussed in 
[43], HCC examinations should include late hepatic 
arterial, portal venous, and, at about 3–5 min, delayed 
phase acquisitions. In addition, liver tissue micro-
environment could be quantitatively derived using 
dynamic contrast-enhanced imaging [44], and it would 
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be straightforward to integrate such information in the 
framework of the SVM-based radiomics model.

In conclusion, this study compared a deep learning 
model with respect to the radiomics model in differentiat-
ing high-grade liver tumors from low-grade tumors, and 
showed that simple machine learning method could attain 
better performance than the deep learning method in liver 
tumor grading, with much smaller computational cost. As 
machine learning problems in medical imaging are fea-
tured by limited number of patient data and high require-
ment on interpretability of intelligent solutions, it would be 
recommended to explore the issue with conventional and 
more understandable machine learning methods.
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