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Abstract 

Background: Visual evaluation of phantom images is an important, but time‑consuming part of mammography 
quality control (QC). Consistent scoring of phantom images over the device’s lifetime is highly desirable. Recently, 
convolutional neural networks (CNNs) have been applied to a wide range of image classification problems, perform‑
ing with a high accuracy. The purpose of this study was to automate mammography QC phantom scoring task by 
training CNN models to mimic a human reviewer.

Methods: Eight CNN variations consisting of three to ten convolutional layers were trained for detecting targets 
(fibres, microcalcifications and masses) in American College of Radiology (ACR) accreditation phantom images and 
the results were compared with human scoring. Regular and artificially degraded/improved QC phantom images 
from eight mammography devices were visually evaluated by one reviewer. These images were used in training the 
CNN models. A separate test set consisted of daily QC images from the eight devices and separately acquired images 
with varying dose levels. These were scored by four reviewers and considered the ground truth for CNN performance 
testing.

Results: Although hyper‑parameter search space was limited, an optimal network depth after which additional 
layers resulted in decreased accuracy was identified. The highest scoring accuracy (95%) was achieved with the CNN 
consisting of six convolutional layers. The highest deviation between the CNN and the reviewers was found at lowest 
dose levels. No significant difference emerged between the visual reviews and CNN results except in case of smallest 
masses.

Conclusion: A CNN‑based automatic mammography QC phantom scoring system can score phantom images in a 
good agreement with human reviewers, and can therefore be of benefit in mammography QC.
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Introduction
Conventional mammography, a two-dimensional X-ray 
imaging modality for detecting and diagnosing cer-
tain breast diseases, is widely applied in breast cancer 

screening. To ensure adequate image quality and appro-
priate radiation dose level for all patients, systematic 
quality assurance is needed and often is mandatory. An 
essential part of technical mammography quality control 
(QC) is a periodic imaging of a test object. These phan-
toms usually contain targets mimicking fibrous structures 
(fibres), microcalcifications, and tumorous masses, simu-
lating relevant imaging findings. The visibility of these 
targets is assessed from the acquired phantom images. 
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This has traditionally been done by human reviewers. 
Alternatively, a dedicated software may be used. Time 
savings, objectivity, and repeatability (over long periods 
of time) are prime motivations for software automation.

Different kind of model observers have been used for 
automatic image quality evaluations [1]. These models 
aim to predict human performance in specific tasks. The 
models include e.g. ideal Bayesian, non-prewhitening 
matched filter with an eye filter, channelized ideal and 
channelized Hotelling observers [1]. Model observers 
have been used in wide variety of image quality evalua-
tions, including mammography and digital breast tomos-
ynthesis (DBT) [2–5].

Recently, convolutional neural networks, CNNs, have 
outperformed traditional image processing algorithms 
in a multitude of challenging classification tasks [6], at 
times reaching or even exceeding human performance 
[7]. A neural network consists of input, hidden, and out-
put layers with non-linear activation functions and train-
able weights between neurons. In supervised learning, 
the goal is to map the input to a desired (ground truth) 
output. CNN is a special case of neural networks utiliz-
ing spatial filters, the values of which are determined dur-
ing the iterative learning process. Convolutional layers 
maintain spatial relationships and considerably reduce 
the required number of parameters compared, for exam-
ple, with fully connected layers. This makes them feasible 
for image processing applications. Network architecture 
choices including network depth, the size and number of 
filters, pooling and normalization layers, activation func-
tions, and training parameters constitute a large hyper-
parameter space that remains to be chosen by the data 
scientist. Increasing the complexity and the number of 
trainable parameters increases the model’s representative 
power. However, it may hinder training and may encour-
age overfitting, i.e. poor generalization to unseen images. 
In general, increasing the size of the training dataset 
tends to improve the network performance.

CNNs have shown great promise in many radiological 
applications such as computer-aided detection [8], image 
segmentation [9, 10], and image reconstruction [11–13]. 
CNNs have been used for breast tissue classification [14], 
breast density segmentation, risk scoring [15, 16], mass 
and microcalcification detection [17–21] in both conven-
tional mammography and in DBT. Additionally, CNN-
based observers have successfully been used in image 
quality evaluation for mammography and DBT [22–24].

Traditional visual scoring of QC phantom images is 
essentially a set of binary classification tasks. For exam-
ple, the American College of Radiology (ACR) instructs 
the reviewer to assess the visibility (visible or not) of each 
fibre, microcalcification group, and mass in the accredi-
tation phantom mammograms. Also, the respective 

acceptance criteria are provided. Not all targets are 
required to be visible with typical imaging parameters, 
and superfluous detectability could indicate unjustified 
dose. In earlier studies, Fourier transform [25], cross-
correlation coefficients between observed and reference 
images [26, 27], Mahalanobis distance-based methods 
[26], and the discrete wavelet transform (DWT) [28, 29] 
have been used for automating image evaluation of the 
ACR phantom.

The aim of this study was to automate mammography 
QC phantom scoring task by training CNN models to 
mimic a human reviewer. The training dataset was con-
structed from archived daily QC images with and with-
out noise augmentation. The final model performance 
was evaluated on a test set comprising of standard QC 
phantom images and images with levels of noise not seen 
in the standard QC images.

Materials and methods
Image acquisition
The ACR accreditation phantoms are imaged prior to 
the first patient of the day on all mammography systems 
in the Radiology department of HUS Diagnostic Center. 
Phantom placement and imaging are standardized. Auto-
matic exposure control (AEC) and compression paddle 
are used. The QC images are reviewed both visually and 
sent to an image processing server for storage and com-
plementary automatic analysis.

In this study, images from eight mammography systems 
with their respective ACR mammography phantoms 
were used. Seven mammography systems were full-field 
digital mammography (FFDM) systems and one a com-
puted radiography (CR) mammography system. FFDM 
systems were from three vendors: three systems were 
from GE Healthcare (Waukesha, WI, USA), two systems 
from Siemens Healthcare (Erlangen, Germany), and two 
systems from Planmed (Helsinki, Finland). The CR mam-
mography system was manufactured by Planmed with a 
Fujifilm (Tokyo, Japan) CR system. The image pixel size 
varied from 83 to 100  μm for the FFDM devices. The 
pixel size for the CR system was 50 μm. The image pres-
entation intent type was ‘for presentation’ except for the 
Planmed FFDM systems for which ‘for processing’ was 
used. The ACR phantoms were produced by Gammex 
(Middleton, WI, USA) and CIRS (Computerized Imag-
ing Reference Systems, Inc., Norfolk, VA, USA). The ACR 
mammography phantoms consist of six fibres of different 
diameters, five groups of microcalcifications of different 
sizes, and five masses of different thicknesses and diam-
eters. All the targets are embedded in a wax block [30]. 
MATLAB (MathWorks, Natick, MA, USA) with Image 
Processing and Deep Learning Toolboxes was used for 
all image processing (versions R2018b and R2019b) and 
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CNN training (version R2018b). In addition to the stand-
ard QC acquisitions, separate image sets with a wide 
range of dose levels were acquired on multiple devices.

Image pre‑processing
The images were pre-processed to normalize the CNN 
inputs (see Fig.  1). The pre-processing was fully auto-
matic and did not require user interaction. The phantom 
wax area was cropped from the image and rotation cor-
rected when needed. In the wax area cropping process, 
the phantom was first extracted from the whole image 
based on its signal intensity which differed notably from 
the background. Secondly, the wax area was cropped 
from the phantom image by detecting the strong inten-
sity changes along x- and y-axis. Finally, if needed, the 
wax area was rotated to the right orientation based on the 
location of the largest mass target. This method resulted 
in a minor variation in extracted wax area size, and 95% 
of the images per device were within 1% of the mean 
wax area size. The phantom model’s name visible in the 
images was replaced with noise to discourage the CNN 
from learning irrelevant features. The wax area image 
was divided into 16 square sub-images based on manu-
ally defined locations of the targets-of-interest. Each of 
these sub-images contained an individual fibre, mass, or 
microcalcification group (regardless of the target visibil-
ity). The sub-images were from 190 to 390 pixels wide 
depending mostly on the pixel sizes and to a lesser extent 
on the variations in the wax area cropping. From that 
point on, the sub-images were processed individually. 
Low-frequency background intensity non-uniformity 
was removed by subtracting two-dimensional polyno-
mial fits from the sub-images. Fifth order polynomial was 
used for fibres and first order polynomial for microcalci-
fications and masses. The higher order was chosen for the 
fibres as they are thin low-contrast targets mostly located 
near the phantom edges, and thus more susceptible to 

background intensity non-uniformities. Finally, the sub-
images were resized to 128 × 128 pixels, the intensities 
scaled to 0–1 range and stored as 64-bit double-precision 
floating-point values.

Training and test datasets
Training dataset was composed with unmodified and 
modified QC images. Archived daily QC images rou-
tinely acquired by the sites’ radiographers were used for 
training dataset. The imaging conditions varied primar-
ily due to slight differences in the phantom positioning 
on the breast support table and the resulting changes in 
the AEC values. The mean glandular doses (MGDs) were 
typically between 0.8 and 1.2 mGy. Because the original 
images had target conspicuity and noise levels close to 
each other, additional modified images were calculated 
by either reducing or increasing the image noise.

Artificially degraded images were calculated by add-
ing realistic noise to the original QC phantom images. 
First, an individual noise template was created for each 
device. This template was created from regular QC phan-
tom image by cropping a region in the phantom wax area 
that did not contain any targets. When creating degraded 
images, noise template was divided into 10 × 10-pixel 
patches that were randomly sampled. The final modi-
fied image was produced by weighted arithmetic mean 
between a random image from the system and a scaled 
randomly sampled noise template. Prior to the averag-
ing, the noise template was scaled to have a mean value 
(in the wax area) equal to the original image. Noise mix-
ing values from 30 to 80% with 5% steps were used. Ten 
images per the 11 noise levels per mammography system 
were generated, yielding 110 images per mammography 
system with increased noise levels.

The noise-reduced images were created by averaging 
regular QC phantom images together. The image align-
ment was performed semi-iteratively with 0.05° steps. 

Fig. 1 Pre‑processing a phantom image (A) consisted of cropping and rotation of the wax area (B) and replacing the phantom name and corners 
with noise (C). Each fibre, mass, and microcalcification group was then separated into an individual sub‑image (D)
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The intermediate images during the iterative process (as 
well as the final images) were always created by rotating 
the original image by the current angle, i.e. without mul-
tiple interpolations. The rotation was based on detecting 
specific predefined microcalcifications by minimizing 
their reference and rotated locations. The number of 
averaged images were 2, 3, 4 and a varying number (from 
5 to 20 depending on system performance) required to 
make all the phantom targets clearly visible. For each 
device, 30 images per averaging level were generated. 
This yielded 120 images per mammography system with 
reduced noise levels.

In total, 800 regular and 1840 modified phantom 
images were used in the training and validation dataset. 
Train-validation split was 90:10. A single reviewer (VMS) 
scored the training images.

The test data comprised of three subsets of images:

1. Ten regular QC phantom images from each of the 
eight mammography systems.

2. Ten different exposures ranging from 4 to 320 mAs, 
or approximately − 90% to + 490% of the standard 
QC levels, from three systems (GE, Siemens, and 
Planmed). Each exposure setting was imaged twice.

3. Five X-ray tube voltages (27–32 kVp) with low expo-
sure values (6.3 mAs to 10.0 mAs) from two systems 
(GE and Planmed). Each voltage setting was imaged 
twice.

The MGDs ranged from 0.1 to 5.3 mGy. The second 
and third subsets were acquired to emulate changes in 
the systems’ performances. Four reviewers (the authors) 
scored all 160 images. All reviewers had earlier experi-
ence on medical physics and mammography. Reviewers 
1 to 4 (as reported in the results) had 5 years, 13 years, 15 
years and 9 years of experience in medical physics on the 
time of image review.

The similarity between the unmodified test set images 
and the modified training images is presented in Fig.  2. 
Noise power spectrums (NPS) were calculated to dem-
onstrate the comparability between the real acquisitions 
and the modified images (Fig.  3). The modified images 
for GE and Planmed systems covered the absolute noise 
power range of the unmodified images. However, the 
NPS curve shapes had slight differences. For Siemens 
system, the absolute noise power levels of the unmodi-
fied images were not fully covered by modified images 
compared to the unmodified images. However, the NPS 
curve shapes were more similar. The training set consist-
ing of standard QC images but with artificial degradation 
and improvements was considered to cover the test set 
domain sufficiently, and no further evaluations on differ-
ent augmentation tactics were performed.

Visual scoring
The training data were scored using a pair of 3 MP gray-
scale displays (Barco MDCG-3120-CB, Barco NV, Kor-
trijk, Belgium). The test data were scored using 3 MP 
color displays (Barco MDNC-3421). DICOM compliance 
verifications [31] were performed for both monitor pairs. 
During the scoring process, 1:1 zoom was used (one 
pixel on the image equals one pixel on the monitor), and 
windowing was freely adjustable. The human observers 
viewed the full phantom images and scored the visibil-
ity of each individual fibre, microcalcification, and mass. 
The phantom image scoring followed the ACR guide-
lines for each separate target [30]. For fibres and masses, 
zero points was given to a non-visible target, half a point 
if it was barely visible, and one point to a visible target. 
Microcalcification group scoring was performed by scor-
ing each individual microcalcification speck as either 
visible or not visible. Total number of visible microcalci-
fications was calculated for each group. If less than three 
microcalcifications were visible, the group was given zero 
points, three visible per group a half point, and more 
than three visible per group one point. For the training 
data, the single-reviewer scores were rounded directly 
to be either zero (for non-visible) or one (for visible and 
barely visible). For the test data, consensus scores were 
obtained for each target by taking the median of the 
reviewers’ scores and then rounding to either zero or one.

Convolutional neural networks
Table  1 shows the details of the eight trained CNN 
models. CNN models showed in this study were cho-
sen by using a trial-and-error method. The number 
of convolutional layers varied from three to ten. The 
128 × 128 image input layer was followed by blocks of 
convolutional layer, batch normalization, rectified lin-
ear unit activation, max pooling, and dropout. These 
were followed by flattening, a fully connected layer, 
and a classification layer with softmax activation. The 
first convolution layer filter size was 5 × 5, and the rest 
were 3 × 3 with stride one in all. Max pooling layers had 
pool size of 3 × 3 and stride 2. For dropouts, 30% prob-
ability was used in between convolutional layers and 
50% probability was used prior to the fully connected 
layer. The classification layers had 17 neurons; each vis-
ible target type had its own category (Fig. 1D), and one 
category was for the target being non-visible (regard-
less of which sub-image was in question). In effect, the 
model predicts from the input sub-image the visibility 
and identifies the target in question. This is a novel use 
of CNNs in mammography QC.

Image augmentation using random rotations was 
applied for the training data before training. Ran-
dom rotation from − 3° to 3° yielded a final number of 
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Fig. 2 Unmodified (left column) test set images and modified train set images (right column) acquired with Siemens system. The ACR phantom 
consist of six fibres, five microcalcification groups, and five masses. A, B, and C show images acquired at 0.18 mGy, 0.31 mGy, and 4.00 mGy mean 
glandular doses, respectively. D and E represent degraded images with 60% and 45% noise mixing levels. F represents an average image of five 
ordinary QC control images. The visibility scores given for A and D were following: 1 point for fibres, 3 points for microcalcifications, and 1 point for 
masses (A) and 2.5 points for masses (D). The visibility scores given for B and E were following: 3 points for fibres, 4 points for microcalcifications, and 
3.5 points for masses. The visibility scores for C and F were 6 points for fibres, 5 points for microcalcifications, and 5 points for masses. The visibility 
scores were taken from a single reviewer (VMS) scorings
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90,288 training sub-images: 4752 sub-images per vis-
ible target category and 14,256 sub-images from the 
non-visible category.

Stochastic gradient descent with momentum solver, 
constant learning rate 0.01, and momentum 0.9 were 
used for the training. Cross-entropy loss function was 
used to calculate loss during training. Mini-batch size 
was 2736 sub-images, yielding 33 iterations per epoch. 
CNN1 was trained for 400 epochs and the rest for 300 
epochs. The models were validated after each epoch, 
and the one with the highest validation accuracy was 
saved. In this study, the multi-class accuracy is defined 
as the sum of correct classifications over the total 
number of samples. Finally, statistical analysis against 
consensus visual scoring was performed on the CNN 
model with the highest accuracy.

Statistical analysis
Pairwise comparisons of the observed targets seen by 
the visual and CNN analyses were made using the Wil-
coxon signed-rank test at 5% significance level. Instead 
of individual specks, the microcalcifications were com-
pared as groups (as shown in Fig.  1D). Fleiss Kappa 
measure (k) was used to measure the inter-rater agree-
ment between the four reviewers. SPSS statistical soft-
ware version 25 (IBM Corp., Armonk, NY, USA) was 
used to perform all statistical tests.

Results
Table  2 shows the reviewers’ mean scores over the test 
dataset with standard deviations for fibres, microcalcifi-
cations, and masses. The inter-rater agreement between 
the four reviewers was substantial for fibres (k = 0.69), 
almost perfect for microcalcifications (k = 0.86), and 
moderate for masses (k = 0.47).

Fig. 3  A selection of noise power spectrums of unmodified test and modified training images for GE (A), Planmed (B), and Siemens (C) systems. 
NPS curves of the four artificially degraded and three noise‑reduced images are shown for each system (gray). NPS of four lower than regular QC 
exposures and three higher exposures are shown in black. The uppermost NPS curves with the highest noise content represent modified images 
with the highest noise mixing values and unmodified images with the lowest exposure values. Likewise, the lowermost NPS curves correspond to 
the highest number of image averages for modified images and the highest exposure for the unmodified images. Pv denotes pixel value and mm 
denotes millimetres. The curves were smoothed with 5‑point moving average
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Table 1 Convolutional neural network architectures

CNN1
tp: 267,122

CNN2
tp: 386,902

CNN3
tp:236,662

CNN4
tp: 280,082

CNN5
tp: 434,762

CNN6
tp: 748,702

CNN7
tp: 1,025,102

CNN8
tp: 1,366,362

input input input input input input input input

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128,
5 × 5 conv, 30

128 × 128 × 30,
N + A + P

128 × 128 × 30,
N + A + P

128 × 128 × 30,
N + A + P

128 × 128 × 30,
N + A + P

128 × 128 × 30,
N + A + P

128 × 128 × 30,
N + A + P

128 × 128 × 30
 N + A + P

128 × 128 × 30,
N + A + P

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 30,
3 × 3 conv, 45

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

63 × 63 × 45,
N + A + P

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
dropout, 30%

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 45,
3 × 3 conv, 60

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

31 × 31 × 60,
N + A + P

15 × 15 × 60,
dropout, 50%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
dropout, 30%

15 × 15 × 60,
fully connected

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

15 × 15 × 60,
3 × 3 conv, 80

1 × 1 × 17,
softmax

15 × 15 × 80,
N + A

15 × 15 × 80,
N + A + P

15 × 15 × 80,
N + A + P

15 × 15 × 80,
N + A + P

15 × 15 × 80,
N + A + P

15 × 15 × 80,
N + A + P

15 × 15 × 80,
N + A + P

15 × 15 × 80,
dropout, 50%

7 × 7 × 80,
dropout, 30%

7 × 7 × 80,
dropout, 30%

7 × 7 × 80,
dropout, 30%

7 × 7 × 80,
dropout, 30%

7 × 7 × 80,
dropout, 30%

7 × 7 × 80,
dropout, 30%

15 × 15 × 80,
fully connected

7 × 7 × 80,
3 × 3 conv, 100

7 × 7 × 80,
3 × 3 conv, 100

7 × 7 × 80,
3 × 3 conv, 100

7 × 7 × 80,
3 × 3 conv, 100

7 × 7 × 80,
3 × 3 conv, 100

7 × 7 × 80,
3 × 3 conv, 100

1 × 1 × 17,
softmax

7 × 7 × 100,
N + A

7 × 7 × 100,
N + A + P

7 × 7 × 100,
N + A + P

7 × 7 × 100,
N + A

7 × 7 × 100,
N + A

7 × 7 × 100,
N + A

7 × 7 × 100,
dropout, 50%

3 × 3 × 100,
dropout, 30%

3 × 3 × 100,
dropout, 30%

7 × 7 × 100,
dropout, 30%

7 × 7 × 100,
dropout, 30%

7 × 7 × 100,
dropout, 30%

7 × 7 × 100,
fully connected

3 × 3 × 100,
3 × 3 conv, 120

3 × 3 × 100,
3 × 3 conv, 120

7 × 7 × 100,
3 × 3 conv, 120

7 × 7 × 100,
3 × 3 conv, 120

7 × 7 × 100,
3 × 3 conv, 120

1 × 1 × 17,
softmax

3 × 3 × 120,
N + A

3 × 3 × 120,
N + A

7 × 7 × 120,
N + A

7 × 7 × 120,
N + A

7 × 7 × 120,
N + A

3 × 3 × 120,
dropout, 50%

3 × 3 × 120,
dropout, 30%

7 × 7 × 120,
dropout, 30%

7 × 7 × 120,
dropout, 30%

7 × 7 × 120,
dropout, 30%

3 × 3 × 120,
fully connected

3 × 3 × 120,
3 × 3 conv, 140

7 × 7 × 120,
3 × 3 conv, 140

7 × 7 × 120,
3 × 3 conv, 140

7 × 7 × 120,
3 × 3 conv, 140

1 × 1 × 17
softmax

3 × 3 × 140,
N + A

7 × 7 × 140,
N + A

7 × 7 × 140,
N + A

7 × 7 × 140,
N + A

3 × 3 × 140,
dropout, 50%

7 × 7 × 140,
dropout, 30%

7 × 7 × 140,
dropout, 30%

7 × 7 × 140,
dropout, 30%

3 × 3 × 140,
fully connected

7 × 7 × 140,
3 × 3 conv, 160

7 × 7 × 140,
3 × 3 conv, 160

7 × 7 × 140,
3 × 3 conv, 160

1 × 1 × 17,
softmax

7 × 7 × 160,
N + A

7 × 7 × 160,
N + A

7 × 7 × 160,
N + A

7 × 7 × 160,
dropout, 50%

7 × 7 × 160,
dropout, 30%

7 × 7 × 160,
dropout, 30%

7 × 7 × 160,
fully connected

7 × 7 × 160,
3 × 3 conv, 180

7 × 7 × 160,
3 × 3 conv, 180

1 × 1 × 17,
softmax

7 × 7 × 180,
N + A

7 × 7 × 180,
N + A

7 × 7 × 180,
dropout, 50%

7 × 7 × 180,
dropout, 30%

7 × 7 × 180,
fully connected

7 × 7 × 180,
3 × 3 conv, 200
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Test set classification sensitivities and the combined 
accuracies for the studied CNNs are shown in Table  3. 
The best overall accuracy (95.2%) of this mammography 
QC method was achieved with six convolutional layer 
blocks (CNN4, trained for 246 epochs). CNN5 with 
seven convolutional blocks was slightly worse in overall 
accuracy. CNN4 was chosen for further evaluations.

Mean number (± standard deviation) of detected 
fibres was 4.3 ± 1.4 for visual reviews and 4.4 ± 1.3 for 

the CNN4 analyses. Wilcoxon signed-rank tests showed 
no significant difference between the visual reviews and 
CNN4 results for total fibre scores (p = 0.65). No sig-
nificant differences were found in pairwise comparison 
of individual fibres regarding fibre size (0.26 ≤ p ≤ 1.00). 
CNN4 and the reviewers detected equal number of fibres 
in 76% of the images. The difference in the number of 
detected fibres was within ± 1 for 99% of the images.

The mean number of detected microcalcification 
groups was 3.8 ± 0.8 for both visual reviews and CNN4 
analyses. No significant difference emerged between 
the visual reviews and CNN4 results for the total scores 
(p = 0.85) or for the pairwise comparison of individual 
groups with regard to the individual microcalcification 
size (0.16 ≤ p ≤ 1.00). CNN4 and the reviewers detected 
equal number of microcalcification groups in 83% of the 
images. The difference in the number of the detected 
microcalcification groups was within ± 1 for all the 
images.

The mean number of detected masses was 4.4 ± 0.9 
for visual reviews and 4.5 ± 0.8 for CNN4 analyses. 

Table 1 (continued)

CNN1
tp: 267,122

CNN2
tp: 386,902

CNN3
tp:236,662

CNN4
tp: 280,082

CNN5
tp: 434,762

CNN6
tp: 748,702

CNN7
tp: 1,025,102

CNN8
tp: 1,366,362

input input input input input input input input

1 × 1 × 17,
softmax

7 × 7 × 200,
N + A

7 × 7 × 200,
dropout, 50%

7 × 7 × 200,
fully connected

1 × 1 × 17,
softmax

Number after convolutional layer (conv) states the number of filters. N + A + P refers to normalization, activation, and pooling block, and N + A refers to normalization 
and activation block. Input size is given before each layer or layer block. The number of training parameters (tp) is given before network architectures

Table 2 Reviewers’ unrounded mean scores over the test 
dataset and standard deviations for the three target classes

Target Mean scores per image ± standard deviation

Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4

Fibres 4.2 ± 1.4 4.3 ± 1.4 4.3 ± 1.4 3.5 ± 1.7

Microcalcifi‑
cation groups

3.8 ± 0.7 3.7 ± 0.8 3.7 ± 0.7 3.5 ± 0.9

Masses 4.2 ± 0.9 4.2 ± 0.9 4.2 ± 0.8 3.1 ± 1.0

Table 3 Target detection sensitivities (including non‑visible class) for the eight studied CNNs

f stands for fibre (e.g. “f1” means the first, i.e. the most visible, fibre), c stands for microcalcification, m stands for mass, and nonv stands for non-visible target (any 
class). Acc stands for global accuracy defined as the number of correct classifications over the total number of sub-images. Reviewer consensus is used as the ground 
truth

Sensitivity (%)

f1 f2 f3 f4 f5 f6 c1 c2 c3 c4 c5 m1 m2 m3 m4 m5 nonv Acc

CNN1 100.0 95.9 95.1 92.7 94.8 88.0 99.4 95.6 91.2 94.9 84.2 100.0 94.9 83.8 90.8 96.7 78.3 91.0

CNN2 98.7 96.6 94.4 96.0 93.8 76.0 100.0 97.5 93.9 95.7 84.2 100.0 98.1 89.6 97.9 92.2 85.4 93.6

CNN3 100.0 98.0 97.2 95.2 91.7 72.0 100.0 98.1 96.6 97.4 89.5 100.0 97.4 96.1 99.3 96.7 85.4 94.6

CNN4 100.0 98.6 98.6 96.0 93.8 80.0 100.0 98.7 93.9 98.3 89.5 100.0 98.7 96.1 97.2 94.4 87.6 95.2

CNN5 99.4 98.6 97.2 94.4 93.8 88.0 100.0 100.0 97.3 97.4 89.5 100.0 98.7 96.1 98.6 95.6 85.4 95.0

CNN6 100.0 98.0 95.8 96.0 94.8 80.0 100.0 99.4 93.9 96.6 68.4 100.0 98.7 97.4 97.9 97.8 84.4 94.4

CNN7 100.0 97.3 96.5 93.5 95.8 92.0 100.0 98.7 94.6 94.9 68.4 100.0 99.4 96.8 98.6 96.7 83.8 94.3

CNN8 100.0 99.3 98.6 96.0 97.9 88.0 100.0 99.4 96.6 94.9 73.7 100.0 98.7 95.5 97.2 94.4 82.2 94.2
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There was no significant difference for total mass scores 
(p = 0.05). A significant difference was found in pairwise 
comparison of the smallest individual masses (p = 0.01), 
whereas pairwise comparison of the larger masses did not 
reveal significant differences (0.32 ≤ p ≤ 1.00). CNN4 and 
the reviewers detected equal number of masses in 76% 
of the images. The difference in the number of detected 
masses was within ± 1 for 99% of the images.

Table 4 shows the confusion matrix for the CNN4 clas-
sifications. There were 17 different categories: 16 cat-
egories for different visible targets and one category for 
non-visible targets. Thus, CNN didn’t just detect the 
target visibility, but also recognized which target was 
in question (excluding the ones deemed non-visible). 
CNN4 classified these targets correctly with a good accu-
racy, with only small deviations to the nearby categories. 
However, the least conspicuous targets in each category 
tended to be more difficult to classify than the larger 
ones. Classification accuracy for standard QC images was 
96.5%. Accuracy for images acquired for the test set with 
manual exposure or tube voltage settings was 94.0%. For 
the complete test set, the sensitivity for the non-visible 
class (equating test set detection specificity if non-visible 
class is considered the negative class and the combined 
target classes the positive class) was 87.6%.

Figure  4 shows the CNN4 target detection perfor-
mance (total number of detected fibres, microcalcifica-
tion groups and masses per image) as a function of visual 
scoring consensus for the whole test dataset. In general, 
the correspondence was good, and the number of detec-
tions increased when image quality increased. The high-
est differences were observed at the low image quality 
levels, especially for masses. The CNN4 tended to give 
higher scores at low image quality levels than the human 
reviewers. At high image quality levels, the agreement 
between the CNN4 and the visual review was good. In 
the tube voltage test set, the CNN4 and visual assess-
ments were in good agreement for the fibres and masses. 
The CNN detected fewer microcalcification groups in 
Planmed images at higher voltages, and higher scores at 
lower voltages in the GE images. However, the tube volt-
age test set had a limited range in conspicuity in general. 
In 82% of the false positive predictions by the CNN4 at 
least one reviewer reported a visible target in the image.

Discussion
In this study, eight CNN models were trained and com-
pared against visual assessments for scoring ACR mam-
mography accreditation phantom images. Standard QC 
images were available from eight mammography systems. 
A CNN with six convolutional layers yielded the best 
overall accuracy and resulted in a good agreement with 
human reviewers suggesting that the method could be 

utilized in automatic QC. A significant disagreement was 
found only for the smallest masses. Additionally, CNN 
tended to give higher scores at low image quality levels 
than the human reviewers.

In addition to the visibility scoring, the network was 
trained to identify which target was present in the input 
image patch. This can act as an internal verification 
check: one can be more confident of the model’s cor-
rect behaviour if the target is both correctly classified as 
visible as well as correctly recognized (which is already 
known by the patch location).If the detection of the cor-
rect target is ignored, i.e. only considering that some 
unknown target is visible/non-visible in the input sub-
image, the CNN4 accuracy increased from 95 to 96% in 
the whole test dataset (Table 4).

Kretz et  al. have developed a CNN application for 
mammography QC using the CDMAM phantom [22]. 
Direct comparison with the current study is not possible 
due to differences between the phantoms. The CDMAM 
phantom contains circular structures with varying diam-
eter and thickness, being somewhat simpler than the 
ACR phantom [22]. However, the current study agrees 
with the study conclusion that methods based on deep 
learning can be advantageous for mammography quality 
assurance.

Visual scoring of QC images is always a subjective 
task, and confounding factors include prior knowledge 
of the target location, lighting conditions, experience, 
and intra-observer variability if the mental model for the 
scoring criteria changes over time. The inter-rater vari-
ability can be seen in the visual scoring results. Reviewer 
4 gave substantially lower scores, especially for the 
fibres and masses, than the other observers. However, 
Reviewer 4 had a rather small effect on the end results 
because median was taken between reviewers’ scores. 
Inter-rater variability was smaller between reviewers 1–3. 
If Reviewer 4 is ignored on scoring, it mostly has effect 
on results of the smallest fibres. Viewing conditions and 
the workstation were the same for all reviewers during 
the test dataset scoring, although possible differences, 
e.g. in vigilance and weariness, were not controlled for. 
The reviewers completed their full task in a relatively 
short time span without discussing or reviewing bor-
derline cases or disagreements, which may contribute 
to variation. Despite the difference between the training 
and test dataset scoring, the CNN model achieved good 
accuracy. This indicates that the difference between the 
dataset scorings had only a minor effect. The signifi-
cant difference for the smallest mass scores might have 
resulted from the difference in the training and test data-
set scoring. The subjectivity and the general difficulty in 
formulating exact criteria highlight the importance of a 
consistent and automatic scoring system.
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Although the reviewers scored the images at half point 
accuracy, the scores were rounded to either visible (1 
point) or non-visible (0 points). This was primary due to 
the chosen classification-based CNN architecture. There 
were only a limited number of half point scores for each 
target type and therefore classification with half point 
accuracy was infeasible. This approach might have led 
to some sensitivity loss as there is always ambiguity on 
the borderline cases. Additionally, in our approach, the 
CNN model detected the microcalcification visibility of 
the complete groups. Individually detected specks could 
be used to gain higher sensitivity to small changes in 
performance.

The low-dose images and the smallest targets in every 
category were the most challenging tasks for the CNN-
based automatic scoring. This was also true for the visual 
assessments. Due to low contrast and high noise con-
tents, it is difficult for the reviewer to score these targets 
consistently, e.g. discerning the target from the back-
ground would be hindered if the location was unknown. 
A reviewer could even give different results if the same 
image was scored twice. However, intra-rater variation 
was not evaluated in this study. Possible inconsistencies 
in the training data can impact the training process in a 
negative manner as well as affecting the comparison to 
the test set. Finding right parameters for CNN training 
as well as decision threshold is a challenging task. In 82% 
of the cases CNN falsely predicted visible, at least one 
reviewer scored the target visible. This indicates a weak 
signal from the target and underlines the ambiguity of 
visual evaluations treated as ground truths. Also, in the 
study design the goal was to mimic human decision-mak-
ing; image quality overall was reduced to individual and 
discrete visible/non-visible decision. Alternatively, con-
tinuous measures could be used.

Although there were some differences between the 
reviewer and CNN scores for the low-dose images, a 
good agreement was achieved. CNN scores followed 
reviewers’ scores logically when image quality was 
changed. This is highly important for QC to detect small 
changes or subtle drifts on the imaging system. When 
analysing daily QC images, the accuracy at extremely 
low image quality has limited significance if deteriora-
tion from the acceptable level is detected and reported 
to the user. Radiographer can easily identify drastically 
worsened image quality immediately after the phantom 
acquisition.

Exploring different network architectures can improve 
the model performance. Comparison between different 
CNN architectures showed that adding more convolu-
tional layers improved accuracy up to six layers. Seven or 
more convolutional layers decreased the accuracy of non-
visible target detection, and thus, overall accuracy. Gen-
eralizability to unseen data domain (dose levels) could 
have been similarly affected. No gain was seen when 
training different CNNs for each target type. Therefore, 
a single CNN for all the targets in the image was chosen. 
Conclusive performance evaluation remains problem-
atic due to the inherent noise (subjectivity) in the ground 
truth data. Alternatively, unsupervised learning schemes 
could be applied, e.g. the network could be trained based 
on a forced A-B testing by presenting it with sub-image 
pairs with correct target location and with pure noise or 
background.

In earlier studies, wavelet-based algorithms have been 
used successfully for image quality scoring of the ACR 
mammography phantom [28, 29]. For these algorithms, 
the user must fine-tune thresholds for scoring. This can 
be difficult, especially when several devices and phan-
toms are used. For the CNN-based method, this kind of 

Fig. 4 CNN4 total scores (sum of each target type scores) as a function of reviewers’ consensus scores (A denotes scores for fibres, B scores for 
microcalcifications, and C scores for masses). The error bars represent ± 1 standard deviation for visual and automated scoring. The light grey line 
represents equal reviewer and CNN scoring
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user intervention is not necessary since CNN learns the 
abstraction and the thresholds autonomously during the 
training process. This makes CNN-based methods more 
flexible and adaptable to differences between phantoms. 
This is important especially in a multi-unit imaging cen-
tre environment, where a wide variety of devices and 
different phantoms may be in use. The benefit of using 
wavelet-based algorithms is that thresholds can be eas-
ily set also for the half points, or barely visible targets. 
CNN-based methods would likely require a large collec-
tion of barely visible targets for accurate training. When 
comparing CNN to a wavelet-based method [29], CNN 
gives more accurate results on the target detection task. 
One of the drawbacks of CNN-based method is that it 
requires a lot of data for the learning process, and it is 
time-consuming to score a sufficient amount of phantom 
images. However, as was demonstrated, it is feasible to 
use single-observer training data with augmentation and 
achieve good accuracy.

Study limitations included the number of phantoms 
and mammography systems, number of reviewers scor-
ing the test images, differences between viewing con-
ditions (and displays), subjectivity of scoring criteria, 
limited investigation of the data pre-processing and aug-
mentation significance, lack of artefact detection, and 
limited exploration of different CNN architecture types 
and hyperparameters. Only eight mammography systems 
were used for CNN training and testing, and no exter-
nal testing was performed. Although standardized, each 
phantom is unique with main differences being the fibre 
angles and microcalcification patterns. It is possible that 
the CNN model learned to expect phantom-specific fea-
tures. Additionally, the physical properties of the ACR 
phantom limits the absolute sensitivity of the developed 
QC method. Analysis automation, ideally integrated with 
the mammography system, would easily allow the use of 
more complex phantoms with a greater range of targets 
and target visibilities.

Image rotation was applied in both data pre-processing 
and image augmentation. This could lead to degraded 
sharpness for the rotated images, and thus, have a small 
negative effect on QC performance. However, using rota-
tion to augment images improved the training results in 
the initial testing, and was chosen for the final models. By 
the study design, the model training was based on readily 
available archived QC images with limited variation. The 
challenges in noise augmentation might have reduced the 
CNN performance especially at low-dose image classifi-
cation. The chosen noise augmentation techniques may 
not fully correspond to that of a real image acquisition. 
The 10 × 10-pixels patches from specific locations might 
have been too limited to capture all variability of the 
noise across a whole image. For example, low frequency 

noise components are decreased. The NPS for the modi-
fied images showed that slight changes in NPS curves can 
be observed as the patch-based method is not fully con-
gruent to reality. Expanding training and testing sets with 
greater range of different image qualities or using large 
homogeneous phantoms used for the noise templates 
could be used to compensate these limitations. Alterna-
tively, simulated realistic degradation with accurate noise 
power spectra and artefacts could be used [32].

Computer-aided phantom image analysis could allow 
wider range of image quality features to be quantified 
compared to the relatively coarse binary visual evalua-
tion. In this study, the known locations of the phantom 
targets were utilized, forcing the CNN to focus only on 
the specific areas of interest. This limits the number of 
confounding factors that could affect a neural network 
(e.g. spurious correlations), hopefully improving the per-
formance, but also restricts the obtainable information. 
One major aspect relevant to mammography QC could 
be of detecting various image artefacts and degradations 
(e.g. detector defects, contamination, uniformity, changes 
in contrast-to-noise ratio), for which the full phantom 
image could be utilized. CNNs have been previously 
applied in error detection in other fields [33, 34]. These 
approaches have the benefit of not necessarily needing a 
large number of defects or artefacts to be present in the 
training set, but a large number of normal images from 
which deviations could be detected. These are easily 
obtained from archived QC images, after verifying that 
no artefacts are present. Alternatively, simulated artefacts 
could be used in model training.

The CNN models in this study were trained using 
a single reviewer’s scores and the performance was 
evaluated on the consensus scores. Improving train-
ing data quality often translates into improved model 
performance. Ground truth noise could be mitigated 
by adding more reviewers or by using more concise 
scoring criteria and unified viewing conditions (includ-
ing displays and image windowing). In this study, two 
different display pairs were used in scoring training/
validation dataset and test dataset, which might have 
a minor effect on the results. This effect is expected 
to be smaller than the inter- or intra-rater variations. 
Both display pairs were under quality control for clini-
cal displays and thus considered sufficient for the read-
ing. Scoring criteria could be further unified by more 
specific instructions or by re-evaluating cases with 
reviewer disagreement. However, all the reviewers had 
been working with mammography modality and ACR 
phantom images scoring. An exact ground truth might, 
however, not be achievable when visual assessment is 
considered, and moving towards more objective and 
quantitative measures might be beneficial. However, 
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the accuracy presented in this study suggest that the 
developed CNN model is sufficient for daily verification 
of normal image formation.

Conclusion
In this study, a novel CNN-based automatic mammog-
raphy QC phantom scoring system was developed and 
evaluated. The proposed method was able to score phan-
tom images of different quality in good agreement with 
human reviewers and can therefore be of benefit in mam-
mography QC.

Abbreviations
QC: Quality control; CNN: Convolutional neural network; ACR : American 
College of Radiology; DBT: Digital breast tomosynthesis; DWT: Discrete 
wavelet transform; AEC: Automatic exposure control; FFDM: Full‑field digital 
mammography; CR: Computed radiography; MGD: Mean glandular dose; NPS: 
Noise power spectrum.

Acknowledgements
Not applicable.

Author contributions
VMS developed image pre‑processing methods and CNN structures, par‑
ticipated image acquisitions, prepared training and test data, visually scored 
training and test data, analysed the results, prepared figures and wrote the 
manuscript. TM helped developing CNN structures, visually scored test data 
and helped to write the manuscript. AMV participated image acquisitions, 
scored test data and helped to write the manuscript. TK participated image 
acquisitions, scored test data and helped to write the manuscript. All authors 
reviewed and approved the content of the manuscript.

Funding
This work was supported by Helsinki University Hospital research and devel‑
opment funding (VMS: Y780019033 and Y780020049). Open access funded by 
Helsinki University Library.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, 
Finland. 2 HUS Diagnostic Center, Radiology, University of Helsinki and Helsinki 
University Hospital, P.O. Box 340, Haartmaninkatu 4, 00290 Helsinki, Finland. 

Received: 21 June 2022   Accepted: 28 November 2022

References
 1. Barrett HH, Yao J, Rolland JP, Myers KJ. Model observers for assessment of 

image quality. Proc Natl Acad Sci USA. 1993;90:9758–65.
 2. Bouwman RW, van Engen RE, Broeders MJM, den Heeten GJ, Dance DR, 

Young KC, et al. Can the non‑pre‑whitening model observer, including 
aspects of the human visual system, predict human observer perfor‑
mance in mammography? Phys Med. 2016;32:1559–69.

 3. Bouwman RW, Goffi M, van Engen RE, Broeders MJM, Dance DR, Young 
KC, et al. Can the channelized hotelling observer including aspects of the 
human visual system predict human observer performance in mammog‑
raphy? Phys Med. 2017;33:95–105.

 4. Balta C, Bouwman RW, Sechopoulos I, Broeders MJM, Karssemeijer N, 
van Engen RE, et al. A model observer study using acquired mammo‑
graphic images of an anthropomorphic breast phantom. Med Phys. 
2017;45:655–65.

 5. Michielsen K, Nuyts J, Cockmartin L, Marshall N, Bosmans H. Design of a 
model observer to evaluate calcification detectability in breast tomos‑
ynthesis and application to smoothing prior optimization. Med Phys. 
2016;43:6577–87.

 6. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going 
deeper with convolutions. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition (CVPR) 2015;1–9.

 7. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recogni‑
tion. In: Proceedings of the IEEE conference on computer vision and 
pattern recognition (CVPR) 2016;770–8.

 8. Shin H, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional 
neural networks for computer‑aided detection: CNN architectures, 
dataset characteristics and transfer learning. IEEE Trans Med Imag. 
2016;35:1285–98.

 9. Dong X, Lei Y, Wang T, Thomas M, Tang L, Curran WJ, et al. Automatic 
multiorgan segmentation in thorax CT images using U‑net‑GAN. Med 
Phys. 2019;46:2157–68.

 10. Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, et al. 
Automated abdominal segmentation of CT scans for body composition 
analysis using deep learning. Radiology. 2019;290:669–79.

 11. Gupta H, Jin KH, Nguyen HQ, McCann MT, Unser M. CNN‑Based projected 
gradient descent for consistent CT image reconstruction. IEEE Trans Med 
Imag. 2018;37:1440–53.

 12. Gong K, Guan J, Kim K, Zhang X, Yang J, Seo Y, et al. Iterative PET image 
reconstruction using convolutional neural network representation. IEEE 
Trans Med Imag. 2019;38:675–85.

 13. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolu‑
tional recurrent neural networks for dynamic MR image reconstruction. 
IEEE Trans Med Imag. 2019;38:280–90.

 14. Dubrovina A, Kisilev P, Ginsburg B, Hashoul S, Kimmel R. Computational 
mammography using deep neural networks. Comput Methods Biomech 
Biomed Eng Imaging Vis. 2018;6:243–7.

 15. Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsuper‑
vised deep learning applied to breast density segmentation and mam‑
mographic risk scoring. IEEE Trans Med Imag. 2016;35:1322–31.

 16. Mohamed AA, Berg WA, Peng H, Luo Y, Jankowitz RC, Wu S. A deep learn‑
ing method for classifying mammographic breast density categories. 
Med Phys. 2018;45:314–21.

 17. Kooi T, Litjens G, van Ginneken B, Gubern‑Mérida A, Sánchez CI, Mann R, 
et al. Large scale deep learning for computer aided detection of mam‑
mographic lesions. Med Image Anal. 2017;35:303–12.

 18. Samala RK, Chan H‑P, Hadjiiski LM, Helvie MA, Cha KH, Richter CD. Multi‑
task transfer learning deep convolutional neural network: application to 
computer‑aided diagnosis of breast cancer on mammograms. Phys Med 
Biol. 2017;62:8894–908.

 19. Samala RK, Chan H‑P, Hadjiiski LM, Helvie MA, Richter CD, Cha KH. Evolu‑
tionary pruning of transfer learned deep convolutional neural network 
for breast cancer diagnosis in digital breast tomosynthesis. Phys Med Biol. 
2018;63:095005.

 20. Geras KJ, Mann RM, Moy L. Artificial intelligence for mammography and 
digital breast tomosynthesis: current concepts and future perspectives. 
Radiology. 2019;293:246–59.

 21. Ricciardi R, Mettivier G, Staffa M, Sarno A, Acampora G, Minelli S, et al. 
A deep learning classifier for digital breast tomosynthesis. Phys Med. 
2021;83:184–93.



Page 14 of 14Sundell et al. BMC Medical Imaging          (2022) 22:216 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 22. Kretz T, Müller K, Schaeffter T, Elster C. Mammography image quality 
assurance using deep learning. IEEE Trans Biomed Eng. 2020;67:3317–26.

 23. Petrov D, Marshall N, Vancoillie L, Cockmartin L, Bosmans H. Anthropo‑
morphic ResNet18 for multi‑vendor DBT image quality evaluation. Proc 
SPIE. 2020;11316:113160X.

 24. Alnowami M, Mills G, Awis M, Elangovan P, Patel M, Halling‑Brown M, et al. 
A deep learning model observer for use in alterative forced choice virtual 
clinical trials. Proc SPIE. 2018;10577:105770Q.

 25. Brooks KW, Trueblood JH, Kearfott KJ, Dawton DT. Automated analysis 
of the American College of Radiology mammographic accreditation 
phantom images. Med Phys. 1997;24:709–23.

 26. Lee Y, Tsai DY, Shinohara N. Computerized quantitative evalua‑
tion of mammographic accreditation phantom images. Med Phys. 
2010;37:6323–31.

 27. Asahara M, Kodera Y. Computerized scheme for evaluating mammo‑
graphic phantom images. Med Phys. 2012;39:1609–17.

 28. Alvarez M, Pina DR, Miranda JRA, Duarte SB. Application of wavelets to 
the evaluation of phantom images for mammography quality control. 
Phys Med Biol. 2012;57:7177–90.

 29. Sundell V‑M, Mäkelä T, Meaney A, Kaasalainen T, Savolainen S. Automated 
daily quality control analysis for mammography in a multi‑unit imaging 
center. Acta Radiol. 2019;60:140–8.

 30. American College of Radiology (ACR). Mammography Quality Control 
Manual. Reston: American College of Radiology; 1999.

 31. Samei E, Badano A, Chakraborty D, Compton K, Cornelius C, Corrigan K, 
et al. Assessment of display performance for medical imaging systems: 
executive summary of AAPM TG 18 report. Med Phys. 2005;32:1205–25.

 32. Mackenzie A, Dance DR, Diaz O, Young KC. Image simulation and a model 
of noise power spectra across a range of mammographic beam qualities. 
Med Phys. 2014;41:121901.

 33. Wang T, Chen Y, Qiao M, Snoussi H. A fast and robust convolutional neural 
network‑based defect detection model in product quality control. Int J 
Adv Manuf Technol. 2018;94:3465–71.

 34. Hu C, Wang Y. An efficient convolutional neural network model based 
on object‑level attention mechanism for casting defect detection on 
radiography images. IEEE Trans Ind Electron. 2020;67:10922–30.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Convolutional neural network -based phantom image scoring for mammography quality control
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Materials and methods
	Image acquisition
	Image pre-processing
	Training and test datasets
	Visual scoring
	Convolutional neural networks
	Statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


