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Abstract 

Background:  Lung cancer is the leading cause of cancer-related deaths throughout the world. Chest computed 
tomography (CT) is now widely used in the screening and diagnosis of lung cancer due to its effectiveness. Radiolo-
gists must identify each small nodule shadow from 3D volume images, which is very burdensome and often results in 
missed nodules. To address these challenges, we developed a computer-aided detection (CAD) system that automati-
cally detects lung nodules in CT images.

Methods:  A total of 1997 chest CT scans were collected for algorithm development. The algorithm was designed 
using deep learning technology. In addition to evaluating detection performance on various public datasets, its 
robustness to changes in radiation dose was assessed by a phantom study. To investigate the clinical usefulness of 
the CAD system, a reader study was conducted with 10 doctors, including inexperienced and expert readers. This 
study investigated whether the use of the CAD as a second reader could prevent nodular lesions in lungs that require 
follow-up examinations from being overlooked. Analysis was performed using the Jackknife Free-Response Receiver-
Operating Characteristic (JAFROC).

Results:  The CAD system achieved sensitivity of 0.98/0.96 at 3.1/7.25 false positives per case on two public datasets. 
Sensitivity did not change within the range of practical doses for a study using a phantom. A second reader study 
showed that the use of this system significantly improved the detection ability of nodules that could be picked up 
clinically (p = 0.026).

Conclusions:  We developed a deep learning-based CAD system that is robust to imaging conditions. Using this 
system as a second reader increased detection performance.
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Background
Lung cancer is one of the leading causes of cancer-related 
deaths, with about 1.8 million deaths in 2020 [1]. Com-
puted tomography (CT) is indispensable for the early 
detection and diagnosis of lung cancer [2–5]. Identify-
ing comparatively small abnormalities such as nodules is 
a laborious task, and small lesions, particularly sub-solid 
ground-glass nodules, may be overlooked. Due to the 
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advent of multi-row detector CT and other advances in 
imaging technology, the volume of imaging data obtained 
from each single study is increasing annually. Combined 
with the shortage of radiologists [6, 7], the burden on 
radiologists continues to increase. The development of a 
computer-aided detection (CAD) system for identifying 
nodules is expected to assist radiologists by preventing 
lung cancers being overlooked.

Artificial intelligence (AI) has been shown to provide 
high performance in a variety of image recognition tasks 
[8, 9]. Many technologies have been proposed to assist 
in the detection and management of pulmonary nodules 
[10], especially since the advent of deep learning [11–
15]. For reliable nodule management, such an AI sys-
tem needs to be robust in various imaging conditions as 
well as clinically useful. Regarding robustness to imaging 
conditions, randomized, controlled trials have recently 
shown the effectiveness of CT screening for lung cancer 
[2, 3], and AI is expected to provide stable performance 
for low-dose images with high noise levels. Under these 
circumstances, several studies have been conducted 
to evaluate nodule detection in low-dose images [16]. 
However, only a few studies have evaluated the relation-
ship between noise level and AI detection performance 
using phantoms [17]. The clinical usefulness of nodule 
detection systems has been evaluated in several studies 
[18–20]. Liu et  al. reported that their CAD potentially 
enhanced the manual identification of pulmonary nod-
ules and reduced reading time when used for assistance 
[21]. Although there may be differences in clinical useful-
ness depending on reading experience, no studies to date 
have adequately investigated clinical usefulness.

In the present study, a lung nodule CAD system was 
developed based on a 3D convolutional neural network 
(CNN). A chest phantom was used to create images at 
varying radiation doses, and the robustness of the system 
with respect to differences in radiation dose was evalu-
ated. In addition, ten doctors with varying levels of expe-
rience in chest imaging diagnosis were asked to interpret 
scans with and without this system and evaluate its clini-
cal usefulness (i.e., whether it enables the reader to iden-
tify clinically significant lesions without omission when 
used as a second reader tool).

Methods
Clinical data
For the purpose of algorithm development, 1177 chest 
CT scans scanned at Kyorin University Hospital between 
April 2013 and March 2018 that showed at least one lung 
nodule were retrospectively collected. Cases with diffuse 
lung disease across a wide area or with numerous nodules 
(> 20 nodules) were excluded. To reduce the institutional 
dependency of the algorithm, public data (LIDC-IDRI 

[22]) and patients scanned at a single Japanese institution 
were also added. After patients with numerous nodules 
(> 20 nodules) and surgical patients were excluded, 2027 
scans of 1799 patients were used to develop the algorithm 
(30 of them were used as validation data for parameter 
determination). The LIDC-IDRI dataset contains 1018 
scans that have been made public, but after excluding 
patients with no nodules or numerous nodules and those 
with diffuse lung disease across a wide area, 127 of the 
resulting 953 scans were used for the internal validation 
dataset, and the remaining 826 were used for algorithm 
training.

In addition to the above data, the following two data-
sets were used as validation datasets for the assessment 
of detection performance.

1.	 SPIE-AAPM Lung CT Challenge [23]: The SPIE-
AAPM dataset is the data for the Grand Challenge in 
Lung Nodule Classification set by the International 
Society for Optics and Photonics (SPIE) in collabora-
tion with the American Association of Physicists in 
Medicine (AAPM) and the National Cancer Institute. 
It comprises 70 cases with annotated nodules that 
were published as training data.

2.	 LNDb [24]: The LNDb dataset is the data for the 
Nodule Detection, Segmentation Texture Char-
acterization, and Fleischner Classification Grand 
Challenge published by the INESC TEC in Portugal. 
It comprises 294 annotated cases published from 
among chest CTs scanned between 2016 and 2018 at 
the Centro Hospitalar e Universitário de São João in 
Porto, Portugal.

Ground truth data creation
The positions of the lung nodules in the 1997 scans in 
the algorithm training dataset were annotated by non-
experts who received training on how to annotate lung 
nodules, and all data were checked by a board-certified 
radiologist with 22 years of experience in image interpre-
tation. Lung nodules were annotated if their major axis 
diameter measured ≥ 3  mm for solid or part-solid nod-
ules and ≥ 5  mm for ground-glass nodules. Information 
on the annotated lung nodules is given in Table 1.

Development of lung nodule CAD
Based on the Faster R-CNN [25], a detection AI with a 
Region Proposal Network consisting of 27 convolutional 
layers, each followed by a batch normalization layer and 
an activation layer was designed (Fig. 1). Distinguishing 
blood vessels and nodules from two-dimensional axial 
slices is very difficult. Therefore, it was decided to use 3D 
convolution layers that can extract 3D information.
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For the input image, the raw pixel value of the DICOM 
image was corrected based on the values of the rescale 
intercept and rescale slope, and normalized to 0–1 within 
the range − 1500 to 300. As preprocessing, the image 
spacing was rescaled to 1  mm. Images were processed 

by the lung-field extraction AI installed in the SYNAPSE 
SAI viewer (Fujifilm Corporation, Tokyo, Japan). A cir-
cumscribed rectangle was calculated for the extracted 
lung field region, and the region within the rectangle 
was cropped out and input into the network. To remove 
false positives (FPs) from outside the lung fields from the 
detection results, post-processing using the lung field 
extraction results was conducted to determine whether 
each candidate detected by the CAD system was located 
within the lung fields. Changes in rotation, scale, and 
sharpness and Gaussian noise addition were carried out 
as data augmentation during training (see Table  2 for 
more details).

The coordinates of the nodule candidates detected and 
the confidence level of each candidate (on a continuous 
scale from 0–1) were output by the network. A threshold 
of 0.56 was set, which is the value for 2.0 FPs/case in the 
validation dataset, and the detection results for candi-
dates that were output with a confidence level exceeding 
this threshold were displayed.

Validation of CAD performance
To evaluate the nodule detection performance of the 
CAD, internal and external validation tests were con-
ducted. The positions of the nodules are all annotated 
in the LIDC-IDRI, SPIE-AAPM, and LNDb datasets. 
Following the evaluation methods used in the LUNA16 
and LNDb challenges, respectively, the ground truth for 
the LIDC-IDRI dataset was solely nodules detected by 
three of four annotating radiologists, whereas that for the 
LNDb dataset was solely nodules detected by two of five 
annotating radiologists. Details on each validation data-
set are given in Additional file 4: Table S1. The evaluation 
metrics used comprised the sensitivity and number of 
FPs per scan, as well as FROC analysis [26] and the com-
petition performance metric (CPM) [27]. The CPM was 
the mean sensitivity at threshold FP rates of 1/8, 1/4, 1/2, 
1, 2, 4, and 8 per scan.

Evaluation of robustness to changes in radiation dose
To confirm that the detection performance of the CAD 
system was stable and independent of the radiation 
dose during scanning, a chest phantom (N-1 LUNG-
MAN, Kyoto Kagaku Corporation, Kyoto, Japan) fitted 
with multiple simulated nodules at different doses was 
scanned, detection processing was carried out on the 
resulting images, and the results were confirmed.

All CT scans were acquired with a 320-row CT scan-
ner (Aquilion ONE, Canon Medical Systems Corpora-
tion, Otawara, Japan). The scanning parameters were as 
follows: tube voltage 120 kVp and image noise standard 
deviation (SD) 10, 15, 20, and 25. These parameters were 
set in accordance with the Japanese guidelines for X-ray 

Table 1  Details of training data

* Sex/Age data have been removed from some of the LIDC-IDRI data, so that 
they are not included in the count

Characteristic #

Data information

 No. of chest CTs 1997

 No. of patients 1769

  No. of men* 688

  No. of women* 397

 Mean age* (y) 67.7 ± 10.9

 Slice thickness (mm)

  ≤ 1.0 475

   ≤ 2.0 547

   ≤ 3.0 308

   ≤ 4.0 1

   ≤ 5.0 437

 Contrast

  Contrast-enhanced 386

  Non-contrast-enhanced 1611

 Kernel type

  Lung kernel 1268

  Abdomen kernel 533

  Bone kernel 196

 Manufacturer

  Toshiba Medical Systems Corp 1001

  GE Healthcare 511

  Siemens Healthineers AG 423

  Philips 62

Nodule information

 No. of nodules 10,467 (5.2/scan)

 Mean nodule size (mm) 8.3 ± 7.9

 No. of nodules according to size (mm)

   ≤ 5.0 4150

   ≤ 10.0 4406

   ≤ 20.0 1071

   ≤ 30.0 538

   ≤ 40.0 156

   ≤ 50.0 91

   > 50.0 55

 Lobular distribution

  Right upper 2852

  Right middle 980

  Right lower 2177

  Left upper 2601

  Left lower 1857
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CT scanning [28]. These guidelines state that, for chest 
imaging diagnosis, the SD should be set within the range 
10–12, and for lung cancer screening, it should be set 
within the range 20–25. Scanning was performed using 
CT-auto exposure control, and the iterative approxima-
tion method of reconstruction was carried out with a 
slice thickness of 2.0 mm.

The following simulated nodules were prepared for 
implantation in the chest phantom.

1.	 Types: Pure ground-glass nodules (pure GGNs) and 
solid nodules: − 630 Hounsfield Units (HU) simu-
lated nodules were used as pure GGNs, and 100 HU 
simulated nodules were used as solid nodules.

2.	 Sizes: Simulated solid nodules with major axis diam-
eters of 3, 5, and 8  mm and simulated GGNs with 
major axis diameters of 5 and 8 mm were used.

These five simulated nodules were placed randomly 
within the lung fields and scanned using each of the 
scanning parameters described above. This process was 
repeated five times. The sensitivity and number of FPs 
per image and FROC analysis were used as evaluation 
metrics, and whether there were any differences between 
scanning parameters was investigated.

Reader performance test
Whether using the CAD as a second reader could 
assist doctors and reduce the number of nodules that 
are missed was investigated using internal data. Fig-
ure 2 shows the selection protocol for the images evalu-
ated. Two board-certified radiologists, who had 22 and 
17  years, respectively, of experience with chest image 
interpretation examined the images and identified nod-
ules. To prevent omission of nodules, the nodules anno-
tated by at least one doctor were designated as ground 
truth. The nodules were defined as “nodules requiring 
follow-up” according to the following two criteria.

Criterion 1: All nodules in patients with a history of 
malignant neoplasm or confirmed lung cancer, or those 
with a mass/nodule strongly suspected to be lung cancer.

Criterion 2: Nodules of major axis diameter ≥ 6  mm 
(based on the Fleischner Study [4]).

The breakdown of the ground truth for each of the cri-
teria is provided in Table 3.

Ten doctors with different levels of experience took 
part in the study as readers. These readers were divided 

Fig. 1  Overview of the detection network. Feature extraction layers extract characteristics from 3D image data by 3D convolution, and region 
proposal layers output multiple candidate regions. Region classification layers determine whether each candidate region is a nodule, and make this 
the final output

Table 2  Details of data augmentation during training

Data 
augmentation 
type

Method

Rotation Randomly rotate around the z-axis in the range of − 10 
to 10 degrees

Scale Randomly change the size by − 15 to 15% in each axis 
direction

Sharpness Change the sharpness according to the following 
formula

Iout = Iin + α(Iin − f (Iin))

Iin: input image; Iout: output image; f(Iin): image pro-
cessed with a Gaussian filter with a standard deviation 
of 3.0; α: parameter (randomly selected within the 
range of 0.0–5.0

Smoothing Process with a Gaussian filter that randomly sets the 
standard deviation in the range of 0.5–2.0

Gaussian Noise Add Gaussian noise generated in the range of stand-
ard deviation 0.0–0.2
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into three groups by their level of experience in chest 
imaging diagnosis (Group 1: ≥ 7  years of experience, 
n = 3; Group 2: 2–6  years of experience, n = 4; and 
Group 3: < 2 years of experience, n = 3). Each reader first 
conducted a search for lung nodules without using the 
CAD system for 40 cases. When they identified a lung 
nodule, they annotated the lesion on the CT image and 
scored it on a free scale according to whether they con-
sidered it required follow-up. After this, the CAD out-
put was overlaid on the image as a bounding box, and 
the readers checked it before repeating the task. Three 
test cases were prepared to accustom them to the pro-
cedure. Considering the time available for image inter-
pretation in actual clinical practice, the readers were 
requested to take less than 5 min to check each image 
with and without CAD (total 10  min). For statistical 
analysis, figures of merit were calculated using Jack-
knife Free-Response Receiver Operation Characteris-
tic (JAFROC) analysis [29], with p < 0.05 considered to 
indicate significance.

Results
Validation of CAD performance
The results of internal and external dataset evaluations 
are shown in Table 4 and Fig. 3a, b. There was no great 
difference in sensitivity between the internal and external 
datasets. The present results provided higher sensitivity 
compared to the latest study [14, 30] evaluating perfor-
mance using the SPIE-AAPM dataset (0.964@8.0 FPs). 
However, the present evaluation of the LNDb dataset 
produced a much greater number of FPs compared with 
the evaluation of the LIDC-IDRI dataset, and the CPM 
score was also worse. The ground truth for the LNDb 
dataset was prepared by five radiologists (with ≥ 4 years 
of experience), and it was confirmed that the perfor-
mance of the present CAD system was almost equivalent 
to the lung nodule detection performance [24] of those 
radiologists.

Additional file 1: Fig. S1 shows examples of true posi-
tives (TPs), FPs, and false negatives (FNs). Many differ-
ent types of nodules were detected, including small solid 
nodules and well-demarcated ground-glass nodules. 

Identify the presence of nodules based on the 
report and randomly select

Random SelectionRandom Selection

Chest CT study
n = 151,620 studies

n = 150,443 studies Training/Validation set
n = 1,177 studies

Studies with nodules
n = 50 studies

Annotation on nodules 
provided by two radiologists.

Studies without nodules
n = 50 studies

Annotation on nodules 
provided by two radiologists.

3 studies excluded due to
the presence of more than 10 nodules

24 studies excluded due to
the presence of nodule(s)

26 studies47 studies

10 eligible studies30 eligible studies

Fig. 2  Scan selection flowchart for the reader performance test. From the chest CTs scanned in our hospital that were not used for algorithm 
training, 50 in which nodules were mentioned in the radiologist’s report and 50 in which no nodule was mentioned were randomly selected 
retrospectively. These scans were examined by two board-certified radiologists who identified nodules. Three of these scans were excluded 
because > 10 nodules were identified, after which 30 images with nodules and 10 without nodules were randomly selected and used for the reader 
performance test
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Most of the FPs were pleural inflammation or periph-
eral vessels, and some of the inflammatory shadows were 
picked up with a low confidence level. Most of the FNs 
were faint, poorly demarcated ground-glass nodules, and 
nodules with a rare shape or adjacent to the diaphragm 
(details are shown in Additional file 4: Table S2).

Evaluation of robustness to changes in radiation dose
Sensitivity did not vary at different SD values, being 
96.0% for SDs of 10, 15, 20, and 25. The number of FPs 
stayed within the range of 0.4–0.8 per scan (Table 5). At 
SD 20, the CPM score decreased, but this was because 
one of the five scans had a false positive with a confidence 
level close to that of the simulated nodule, and it was 
only at SD 20 that a false positive had a confidence level 
greater than that of a simulated nodule. Except for this 
scan, there was no change in the detection rates for all 
other scans, and the variability of the CPM score was also 
kept below 1%.

Reader performance test
The detection rate of the CAD system for the 115 nodules 
in the 40 scans was 89.6%. The detection rate for nodules 
included in the ground truth data was 89.5% according to 
Criterion 1 and 98.1% according to Criterion 2. The false-
positive rate was 0.63 per scan. The dataset included five 
cases with no nodules at all, and the specificity for these 
cases was 0.8.

JAFROC random case and random reader analy-
sis showed that the figure-of-merit was significantly 
increased when using the CAD system as a second reader 
tool (Criterion 1: p = 0.026; Criterion 2: p = 0.012; Fig. 4a, 
b). The detection sensitivity improved for all reader 
groups, and a two-tailed paired t-test showed that the 
improvements were significant for Group 1 and Group 3 
(Fig. 4c, d). The FROC curves for each group are shown 
in Additional file 2: Fig. S2. The number of nodules iden-
tified per reader was 2.19 per scan before CAD use and 
3.13 per scan after CAD use. The mean interpretation 
time per case is shown in Table  6. In this experiment, 

Table 3  Details of data used for the reader performance test

Characteristic #

Criterion 1 Criterion 2

Data information

 No. of chest CTs 40

  No. of positive cases 17 29

  No. of negative cases 23 11

 No. of patients 40

  No. of men 29

  No. of women 11

 Mean age* (y) 64.7 ± 13.6

 Slice thickness (mm)

  2.0 40

 Contrast

   Non contrast 40

 Kernel type

  Lung kernel 40

 Manufacturer

  Toshiba Medical Systems Corp 40

Nodule information

 No. of total nodules 115

 No. of nodules (follow-up required) 57 (3.4/scan) 53 (1.8/scan)

 No. of nodules according to size (mm)

   ≤ 10.0 38 28

   ≤ 20.0 11 16

   ≤ 30.0 3 4

   > 30.0 5 5

 Lobular distribution

  Right upper 11 14

  Right middle 7 4

  Right lower 17 16

  Left upper 9 8

  Left lower 13 11

 Internal characteristics

  Solid 43 34

  Part solid 8 12

  GGN 6 7

Table 4  Validation results for each dataset

Dataset No.of 
Nodules

Sensitivity FPs per scan 
(FPs in total)

CPM 
score

Total Solid Part-solid GGN

Internal

LIDC-IDRI (127 cases) 152 0.980 (149/152) 0.985 (134/136) 1.000 (7/7) 0.889 (8/9) 3.10 (394) 0.960

External

SPIE-AAAM (70 cases) 83 0.988 (82/83) 0.984 (63/64) 1.000 (15/15) 1.000 (4/4) 5.88 (352) 0.893

LNDb (177 cases) 221 0.959 (212/221) 0.970 (193/199) 1.000 (7/7) 0.800 (12/15) 7.25 (1284) 0.783
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which used CAD as a 2nd reader tool, it took approxi-
mately 1  min to review the CAD results. However, in 
Group 3, which had little experience in chest imaging 
diagnosis, review took approximately twice as long as the 
other groups.

Table  7 shows an analysis of the effect of CAD use by 
nodule characteristics, size, and location. In terms of nod-
ule types, the detection rate of GGNs was more greatly 
improved by CAD use than were those of solid and part-
solid nodules, even though the model still struggled with 
GGNs relative to the other types of nodules. This tendency 
was particularly marked in Group 3, and by using CAD, the 
sensitivity for GGNs improved to almost the same level as 
Group 1. In terms of size, CAD use improved the detec-
tion rate of nodules of major axis diameter ≤ 1 cm, but there 
was almost no increase in sensitivity for nodules measur-
ing ≥ 2 cm for all reader groups. In terms of nodule location, 
CAD use greatly improved the detection rate of nodules 
attached to the interlobular fissures. In addition, the detec-
tion rate of nodules located in lower lobes in Group 3 was 
lower than that in Group 1, but it improved to the same 
extent as Group 1 with CAD. Additional file 3: Fig. S3 shows 
examples of the nodules detected by the CAD system. The 
system was clearly effective for nodules that are difficult to 
identify, such as solid nodules adjacent to blood vessels.

Discussion
A lung nodule detection system was developed using 
deep learning that is both accurate and robust to radia-
tion dose. Using this system as a second reader sig-
nificantly decreased the number of missed nodules that 
required follow-up.

One strength of this study is that a large training data-
set of high quality was constructed. This training dataset 
consisted of data from multiple institutions, and it was 
annotated under the supervision of radiologists. Com-
pared with the datasets used in previous studies [16], the 
present dataset had more nodules per scan (5.2) and con-
tained comprehensive annotations including even small 
nodules that are at risk of being overlooked and cost a lot 
to create ground truth. Training with these data might 
have made this system capable of stable detection irre-
spective of the radiation dose, scanning modality, or type 
of nodule.

In comparison with previous studies, the present study 
has two achievements. The first is that, in phantom 
experiments, the stability of the CAD system in detect-
ing nodules irrespective of image noise level due to 
differences in radiation dose was demonstrated quantita-
tively. Deep learning-based AI systems generally exhibit 
poor robustness to subtle changes in images [31, 32]. 
Because image quality varies as a result of differences in 
radiation dose, there are concerns that it may also affect 
detection results. Liu et  al. [21] investigated radiation 
doses in retrospectively collected data and evaluated the 
effect of differences in dose on detection performance. 
However, their method is not capable of assessing the 
pure effect of image noise level due to differences in 
dose alone. In the present phantom experiments, it was 
possible to evaluate the effect of differences in dose on 
detection performance, independently of the effects of 

Fig. 3  Internal and external validation results. a FROC curve for the LIDC-IDRI dataset. b FROC curve for the LNDb dataset. The red markers show 
the detection performance of the five radiologists [24]

Table 5  Detection results for each SD value

SD Sensitivity FPs per scan (no. 
of FPs)

CPM score

10 0.96 (24/25) 0.6 (3) 0.951

15 0.96 (24/25) 0.4 (2) 0.950

20 0.96 (24/25) 0.8 (4) 0.941

25 0.96 (24/25) 0.8 (4) 0.950
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individual differences between subjects and differences 
between devices. It was found that, although changes 
in the SD value did slightly affect the detection results, 
there were almost no changes in sensitivity or detection 
performance. This may have been because robustness to 
slight changes in images had been achieved by data aug-
mentation in the form of changes in sharpness and the 
addition of Gaussian noise.

Second, it was shown that using a lung nodule CAD 
system as a second reader increased the detection per-
formance for nodules that require follow-up exami-
nations, irrespective of the observer’s experience in 
chest imaging diagnosis. A figure-of-merit calculated 
by the JAFROC analysis represents the accuracy of the 
observer’s diagnosis [33]. The significant increase of 

the figure-of-merit when using the present system may 
be due to the fact that the CAD was able to compre-
hensively identify the lesions and that the observers 
correctly dismissed the FPs produced by CAD. From 
this result, the TP/FP rate of the CAD is at an accept-
able level in cases where it is used as a second reader 
to reduce the omission of lesions requiring follow-up. 
Analysis of the effect of CAD on each type of nodule 
showed that it is particularly effective in increasing the 
number of ground-glass and small nodules detected. 
Ground-glass nodules may be atypical adenoma-
tous hyperplasia, as well as adenocarcinoma in  situ or 
another form of lung adenocarcinoma, and if they are 
discovered early, their prognosis is extremely good [34, 
35]. If another primary lesion is present, small solid 
nodules may be metastatic tumors, and their presence 
affects staging and treatment methods. Lung nodule 
CAD use in actual clinical practice will improve the 
detection performance of these lesions, which would be 
of major benefit to patients.

In the group of readers who had little experience 
with chest image interpretation, sensitivity for nodules 
located in lower lobes was low compared to the more 
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Fig. 4  Reader performance test results. a and b Mean FROC curves for readers using criterion 1 and 2. The red lines show the FROC curves with 
CAD use, and the blue lines without CAD use. c and d Detection sensitivities with and without CAD use using criteria 1 and 2. The red bars show 
the sensitivity with CAD use and the blue bars without CAD use. **Significant difference (p < 0.01). *Significant difference (p < 0.05). †Significant 
tendency (p < 0.10; two-tailed paired t-test)

Table 6  Mean interpretation time per case (mean ± SD)

Nodule type Total Group 1 Group 2 Group 3

Total 5:22 ± 3:49 3:33 ± 2:29 5:27 ± 4:34 7:04 ± 4:09

Without CAD 4:09 ± 2:36 2:35 ± 1:32 4:31 ± 3:36 5:13 ± 2:19

CAD result review 1:13 ± 1:13 0:58 ± 0:57 0:56 ± 0:57 1:52 ± 1:50
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experienced groups. In general, the search for lung nod-
ules is often performed from the apex to the bottom of 
the lung. Inexperienced readers took a long time to inter-
pret the image. It is possible that the sensitivity decreased 
in the latter half, when the concentration tended to 
decrease over time. Since the detection sensitivity for 
nodules in the lower lobes was improved by using CAD, 
it is possible that CAD facilitates a consistent quality of 
interpretation.

In the validation test, it was confirmed that the num-
ber of FPs was very high (3.1–7.2 FPs per scan). A large 
number of FPs may increase the radiologists’ effort to 
check CAD results, resulting in a decrease in operational 
efficiency. However, in the present study, the high FP 
rates may be due to the quality of the validation dataset. 
To enable comparisons with previous studies, evalua-
tions were conducted using the same datasets, but it was 
confirmed that these include nodules that had not been 
annotated, mainly tiny nodules and faint ground-glass 
nodules. The LNDb dataset in particular contained scans 
for which only some nodules had been annotated, such 
as those with numerous nodules, a very large number of 
which were counted as FPs, and the CPM score was cor-
respondingly lower than the real situation.

In the present study, in the reader performance test, it 
was found that checking the CAD results increased the 
number of nodules picked up by a mean of 1 nodule per 
scan. This increase in the number of nodules picked up 

could increase the number of follow-up investigations, 
thus increasing both patients’ radiation exposure and 
doctors’ workload in interpreting images. Further pro-
spective studies are needed to investigate whether CAD 
use will change the number of cases of lung cancer dis-
covered and the number of follow-up investigations 
required. To limit any increase in unnecessary investi-
gations, it may be necessary to use an AI system that 
analyzes the size and characteristics of each individual 
nodule and estimates its malignancy [36, 37]. The com-
bined use of such AI may also lead to a reduction in the 
reading time when using CAD as a 2nd reader. Future 
research should evaluate clinical efficacy when com-
bined with such an AI system.

Conclusions
An automated lung nodule detection system was devel-
oped using deep learning that is robust to imaging 
conditions, and using this system as a second reader 
increased detection performance for nodules that 
require follow-up examinations.

Abbreviations
CT: Computed tomography; CAD: Computer-aided detection; JAFROC: Jack-
knife free-response receiver-operating characteristic; AI: Artificial intelligence; 
CNN: Convolutional neural network; FROC: Free-response receiver-operating 
characteristic; FPs: False positives; CPM: Competition performance metric; SD: 
Standard deviation; GGN: Ground-glass nodule; TPs: True positives; FNs: False 
negatives.

Table 7  Changes in detection sensitivity for nodules of different types, sizes, and positions (mean ± SD)

N Without CAD With CAD

Total Group 1 Group 2 Group 3 Total Group 1 Group 2 Group 3

Nodule type

Solid 43 0.59 ± 0.07 0.64 ± 0.03 0.59 ± 0.06 0.54 ± 0.08 0.81 ± 0.09 0.85 ± 0.02 0.78 ± 0.12 0.80 ± 0.08

Part solid 8 0.56 ± 0.16 0.58 ± 0.16 0.63 ± 0.18 0.46 ± 0.06 0.71 ± 0.12 0.75 ± 0.06 0.66 ± 0.05 0.75 ± 0.06

Pure GGN 6 0.08 ± 0.11 0.17 ± 0.14 0.08 ± 0.08 0.00 ± 0.00 0.35 ± 0.17 0.39 ± 0.08 0.29 ± 0.18 0.39 ± 0.16

Nodule size (mm)

 ≤ 10 38 0.37 ± 0.08 0.41 ± 0.03 0.39 ± 0.08 0.31 ± 0.05 0.66 ± 0.11 0.71 ± 0.04 0.63 ± 0.13 0.66 ± 0.09

 ≤ 20 11 0.78 ± 0.12 0.85 ± 0.11 0.80 ± 0.08 0.70 ± 0.11 0.88 ± 0.09 0.91 ± 0.04 0.86 ± 0.08 0.88 ± 0.07

 ≤ 30 3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

 > 30 5 0.92 ± 0.10 1.00 ± 0.00 0.85 ± 0.09 0.93 ± 0.09 0.96 ± 0.08 1.00 ± 0.00 0.90 ± 0.09 1.00 ± 0.09

Nodule position

Right upper lobe 11 0.64 ± 0.10 0.61 ± 0.04 0.68 ± 0.10 0.61 ± 0.11 0.86 ± 0.13 0.85 ± 0.09 0.86 ± 0.13 0.88 ± 0.15

Right middle lobe 7 0.24 ± 0.11 0.24 ± 0.07 0.25 ± 0.16 0.24 ± 0.07 0.54 ± 0.13 0.57 ± 0.07 0.54 ± 0.17 0.52 ± 0.12

Right lower lobe 17 0.54 ± 0.08 0.61 ± 0.06 0.56 ± 0.03 0.43 ± 0.03 0.69 ± 0.11 0.73 ± 0.08 0.66 ± 0.06 0.71 ± 0.07

Left upper lobe 9 0.48 ± 0.12 0.56 ± 0.09 0.44 ± 0.14 0.44 ± 0.09 0.71 ± 0.15 0.85 ± 0.21 0.64 ± 0.12 0.67 ± 0.09

Left lower lobe 13 0.64 ± 0.10 0.72 ± 0.04 0.63 ± 0.10 0.56 ± 0.10 0.85 ± 0.11 0.90 ± 0.10 0.81 ± 0.11 0.87 ± 0.06

Attached to parietal pleura 16 0.71 ± 0.11 0.77 ± 0.13 0.69 ± 0.12 0.69 ± 0.05 0.78 ± 0.07 0.83 ± 0.05 0.73 ± 0.08 0.79 ± 0.03

Attached to visceral pleura 7 0.74 ± 0.09 0.76 ± 0.07 0.71 ± 0.00 0.76 ± 0.13 0.84 ± 0.11 0.86 ± 0.07 0.82 ± 0.12 0.86 ± 0.13

Attached to interlobular fissure 11 0.43 ± 0.09 0.42 ± 0.04 0.43 ± 0.13 0.42 ± 0.04 0.68 ± 0.10 0.67 ± 0.04 0.66 ± 0.14 0.73 ± 0.04
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system in the reader performance test. The improvement rate shows the 
proportion of readers who picked up the nodule with CAD use but not 
without CAD use.
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