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Abstract 

Background: Glaucoma is one of the major causes of blindness; it is estimated that over 110 million people will be 
affected by glaucoma worldwide by 2040. Research on glaucoma detection using deep learning technology has been 
increasing, but the diagnosis of glaucoma in a large population with high incidence of myopia remains a challenge. 
This study aimed to provide a decision support system for the automatic detection of glaucoma using fundus images, 
which can be applied for general screening, especially in areas of high incidence of myopia.

Methods: A total of 1,155 fundus images were acquired from 667 individuals with a mean axial length of 
25.60 ± 2.0 mm at the National Taiwan University Hospital, Hsinchu Br. These images were graded based on the find‑
ings of complete ophthalmology examinations, visual field test, and optical coherence tomography into three groups: 
normal (N, n = 596), pre‑perimetric glaucoma (PPG, n = 66), and glaucoma (G, n = 493), and divided into a training‑val‑
idation (N: 476, PPG: 55, G: 373) and test (N: 120, PPG: 11, G: 120) sets. A multimodal model with the Xception model as 
image feature extraction and machine learning algorithms [random forest (RF), support vector machine (SVM), dense 
neural network (DNN), and others] was applied.

Results: The Xception model classified the N, PPG, and G groups with 93.9% of the micro‑average area under the 
receiver operating characteristic curve (AUROC) with tenfold cross‑validation. Although normal and glaucoma sensi‑
tivity can reach 93.51% and 86.13% respectively, the PPG sensitivity was only 30.27%. The AUROC increased to 96.4% 
in the N + PPG and G groups. The multimodal model with the N + PPG and G groups showed that the AUROCs of RF, 
SVM, and DNN were 99.56%, 99.59%, and 99.10%, respectively; The N and PPG + G groups had less than 1% difference. 
The test set showed an overall 3%–5% less AUROC than the validation results.

Conclusion: The multimodal model had good AUROC while detecting glaucoma in a population with high inci‑
dence of myopia. The model shows the potential for general automatic screening and telemedicine, especially in Asia.
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Introduction
Background
Glaucoma, a neurodegenerative disease, is a significant 
cause of blindness worldwide. Due to ambiguous symp-
toms, early diagnosis is difficult. When signs develop, 
the visual field (VF) is usually lost. Chua et al. estimated 
that approximately 50% of patients with glaucoma were 
undiagnosed [1]. Accurate glaucoma detection is based 
on a combination of clinical examinations and various 
tests for structural and functional optic nerve head dam-
age, including fundus photography, visual field test, opti-
cal coherence tomography (OCT) [2]. However, most of 
these devices are only available in regional hospitals or 
medical centers. Fundus examination is a basic tool com-
monly used for the diagnosis of glaucoma. In addition, 
some prospective research about taking fundus photos 
with only a smartphone has appeared recently [3], which 
is prone to increase the convenience and prevalence of 
fundus photos in the future. However, examining glau-
coma through fundus photography requires considerable 
clinical experience, and the conclusions often differ from 
those of experts [4, 5]. Therefore, artificial intelligence 
(AI) methods might have great potential to address this 
problem because of the recent well-established convolu-
tional neural networks to process big data with increased 
processing speed and accuracy.

Over the past few years, AI has been widely applied 
to different aspects of ophthalmology [6–10], in which 
glaucoma is one of the most popular. Researchers have 
developed several algorithms to differentiate glaucoma-
tous eyes from normal eyes using fundus photography to 
detect glaucoma. The areas under the AI receiver oper-
ating characteristic curves (AUROCs) in the studies by 
Ting DSW et al., Li Z et al., and Christopher M et al. were 
0.942, 0.91, and 0.986, respectively [11–13]. However, 
these studies did not focus on the increasing prevalence 
of myopia.

Myopia may cause morphological changes in the retina 
and optic disc. For instance, retina tessellation, staphy-
loma, optic disc tilting, and peripheral papillary atrophy 
[14, 15] may make the diagnosis of glaucoma through the 
fundus more difficult. Li et al. found that when AI differ-
entiates glaucomatous images from non-glaucomatous 
ones, pathologies or high myopia are the most common 
causes of false-negative results [12]. Myopia also plays 
an important role in the false-positive results. The con-
dition is prevalent worldwide. According to a previous 

study, the global prevalence of myopia will reach 49.8% in 
2050, which is more than twice the prevalence reported 
in 2000 [16]. In Taiwan, from 2010 to 2011, the preva-
lence of myopia in men between 18 and 24 years of age 
was 86.1% [17]. Therefore, the high prevalence of myopia 
will become an obstacle for AI to diagnose glaucoma.

Objective
This study aims to provide a tool that can help diagnose 
glaucoma by using color fundus images, which can be 
applied in areas with a low level of medical resources or 
areas where many people have myopia.

Methods
This study was conducted at the National Taiwan Uni-
versity Hospital, Hsinchu Branch, Taiwan, in accord-
ance with the Declaration of Helsinki (1964). The study 
was approved by the Institutional Review Board of the 
National Taiwan University Hospital, Hsinchu Branch 
(no. NTUHHCB 108-025-E). Informed consent was 
obtained from all participants.

In order to make the proposed methodology clearer we 
listed the main checkpoints in our methods as follows.

1. Collecting data and precise glaucoma grading with 
optical examinations, fundus images, visual field, and 
OCT data

2. Selecting the Xception transfer learning model as the 
fundus image classifier.

3. Training a fundus image regression model to predict 
OCT-obtained RNFLT and C/D vertical ratios

4. Training a multimodal model using the predicted 
RNFLT, C/D vertical ratios (both from the regression 
model), color fundus images, and optical examina-
tion numerical results

5. Performing error analysis to identify false predictions 
and improve model training

Subjects and data collection
All data were collected when the participants visited the 
hospital’s general or ophthalmologic clinic from June 
2019 to September 2020. After providing informed con-
sent, demographic data was collected (for example, age 
and sex) and the participants underwent a set of ophthal-
mologic examinations, including a visual acuity test using 
a Snellen chart, measurement of intraocular pressure 

Trial registration: The study was approved by the Institutional Review Board of the National Taiwan University Hospital, 
Hsinchu Branch (no. NTUHHCB 108‑025‑E).
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(IOP) using a non-contact tonometer NT-530P (Nidek 
Co., Gamagori, Japan), measurement of refractive error 
using an ARK-510A (Nidek Co., Gamagori, Japan), meas-
urement of axial length using an AL-SCAN (Nidek Co., 
Gamagori, Japan), slit-lamp examination, gonioscopy, 
fundoscopy, and a visual field test using a Humphrey 
Field Analyzer-840 (HFA-840; Carl Zeiss Meditec, Inc. 
Dublin, CA, USA). Both 45° optic disc-centered and mac-
ular-centered color fundus images with a resolution of 
1620 × 1440 were captured using a Zeiss VISUCAM 524 
(HFA-840; Carl Zeiss Meditec, Inc. Dublin, CA, USA) in 
the color and green modes. Both eyes of each participant 
were evaluated and imaged.

All participants underwent OCTA (Angiovue, Opto-
vue Inc., Fremont, CA, USA) using the split-spectrum 
amplitude-decorrelation angiography algorithm. All 
images contained retinal nerve fiber layer RNFL thick-
ness, ganglion cell complex thickness, and optic nerve 
head analysis, including the cup/disc ratio, rim area, and 
disc area. The RNFL thickness measurement was cen-
tered on the optic disc in an annulus region, with the 
outer diameter as 4 mm and the inner diameter as 2 mm. 
The GCC scan, comprising retina nerve fiber, ganglion 
cell, and inner-plexiform layers, was centered 1 mm tem-
poral to the fovea with a scan size of 7 mm × 7 mm area. 
All scans were reviewed manually to ensure correct disc/
cup segmentation and quality. The RNFL thickness and 
ganglion cell complex thickness calculation were divided 
into superior and inferior parts, to find compatible glau-
comatous defects in the visual field examination. Subjects 
with or without pseudophakia between 20 and 80  years 
of age were included. Any subjects with positive cata-
ract would be excluded due to blurred color images. The 
exclusion criteria included: best-corrected visual acuity 
below 12/20; a history of ocular disease, such as vitreo-
retinal diseases, ocular trauma, uveitis, non-glaucoma-
tous optic neuropathy, retinopathy, and any other ocular 
disease that may affect optic nerve or visual field result; 
systemic diseases, such as diabetic retinopathy, hyper-
tensive retinopathy, stroke with visual field loss; OCTA 
scan signal strength index less than 40; visual field test: 
fixation loss > 15%, false positive rate > 20% or and false 
negative > 10%

A grading system was established using OCT numeri-
cal data extracted from OCTA and visual field examina-
tion. According to the ganglion cell complex and RNFL 
thickness, OCT numerical data showed normal, border-
line, and abnormal ganglion cell complex values in the 
macular and optic nerve head fiber layers of the image. 
The borderline and normal categories were combined 
into the normal category to simplify the grading system. 
All participants were diagnosed with normal (N), pre-
perimetric glaucoma (PPG), or glaucoma (G). Specifically, 

PPG is the case where either the ganglion cell complex, 
RNFL, or both regions were damaged, but the visual field 
was still normal. For the G group, the ganglion cell com-
plex, RNFL, or both regions were damaged and showed 
compatible visual field changes. The mean defect of vis-
ual field more than -2 dB would be considered as abnor-
mal visual field. Our study team have built up a normal 
ground of OCT and OCTA for normal subjects with dif-
ferent axial length [18]. All glaucoma patients were fol-
lowed more than 1  years and their collected data was 
confirmed by an experienced glaucoma specialist. It is 
worth mentioning that all glaucoma patients had been 
followed up with for at least one year. The analysis col-
lapsed the three groups into binary groups, N + PPG, G 
and N, PPG + G, to form non-glaucomatous and glauco-
matous groups. Note that each image corresponds to a 
unique person. We sorted the collected data in chrono-
logical order, and then took the data from the last two 
weeks as the test set and the rest as the training set.

Preprocessing of images and numerical data
The fundus images were automatically cropped by only 
keeping the pixels within the red circle, as shown in 
Additional file  1. The images were cropped using the 
OpenCV package [19]; details are provided in Additional 
file  1. Most of the numerical data from optic examina-
tion, OCTA, and patient demographics had missing 
ratios below 5%; all the missing values were filled by the 
MICE algorithm [20].

Transfer learning image classification
This study applied transfer learning model with Xception 
as base model using ImageNet dataset training weights. 
The last output layer was replaced with a dense layer for 
classification. A self-attention model was applied using 
the method used by Guan et al. [21]. Self-attention meth-
ods can help our models identify key regions of fundus 
images associated with glaucoma. The key regions iden-
tified by self-attention methods are cropped, and both 
the cropped image and the whole image were sent to 
two Xception models initialized by pretrained weights. 
Each Xception model generates a feature map (or output 
vector) of 1 × 1024. These two feature maps are concat-
enated to form a vector of 1 × 2048, which is then sent 
to a fully connected neural networks of 5 hidden layers 
to generate an output for predicting glaucoma. Details 
of the data processing are shown as a block diagram 
under the self-attention section in Fig. 2. All the convo-
lution layers and last classification layer were fine-tuned 
[22]. The Adam optimizer was used in the model with a 
learning rate of 0.0001 and a decay of 0.001 with categori-
cal cross-entropy as the loss function. All of the models 
were trained for 80 epochs in batches of 30 images per 
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step with ten-fold cross-validation for model evaluation. 
The validation accuracy was monitored during the model 
training process, and the model was saved with the best 
validation accuracy to predict the test data. First, a single 
transfer learning image classification model was trained 
with both the disc center and macular center images for 
selecting the best base models from Inception v3, Incep-
tion Resnet v2 and Xception [23, 24]. After the selection 
we trained both disc-center and macular-center transfer 
learning images classification models separately and used 
them in the multimodal model. All models were trained 
on a computer with Ubuntu (16.04.6), Intel(R) i7-7740X 
CPU, two GeForce GTX 1080 Ti 11 GB GPU, and 62GiB 
system memory.

Regression model for predicting the OCTA‑acquired C/D v 
ratio and average RNFL thickness
To include essential features such as the cup/disc ver-
tical ratio (C/D v ratio) and average RNFL thickness, 
we used a regression model that included color fundus 
images as input to predict the OCTA-acquired C/D v 
ratio and average RNFL thickness with a method simi-
lar to that used by Medeiros et al. [25]. The color fundus 
images were magnified onefold to the optic disc area and 
manually cropped to increase the model accuracy. The 
regression model was trained using the transfer learn-
ing method with the Xception network. The last output 
layer was changed to a dense layer with a linear activation 
function and mean-squared error loss function for value 
prediction.

Multimodal model
Patients’ demographic data, OCT numerical data 
extracted from OCTA, and color fundus images were 
collected. The data collection consisted of numerical data 
and two images: disc-centered and macular-centered 
color fundi. Numerical data, alongside disc-centered and 
macular-centered color fundus images, were included in 
the training input. The numerical data included age, sex, 
axial length, visual acuity, heart rate, and blood pressure. 
Glaucoma specialists selected these features, consider-
ing that most of the subjects in this study had high myo-
pia. The regression model predicted the C/D v ratio and 
average RNFL thickness as the input of the multimodal 
model. After training the models with disc-centered 
color fundus and macular-centered color fundus, the 
feature maps extracted by the second last layer were con-
catenated with the selected numerical features. Random 
forest (RF), support vector machine (SVM), Ada-boost 
(Ada), decision tree (with either the CART or C4.5 algo-
rithm), logistic regression (LogReg), Naïve Bayes (NB), 
k-nearest neighbors (KNN), and a dense neural network 
(DNN) were trained with the newly concatenated inputs 

for the final prediction. Finally, a webpage was built with 
the multimodal model we proposed for general screening 
of glaucoma and telemedicine application. An illustration 
of the process described above was shown in Additional 
file 2.

Statistics
All statistics were computed using Python packages, 
Scikit-learn and NumPy. True-positive rate (sensitiv-
ity)–false-positive rate (1—specificity) receiver operating 
characteristic (ROC) curves were plotted. Using the ROC 
curve, the tradeoffs between sensitivity and specificity, 
and the area under the ROC (AUROC) curve was used to 
determine the model’s performance. Accuracy, F-meas-
ure, and confusion matrix were computed based on the 
ROC curve’s optimal cutoff point using Youden’s J statis-
tic [26]. All the metric equations were listed in Additional 
file 3.

Results
Study design flow and proposed models
To design a decision-making model for precise glaucoma 
diagnosis, both disc-centered and macular-centered 
images should be completed. The dataset in Table 1 was 
acquired after excluding blurred, ambiguous images and 
images that only had one single-centered image. Our 
models predict the probabilities of normal, PPG, or glau-
coma as outcomes. These possibilities were regrouped 
into either (normal + PPG) and glaucoma, or normal 
and (PPG + glaucoma). The models required the follow-
ing predictors (features) to predict the outcome: disc-and 
macular-centered RGB color fundus images (RGB chan-
nels with normalized 0–1 values), C/D v ratio (%), RNFL 
thickness (μm), age, sex (0 = female, 1 = male), visual 
acuity (logMAR), axial length (mm), heart rate (bpm), 
systolic blood pressure (mmHg), and diastolic blood 
pressure (mmHg); the full features were listed in Table 1. 
The correlation matrix of the features was calculated and 
shown in the Additional file 4.

The subjects who participated in this study had 
an overall mean axial length of 25.19 ± 1.78  mm, 
25.93 ± 1.84  mm, 25.67 ± 2.23  mm in N, PPG, and G 
groups, respectively, as shown in Table  1. Eye with a 
spherical equivalent ≤ -6.0 diopter (D) or an axial length 
(AL) ≥ 26 mm is defined as high myopia [27]. The number 
of participants with high myopia (axial length ≥ 26 mm) 
was 199 out of 596 (33%) in the N group, 38 out of 66 
(57%) in the PPG group, and 218 out of 493 (44%) in the 
G group. After grading and preprocessing the data, the 
study design flow (Fig. 1) was followed to train the pro-
posed model, as shown in Fig. 2.
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Table 1 Participants’ demographic data

a OD: right eye
b OS: left eye
c IOP: intraocular pressure
d CCT: central corneal thickness
e VD: vascular density
f RNFL: retinal nerve fiber layer
g SBP: systolic blood pressure
h DBP: diastolic blood pressure
i MAP: mean arterial pressure
j HR: heart rate

Features Control eyes (n = 596) PPG eyes (n = 66) Glaucoma eyes 
(n = 493)

p‑value

Age (years), mean ± SD 45.3 ± 14.2 45.7 ± 12.7 51.8 ± 13.6 < .001

Age (years), n (%)

 < 40 221 (37.1) 20 (30.3) 100 (20.3)

 40–60 295 (49.5) 39 (59.1) 258 (52.3)

 ≥ 60 80 (13.4) 7 (10.6) 135 (27.4)

Gender, n (%) < .001

 Male 210 (35.2) 43 (65.2) 323 (65.5)

 Female 386 (64.8) 23 (34.8) 169 (34.3)

OD/OS, n (%) .76

  ODa 301 (50.5) 35 (53.0) 241 (48.9)

  OSb 295 (49.5) 31 (47.0) 252 (51.1)

Visual acuity (logMAR), mean ± SD 0.9 ± 0.2 0.9 ± 0.2 0.8 ± 0.3 < .001

Axial length (mm), mean ± SD 25.19 ± 1.78 25.93 ± 1.84 25.67 ± 2.23 < .001

Axial length (mm), n (%)

 < 24 163 (27.3) 13 (19.7) 126 (25.6)

 24–25.9 231 (38.8) 15 (22.7) 148 (30.0)

 ≥ 26 199 (33.4) 38 (57.6) 218 (44.2)

IOPc (mmHg), mean ± SD 14.7 ± 3.4 15.0 ± 3.9 14.4 ± 3.8 .30

CCT d (μm), mean ± SD 543.6 ± 35.6 531.8 ± 43.4 534.9 ± 35.9 < .001

Visual field: mean defect (dB), mean ± SD − 1.2 ± 1.8 − 1.8 ± 4.5 − 10.7 ± 9.6 < .001

Macular  VDe (%), mean ± SD

 Superior 50.1 ± 4.9 46.6 ± 6.5 42.2 ± 7.6 < .001

 Center 18.5 ± 6.4 18.1 ± 6.1 15.7 ± 6.8 < .001

 Inferior 49.5 ± 5.2 46.0 ± 5.9 39.5 ± 8.2 < .001

Disc VD (%), mean ± SD

 Superior 51.6 ± 4.9 47.4 ± 5.8 37.1 ± 11.0 < .001

 Inferior 52.5 ± 5.3 47.6 ± 5.0 34.6 ± 10.5 < .001

RNFLf thickness (μm), mean ± SD

 Superior 100.2 ± 9.9 86.8 ± 10.4 74.5 ± 15.5 < .001

 Inferior 96.2 ± 9.2 82.0 ± 10.7 67.7 ± 14.6 < .001

Ganglion cell complex thickness (μm), mean ± SD

 Superior 95.5 ± 5.9 86.0 ± 7.8 75.4 ± 12.7 < .001

 Inferior 95.0 ± 6.2 81.5 ± 8.0 69.2 ± 12.5 < .001

Cup/Disk Vertical Ratio (%), mean ± SD 52.0 ± 19.6 69.5 ± 16.0 83.1 ± 14.0 < .001

Rim Area (0.01  mm2), mean ± SD 130.2 ± 38.2 100.1 ± 50.2 66.8 ± 35.6 < .001

Disc Area (0.01  mm2), mean ± SD 206.0 ± 49.8 213.9 ± 49.8 214.5 ± 62.0 .03

SBPg (mmHg), mean ± SD 124.1 ± 18.5 128.5 ± 16.0 128.2 ± 17.9 < .001

DBPh (mmHg), mean ± SD 73.4 ± 12.5 78.2 ± 12.3 76.1 ± 12.0 < .001

MAPi (mmHg), mean ± SD 90.3 ± 13.5 95.0 ± 12.6 93.5 ± 12.8 < .001

HRj (/min), mean ± SD 79.1 ± 12.4 75.1 ± 10.5 75.1 ± 12.4 < .001
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Transfer learning image classification
The results of selecting best base models for transfer 
learning from Xception, Inception v3, and Inception 
ResNet v2 were as shown in Fig.  3; there was no sig-
nificant difference between these three CNN models. 
Although the overall accuracy of the model reached 
87.09%, the PPG group’s sensitivity was low. As shown 
in Fig. 3, out of 109 images, only 33 were correctly pre-
dicted as PPG (30.3% sensitivity). The Xception model 
was applied as the base model because it is the latest 
version of the inception network series. After collaps-
ing the three groups into binary groups, the Xception 
model performance of the N, PPG + G groups reached 

95.91% AUROC, 89.93% sensitivity, and 87.92% preci-
sion in the validation set. In the test set with the same 
grouping method, the model reached an AUROC of 
95.45%, sensitivity of 88.88%, and precision of 96.53%. In 
the N + PPG, G groups, the model performance reached 
96.72% AUROC, 90.54% sensitivity, and 94.13% precision 
with the validation set. With the test set, the performance 
reached 95.24% AUROC, 86.77% sensitivity, and 95.46% 
precision, as shown in Table  2. The N + PPG, G groups 
had a higher AUROC than the N, PPG + G groups for the 
validation set. Although the test results showed higher 
performance in the N, PPG + G groups, the increase was 
less than 1%, as shown in Table 2.

Fig. 1 The flow chart of the study design. First, dataset collection was done at the National Taiwan University Hospital, Hsinchu Branch. After 
glaucoma specialists reviewed all the collected images as well as the participants’ demographic and OCT extracted numerical data, each 
participants’ eye was precisely graded as N, PPG, or G. OCT extracted numerical data were not included in the training process. Data from the last 
two weeks was kept as a test dataset, and the rest of the data were used for training the models with tenfold cross‑validation. The model was 
built on a webpage for telemedicine and the labeled color fundus images will be published as open data. N, normal; OCTA, optical coherence 
tomography angiography; PPG, pre‑perimetric glaucoma; G, glaucoma
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Regression model for predicting the OCTA‑acquired cup/
disc vertical ratio and average RNFL thickness
The regression model was trained to predict the average 
RNFL thickness using the color fundus images. In the 
validation set, Pearson’s correlation coefficient was 0.856, 
and the coefficient of determination  (R2) was 73.29%. 
Moreover, as shown in Fig.  4, the model predicted the 
C/D v ratio with a high Pearson’s correlation coefficient 
of 0.885 and an  R2 of 78.13%. The model could also pre-
dict well in a test set with a high Pearson correlation coef-
ficient (average RNFL: 0.905, C/D v ratio: 0.926) and  R2 
(average RNFL: 76.31%, C/D v ratio: 76.65%).

Multimodal model
After predicting the C/D v ratio and average RNFL thick-
ness using the regression model, the patients’ demo-
graphic data and images were used to expand the model 
modalities. For a clear view of the multimodal models’ 
performances, the top three models used in the final pre-
diction were identified; the models’ performances were 
shown in Figs. 5 and 6, and Additional file 5. In the vali-
dation and test sets, the top three models for classifying 
the N, PPG, and G groups were random forest, SVM, and 
DNN. These three models achieved high AUROCs in 
the validation set: random forest (99.7%), SVM (99.4%), 
and DNN (99.1%). In the test set, the AUROCs of the top 

three models were also high: SVM (95.1%), DNN (95.0%), 
and random forest (94.1%), as shown in Fig. 5.

The three groups were collapsed into binary groups 
in the multimodal models with the same rationale men-
tioned above. After converting the three-group clas-
sification to binary-group classification, the model 
performance improved. After the three groups were col-
lapsed into binary groups, the multimodal models with 
the top three AUROCs remained the same as with the 
three-group classification (shown in Fig. 5), namely ran-
dom forest, SVM, and DNN. In the N, PPG + G groups, 
the AUROCs of the random forest, SVM, and DNN mod-
els reached 99.56%, 99.59%, and 99.18% in the validation 
set. In the test set, the AUROCs slightly decreased to 
93.77%, 94.42%, and 94.45%, respectively.

In contrast, in the (N + PPG, G groups, the AUROCs 
of the random forest, SVM, and DNN models reached 
99.62%, 99.68%, and 99.01% in the validation set, and 
the AUROCs decreased slightly to 93.84%, 93.29%, and 
95.38%, respectively, in the test set, as shown in Addi-
tional file 5 and Fig. 6. When comparing both grouping 
methods, the (N + PPG, G) groups showed the highest 
AUROCs in both the validation and test sets. The accu-
racy, precision, sensitivity, and F3 were computed after 
selecting the optimal cutoff point with Youden’s J statis-
tic. These metrics showed a trend similar to the AUROCs 

Fig. 2 The layout of the proposed model. The multimodal model was combined with two image classifiers (disc‑view color fundus, macular‑view 
color fundus), a regression model (C/D V ratio, and average RNFLT), axial length, VA, and participants’ demographic numerical data. C/D V ratio, Cup/
Disc vertical ratio; RNFLT, retinal nerve fiber layer thickness; VA, visual acuity
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Fig. 3 Inception v3, Inception ResNet v2, and Xception model comparison. Three CNN models: the Xception, Inception v3, and Inception ResNet 
v2 were compared. All of the models can achieve a 94% micro‑average AUROC with tenfold cross‑validation. Only the Xception model confusion 
matrix is shown because the model is the latest version of the three. Although the overall accuracy can reach 87.09%, the sensitivity for the PPG 
group was low. Only 33 of 109 images were correctly predicted as being PPG. CNN, convolutional neural network; AUROC, area under the receiver 
operating characteristic curve; PPG, pre‑perimetric glaucoma

Table 2 Binary classification results after the three groups are collapsed into binary groups

a N: normal
b PPG: pre-perimetrical glaucoma
c G: glaucoma
d AUROC: area under the receiver operator characteristic curve
e best metrics value in the validation set
f best metrics value in the test set
g F3: F-Beta measure, beta = 3

Metrics Validation dataset Test dataset

(Na,  PPGb +  Gc) (Na +  PPGb,  Gc) (Na,  PPGb +  Gc) (Na +  PPGb,  Gc)

AUROCd, % 95.91 96.42e 95.45f 95.24

Accuracy, % 89.96 90.57e 88.88f 86.11

Sensitivity, % 89.93 90.54e 88.63f 86.77

Specificity, % 89.99 90.59e 89.17f 85.49

Precision, % 87.92 94.13e 96.53f 95.46

F3g, % 89.73 89.80e 88.77f 86.56
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for the top three models in both the test and validation 
sets, as shown in Additional file 5.

Discussion
Main findings
In this study, the multimodal model achieved an AUROC 
of 99.7% with SVM in the N + PPG, G groups in the 
validation set. The multimodal model using DNN main-
tained an AUROC of 95.4% in the test set, which showed 
promising results when detecting glaucoma in a myopic 
population. These improved performances were mainly 
attributed to the precise glaucoma grading of color fun-
dus images with OCT extracted numerical data and the 
increase in model modalities that combined numerical 
data and images.

Precise grading of normal, PPG, and glaucoma groups 
with OCT extracted numerical data
Li et  al. trained an algorithm using a dataset of 31,745 
fundus images, achieving an AUC of 0.986 [12]. Christo-
pher et al. reported an AUC in the range of 0.79–0.97 by 

training AI with 17,195 images [13]. With a total of 3,132 
fundus images, Shibata et  al. achieved an AUC of 0.965 
[28]. Compared to previous studies, several new strate-
gies were adopted to create a new perspective in our 
study. First, the exclusion criterion was stricter to avoid 
lower-quality images and erroneous estimation results. 
This study excluded cataracts patients because cataracts 
undermines the quality of color fundus images and con-
tributes to the underestimation of retinal layer thickness 
[29]. Second, our grading system was more objective. In 
previous studies, the ground truth about glaucoma was 
usually obtained by human judication through color 
fundus photography. Subjective evaluation resulted in 
low reproducibility, and even experienced ophthalmolo-
gists could not provide a fair grading standard [4, 30, 31]. 
Therefore, a precise and objective grading system was 
constructed using OCTA to collect patients’ constructive 
data, by referring to other clinical examination histories, 
and divided subjects into three groups: normal, PPG, 
and glaucoma. This classification system was the first to 
consider OCT numerical data extracted from OCTA and 
visual field as grading standards, which was applied to 
AI trained with color fundus photography. Third, myo-
pia was compatible with the worldwide pervading trend. 
In the dataset, 455 of 1155 participants (39%) had high 
myopia with axial length ≥ 26  mm. The results in Addi-
tional file 6 show that after separating myopia from non-
myopia in test dataset. Both (N, PPG + G) and (N + PPG, 
G) shown 2–5% less AUROCs when compared myopia 
group to non-myopia. Although high myopia leads to 
relatively lower AUC values as high myopia cases are dif-
ficult to differentiate using color fundus images, patients 
with high myopia were still included in preparing for the 
era of high myopia prevalence.

The benefit of using a multimodal model and a different 
approach for handling multimodality problems
Xception model was selected as the transfer learning 
base model although it showed similar performance with 
Inception v3 and Inception ResNet v2 mainly because it 
is the latest modification in the Inception model series 
[32–34]. Taking advantage of the Xception model and 
adopting it as a feature extractor in the proposed multi-
modal model, we proposed a multimodal model based on 
the following observations.

First, increasing the modalities often enhances the 
model’s performance, which has been widely reported 
in the literature [35, 36]. However, few studies have 
increased the multimodality relevant to glaucoma diag-
nosis in machine learning. One example was the use of 
four different OCT images and color fundus images for 
glaucoma diagnosis through machine learning [37]. 
Second, to increase model accuracy when dealing with 

Fig. 4 Regression model for predicting the OCTA acquired Cup/Disc 
vertical ratio and average RNFLT. The regression model can be trained 
to predict the average RNFLT and C/D V ratio from color fundus 
images (Pearson’s correlation coefficients: average RNFLT, 0.856; C/D V 
ratio, 0.885; R2: average RNFLT, 73.29%, Cup/Disc vertical ratio, 78.126). 
The test set showed similar results compared with the validation set. 
C/D V ratio, Cup/Disc vertical ratio; RNFLT, retinal nerve fiber layer 
thickness



Page 10 of 14Lim et al. BMC Medical Imaging          (2022) 22:206 

patients with high myopia, the values of axial length and 
visual acuity need to be included in the model’s input. 
Third, multiple sources of information from various med-
ical reports were viewed by experts before making a diag-
nosis of glaucoma.

The goal of this study was to make the model accessible 
in areas with low of medical resources. Therefore, OCT 
extracted numerical data were not included because the 
corresponding machines used to capture the data were 
expensive. To compensate for the lack of OCT extracted 
numerical data input in the multimodal model, a regres-
sion model was trained to predict the C/D v ratio and 
average RNFL thickness (which could be derived from 
the acquired OCT data) using color fundus images.

The rationale for collapsed three groups into binary groups
The models in this study predicted N, PPG, and G’s 
probabilities with each participant’s data. The N + PPG, 
G groups have been commonly applied for precise G 
prediction in some studies. In contrast, grouping N, 
PPG + G would overestimate the G group. Whether 
PPG patients need treatment is still under debate. Stud-
ies suggested in PPG eyes, the mean defect progres-
sions of VF were − 0.09 ± 0.25 [38], − 0.17 ± 0.72 [39], 

and − 0.39 ± 0.64  dB/year [40], respectively, slightly 
more severe than the median mean deviation rate of 
the population, − 0.05  dB/year [41]. In conclusion, 
which way to binarize the data is better requiring more 
research to rationalize.

Differences between the test and validation sets
The multimodal model showed a slight decrease of 
almost 5% in AUROC for the test set compared to the 
training and validation sets. This decrease may be due 
to the following facts. First, the test set was collected 
in the last two weeks, while ten-fold cross-validation 
was performed in the first eight weeks. This difference 
in the time span is likely to degrade the performance of 
the test set. Second, the change in the PPG ratio over 
the total images in the test set may also degrade the 
performance. Although the test set did not perform as 
well as the validation set, it still achieved an AUROC of 
95%, which is a good result compared with other stud-
ies that involved a large population of high myopia. As 
shown in Additional file 7, there are no significant dif-
ferences between training and test sets in terms of age, 
axial length, HR, SBP, DBP, and visual acuity.

Fig. 5 The micro average ROC of N, PPG, and G groups classified by multimodal models. Multimodal models achieved high AUROCs with the 
validation data. The RF (99.7%), SVM (99.4%), and DNN (99.1%) models showed similar results with tenfold cross‑validation data. The best three 
models in the test set were the SVM (95.1%), DNN (95.0%), and RF (94.1%). There was a decrease in AUROCs in the test set, but they were still within 
an acceptable range. N, normal; G, glaucoma; RF, random forest; Ada, adaptive boosting; SVM, support vector machine; LogReg, logistic regression; 
NB, Naïve Bayes; KNN, k‑nearest neighbor; CART: classification and regression decision tree; C4.5, C4.5 decision tree; DNN, dense neural network
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Fig. 6 Binary‑group classification results of multimodal models after applying different grouping strategies. RF, SVM, and DNN AUROCs were slightly 
higher in (N + PPG, G) groups (RF: 99.6%, SVM: 99.7%, DNN: 99.2%) and in (N, PPG + G) groups (RF: 99.6%, SVM: 99.6%, DNN: 99.0%) with tenfold 
cross validation. A similar result was shown in the test set in (N + PPG, G) groups (AUROCs: RF: 93.8%, SVM: 94.4%, DNN: 95.4%), and in (N, PPG + G) 
(AUROCs: RF: 93.8%, SVM: 93.3%, DNN: 94.5%). There were decreases in the AUROCs for the test dataset with both methods, but the best AUROC of 
the three models still exceeds 90%. RF, random forest; Ada, adaptive boosting; SVM, support vector machine; LogReg, logistic regression; NB, Naïve 
Bayes; KNN, k‑nearest neighbor; CART, classification and regression tree; C4.5, C4.5 decision tree; DNN, dense neural network; AUROC, area under 
receiver operating characteristic curve
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Error analysis: false‑positive and false‑negative cases
The figure in Additional file  8 shows false-positive and 
false-negative cases by our model. Although our model 
achieved high AUROC with a high myopic population 
dataset, high myopic cases were still the majority in the 
false-positive cases, as shown in Additional file  8. On 
the other hand, false-negative cases show that our model 
would predict incorrectly with smaller disc, cup areas 
than normal color fundus images; these small cup and 
disc cases might have misleading cups-to-disc ratio and 
would cause the model to predict false-negative cases 
[42].

Comparison with currently used methods and public 
datasets testing
The comparison table of our research and existing studies 
was shown in Additional file  9. Most of the listed stud-
ies trained the convolutional neural networks with sin-
gle modalities (color fundus). Guangzhou An et al. study 
used a multimodal model/ ensemble learning model with 
OCTA and color fundus data and had a similar result 
with our model [35]. Although some studies showed 
higher test results than our study, these might cost by the 
high incidence of myopia in our study, or the limitations 
listed below.

To validate the model performance with external data-
sets, two Kaggle datasets were tested and evaluated [43, 
44]. The datasets had different modalities compared to 
ours; therefore, a new pre-processing method and disc-
centered model were used to compare the results. The 
methods and results were shown in Additional file  10. 
Additional file  10 showed that after retraining the disc-
centered model with our training dataset and Kaggle 
training dataset (adapted model), tenfold cross-validation 
AUROC decreased by 3%–4% to 90.52% when compared 
to our original model with AUROC of 95.91% as shown 
in Table 2.

After testing the adapted model with the Kaggle test 
set, the AUROC dropped further to 68.88%, as shown 
in Additional file 11. The published codes on the Kaggle 
websites showed the same results as our model, which 
had approximately 60%–70% accuracy [45, 46]. To vali-
date the code mentioned above, a tenfold cross-validation 
model was trained with only the Kaggle training dataset 
(model 2), as shown in Additional file  11. Our test set 
performed better than the Kaggle test set with AUROCs 
86.61% and 70.47%, respectively, as shown in Additional 
file  11. The adaptation model mentioned above was 
applied and predicted using a second Kaggle dataset [44]. 
The second dataset had a large population but consisted 
of different types of ocular diseases. The color fundus 
images labeled as glaucoma (n = 203) and random normal 

fundus images (n = 300) were selected. Although the sec-
ond Kaggle dataset had a higher AUROC of 83.01%, the 
first dataset still performed the worst.

We suspected that the main reason for the low perfor-
mance of the first Kaggle dataset was mainly due to mis-
match and several hypothesized reasons as below. First, 
the color fundus images acquired in these two datasets 
might have been collected from different populations. 
Second, the fundus of false-positive cases showed several 
images that our dataset had excluded, such as blurred 
images that might have been caused by cataracts and 
other systemic disorders, as shown in Additional file 11. 
Third, the imbalance ratios in the two datasets were dif-
ferent. The Kaggle dataset collected more normal images. 
The imbalance of data in machine learning is still an 
obstacle that is difficult to overcome. For these reasons, 
it is important that the user strictly follow the guidelines 
listed on the web page when uploading their data to pre-
dict an optimal result.

Limitations
One limitation of this study is its relatively small data-
base. However, the database contains 1,150 color fun-
dus photographs, complete ophthalmological data (for 
example, OCTA, visual field, IOP, axial length), and an 
accurate grading system. If more data are collected, the 
algorithm might achieve a higher AUROC value.

Undoubtedly, the major limitation of this study is that 
some potential confounders such as age and axial length 
were not distributed equally within groups. Young adults 
showed a higher incidence of myopia. We also adopted 
some methods to control for confounding effects, such 
as the exclusion of cataracts and age-related macular 
disease, and a questionnaire about participants’ health 
condition was completed beforehand. A better sampling 
method is difficult, but is expected in our future work.

With the proposed multimodal model, large-scale 
screening and telemedicine can be applied in rural 
areas. Moreover, a webpage was built to establish a tel-
emedicine website using the multimodal model [47]. We 
would like to release labeled color fundus data for inter-
ested researchers and academic studies. An example 
of a labeled image was presented in Additional file  12. 
The model and data will be free to use and can be easily 
accessed globally.
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