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Abstract 

Background:  Cervical myelopathy is a progressive disease, and early detection and treatment contribute to progno-
sis. Evaluation of cervical intervertebral instability by simple X-ray is used in clinical setting and the information about 
instability is important to understand the cause of myelopathy, but evaluation of the intervertebral instability by X-ray 
is complicated. To reduce the burden of clinicians, a system that automatically measures the range of motion was 
developed by comparing the flexed and extended positions in the lateral view of a simple X-ray of the cervical spine. 
The accuracy of the system was verified by comparison with spine surgeons and residents to determine whether the 
system could withstand actual use.

Methods:  An algorithm was created to recognize the four corners of the vertebral bodies in a lateral cervical spine 
X-ray image, and a system was constructed to automatically measure the range of motion between each vertebra 
by comparing X-ray images of the cervical spine in extension and flexion. Two experienced spine surgeons and two 
residents performed the study on the remaining 23 cases. Cervical spine range of motion was measured manually on 
X-ray images and compared with automatic measurement by this system.

Results:  Of a total of 322 cervical vertebrae in 46 images, 313 (97%) were successfully estimated by our learning 
model. The mean intersection over union value for all the 46-test data was 0.85. The results of measuring the CRoM 
angle with the proposed cervical spine motion angle measurement system showed that the mean error from the true 
value was 3.5° and the standard deviation was 2.8°. The average standard deviations for each measurement by special-
ist and residents are 2.9° and 3.2°.

Conclusions:  A system for measuring cervical spine range of motion on X-ray images was constructed and showed 
accuracy comparable to that of spine surgeons. This system will be effective in reducing the burden on and saving 
time of orthopedic surgeons by avoiding manually measuring X-ray images.

Trial registration Retrospectively registered with opt-out agreement.
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Background
Cervical myelopathy is a neurological disease caused by 
age-related degeneration of the cervical spine and ossifi-
cation of the posterior longitudinal ligament [1, 2]. When 
the disease progresses, numbness in the limbs, dyskine-
sia, gait disturbance, and vesicorectal disturbance appear 
[3, 4]; however, because the progression is relatively 
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slow, patients are often unaware of their symptoms and 
are referred to a spine specialist only after the disease 
has become severe [5, 6]. The treatment of severe cervi-
cal myelopathy not only requires surgery but also has a 
worse prognosis than if therapeutic intervention is per-
formed at an early stage [7]. Early diagnosis and treat-
ment contribute to the prognosis.

The diagnosis of cervical myelopathy is based on neu-
rological examination, physical examination, and imag-
ing findings [8, 9]. If cervical myelopathy is suspected 
on physical and neurological examination, cervical spine 
radiography will be performed to evaluate the presence 
of ossification of the posterior longitudinal ligament or 
other degenerative bone changes [10]. The cervical spine 
consists of seven vertebrae and is referred to as C1–C7 
from the skull down; therefore, C1 and C2 refer to the 
first and second cervical vertebrae from the skull (Fig. 1). 
A cervical spine radiograph examines the static param-
eter of the “anteroposterior diameter of the spinal canal” 
in the lateral view of the cervical spine and the dynamic 
parameter of the “intervertebral movement of the cervi-
cal vertebrae” calculated by comparing the lateral views 
of cervical anteversion and retroversion [11, 12]. If the 
anterior–posterior diameter of the spinal canal is narrow 
and the intervertebral movement is significantly larger 
than normative values, it is important to understand the 
cause of spinal cord compression and to decide whether 
surgical procedure is suitable or not, along with the fur-
ther evaluation by cervical magnetic resonance imaging 
(MRI) [13]. However, measuring the dynamic parameter 
of "intervertebral movement" requires time-consuming 
methods such as superimposition of X-ray images and 
calculation by writing many lines [14], which are often 

not performed in actual clinical practice due to insuffi-
cient time.

With recent developments in image analysis technol-
ogy and machine learning, automatic measurement tech-
nology has become increasingly popular [15, 16]. In this 
study, to reduce the burden on physicians, a system that 
automatically recognizes the vertebral body parts in lat-
eral images of cervical spine X-ray images and automati-
cally measures intervertebral movements was developed 
by comparing the cervical anterior and posterior bending 
images. The accuracy of the system was verified by com-
paring its results with those of a spine specialist, and its 
usefulness was examined.

Materials and methods
Study participants and input image
Medical records of patients admitted to the Department 
of Orthopedics and Spine Surgery at Tokyo Medical and 
Dental University Hospital between May 2013 and Sep-
tember 2015 were retrospectively studied. This study 
included the records of 484 patients aged between 20 and 
100 years. Patients with a history of cervical surgeries or 
trauma were excluded. A two-way radiograph of the lat-
eral aspect of the cervical spine in full flexion was taken 
in all patients, and full extension positions were taken by 
expert radiology technicians; all of which were included 
in the study.

Digital images of cervical spinal X-ray images were 
exported in JPEG format. The dataset used in this study 
consisted of 968 X-ray images of the cervical spine in the 
flexion and extension positions. Of these 968 images, 922 
(461 patients) were used as training data, and the remain-
ing 46 (23 patients) were used as test data. The test data 
(46 images from 23 patients) were randomly chosen from 
484 patients. All X-ray images were labeled according to 
the guidance of expert spine surgeons (Fig. 2). The cervi-
cal spine regions to be masked were different for c3–c7 
and for c1 and c2 because of the special shape of the lat-
ter. Specifically, the c1 region is the anterior arch of the 
C1 vertebra, and the c2 region includes the entire ver-
tebrae from the vertebral body to the odontoid process. 
The regions were labeled “c1”, “c2”, and “c3toc7”.

System design
Overview
A desktop application for measuring cervical range of 
motion (CRoM) was developed. Figure 3 illustrates the 
flow of the proposed system. First, the cervical ver-
tebrae region was estimated from the cervical spine 
X-ray image using Mask Region-based convolutional 
neural network (R-CNN) [17]. The estimated region is 
approximated using a simple polygon with three or four 
vertices. The edges of the polygons of cervical vertebra 

Fig. 1  Example of annotation for measurement and cervical 
vertebrae call
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n and cervical vertebra n + 1, which are close to the 
center of each other, are the edges that lie between the 
cervical vertebrae. The CRoM angle was calculated by 
measuring the angle between the cervical spine in the 
flexion and extension images, and then calculating the 
difference. The displayed angle of the CRoM measure-
ment system was calculated by rounding down to the 
nearest whole number. The reason is that RoM angles 
are small and values after the decimal point do not 
affect diagnosis.

Mask R‑CNN model construction
Three-class classification and segmentation models 
were created by using an open-source Mask R-CNN 
(https://​github.​com/​matte​rport/​Mask_​RCNN). The 
weights learned by Microsoft COCO [18] as the initial 
weights were used and updated by retraining the entire 
network using the created training data. The training 
parameters are listed in Table 1. The training data were 
divided so that the ratio of training data to validation 
data was 8:2.

Algorithm
After the training was completed, a learning model, 
trained on 378-person images, was saved. At the time 
of measurement, the Region Proposal Network (RPN) 
in the learning model saved was used to extract can-
didate regions of objects in images inputted into the 
learning model saved, and features were extracted from 
the boxes of each candidate region using RoIPool [19]. 
In the training model, class classification and bounding 
box regression were performed, and object regions were 
extracted from the input image by performing pixel-by-
pixel class classification [17]. The cervical vertebrae are 
extracted from the image using this principle, and CRoM 
was measured using the algorithm described below. 
The bounding box coordinates and area information of 
the regions estimated by Mask R-CNN are stored in an 
array but are not arranged in the order of c1–c7. There-
fore, it is necessary to shift the cervical vertebrae posi-
tions of the estimated regions in both images such that 
they correspond. To prepare for the measurement, the 
y-coordinates of the bounding box should be in ascend-
ing order, and the estimated regions should be rear-
ranged in the order of c1–c7. However, it is sometimes 
impossible to estimate some cervical regions in an image. 
In such a case, the difference between the upper left 
and lower right y-coordinates of the rectangles of cervi-
cal vertebra n and cervical vertebra n + 1 was taken and 
considered continuous if it is less than half the height 
of the circumscribed box of cervical vertebra n. If this 
condition was not met, it was judged that there was a 
misestimated region or cervical vertebrae region that 
cannot be estimated. The flow of automatic annotation 
is shown in Fig.  4. First, the contour coordinates of the 
region are obtained from the estimated cervical verte-
brae region (Fig. 4a). The coordinates of the convex hull 
are selected from the contour coordinates, and the con-
vex hull region is approximated as a polygon with three 
or four vertices (Fig.  4b, c). Subsequently, the midpoint 
of each edge of the approximated polygon is calculated. 
The edge where the calculated midpoints were close to 
each other (between cervical vertebra n and cervical ver-
tebra n + 1) was regarded as the edge of the cervical spine 
used for measurement (Fig.  4d). However, between c1 
and c2, the line for measurement is drawn vertically. The 
algorithm for drawing the line is different from that for 
below c3. c1 and c2 are approximated as triangles by the 
algorithm. For this reason, the longest side of the triangle 
to be approximated is used as the line for measurement 
for c1, and the line to the right of the lower edge of c2 is 
used as the line for measurement for c2 (Fig. 4e). Because 
polygons below c3 are approximated to be inscribed in 
the convex hull region, their edges may be far from the 
contour coordinates of the estimated region. In this case, 

Fig. 2  Annotation area for learning model. c1, the anterior arch 
region. c2, the region that included the entire vertebrae from the 
vertebral body to the odontoid process. c3toc7, the regions from 
c3–c7

https://github.com/matterport/Mask_RCNN
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the contour coordinates near the selected edge of the 
approximate polygon were extracted (Fig.  4f ). Then, × 1 
and y1 were the coordinates of the left end of the selected 
edge in the approximate polygon, × 2 and y2 were the 
right ends, and x_M and y_M were the midpoints (Fig. 5). 
Let the x-coordinate group of the contour coordinates be 
verts_x and the y-coordinate group be verts_y. The upper 
end of the vertebra of interest is the contour coordinate 
that satisfies the condition of Eq.  1 and is the contour 

coordinate in the blue box in Fig. 5. The lower edge is the 
contour coordinate that satisfies the conditions in Eq. 2, 
which is the contour coordinate in the red box in Fig. 5. 
A line was drawn on these coordinates using the least-
squares method to determine the angle between them 
(Fig. 4g). The angle between the two lines was calculated 
from Tangent’s additive theorem using Eq. 3, where a and 
b are the slopes of the two lines.

Our system was implemented using Python (version 
3.6.12, Python Software Foundation, Delaware, USA), a 
machine learning library TensorFlow (version 1.13.1, ten-
sorflow.org), a machine learning library Keras (version 
2.0.8, keras.io), h5py (version 2.10.0, The HDF Group, 

(1)(x1 ≤ vertsx ≤ x2) ∩ y2 ≤ vertsy ≤ y1

(2)
{

(x1 ≤ vertsx ≤ xM) ∩
(

yM ≤ vertsy ≤ y1
)

(xM ≤ vertsx ≤ x2) ∩
(

y2 ≤ vertsy
)

(3)tan θ =
a−b
1+ab

Fig. 3  Flow of our proposed system for measurement cervical range of motion (CRoM)

Table 1  Hyperparameters in this study

Parameters

Training data 756 images

Validation data 166 images

Classification Three-class classification

Number of epochs 100

Image size 512 × 512 pixels

Batch size 1

Learning coefficient 0.001

Optimization method Stochastic gradient descent
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Illinois, USA), scikit-image (version 0.17.2, scikit-image.
org), scipy (version 1.5.4, scipy.org), matplotlib (version 
3.3.3, matplotlib.org), Pillow (version 8.0.1, python-pil-
low.org), and opencv-contrib-python (version 4.4.0.46, 
opencv.org).

Mask R‑CNN model performance evaluation
A total of 756 X-ray images were trained on a Mask 
R-CNN model for 100 epochs. The test data (46 images 
from 23 patients) were randomly chosen from 484 
patients. The accuracy of the detection in cervical spine 
regions was evaluated using intersection over union 
(IoU), which is the similarity between two sets [20]. The 
IoU value was obtained by dividing the common part of 

the correct and estimated regions by the union of the two 
regions, where the maximum value was represented by 
1. The higher the value, the higher the accuracy of object 
detection.

Manual measurement method
To verify the accuracy of the developed system, manual 
measurements were performed. On the X-ray images, 
lines were drawn at the upper and lower edges of each 
vertebra [12]. The angles between the two lines were 
measured during flexion and extension. The difference 
between the two angles was then calculated. Because of 
the special shapes of C1 and C2, a line was drawn on the 
posterior margin of the anterior arch for C1 and on the 
posterior margin of the vertebral body for C2, and the 
angle between these lines was determined (Fig. 1). These 
angles were defined as the CRoM.

Evaluation of accuracy in this system
The accuracy of the automatic measurement method 
was evaluated by comparing the average error between 
the true value and the automatic measurement value 
and between the true value and the resident’s measure-
ment value using the specialist’s measurement as the 
true value [21]. A specialist in this context refers to a 
spine surgeon who has specialized in spine surgery for 
more than 10 years, while a resident refers to a surgeon 
whose career is less than 3 years. The true values were 
measured using a homemade system that performed the 
same angle calculations as the automatic measurement 
system. Therefore, the angular readings of the true values 
were made on the same basis. Residents were also asked 
to take measurements using the same homemade meas-
urement system. The data to be measured were the same 

Fig. 4  Flow of automatic annotation for detecting the upper and lower edges of the cervical spine. a Contour lines of the detecting region. b 
Coordinates of the detecting region. c Approximating a convex hull. d Selecting the vertebral edge to draw a line. e Annotating between C1 and 
C2. f Extraction of the contour coordinates near the selected edge. g Annotating between C1/2 and C6/7

Fig. 5  Extraction range of coordinates through which the line 
passes. × 1, rightmost coordinate of the edge. y1, rightmost 
coordinate of the edge. × 2, leftmost coordinate of the edge. y2, 
leftmost coordinate of the edge. x_M, midpoint coordinate of the 
edge. y_M, midpoint coordinate of the edge
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46 images of the test data (23 patients) used to validate 
the learning model in the cervical region. These images 
were not included as validation data in Table 1. The true 
value was measured 69 times by two specialists: 23 per-
sons (test data) × three times (number of measurements). 
The frequency of measurements was limited to once per 
day and was not continuous. The true value was the aver-
age of three measurements taken by the two specialists. 
Two residents, who were given guidance on the cervical 
CRoM angle measurement by a specialist, were asked to 
measure the test data under the same conditions as that 
of the specialist.

The error between the true and automatic measure-
ment values was calculated by averaging the difference 
between the two values for each vertebra as an absolute 
value. The error between the true value and the value 
measured by a resident was calculated by averaging 
the difference between the true value and the resident’s 
measurement between each cervical spine for each of the 
three times the resident performed the measurements.

Statistical analysis
A two-sided t-test at the 5% significance level was per-
formed to determine whether the differences were sta-
tistically significant [22]. Differences were considered 
statistically significant at a P-value of ≤ 0.05. Analyses 
were performed using Microsoft Excel 2016 (Microsoft, 
Washington, USA). Variable 1 was the error value of 
the resident, and the number of samples was 798: resi-
dent (two persons) × number of measurements (three 
times) × 133/138 cervical intervals. Variable 2 was the 
error value of the automatic measurement, and the num-
ber of samples was 798: 133/138 cervical spine × the 
number of measurements of the system (six times).

Results
Learning model for the cervical region
Forty-six images of the test data were estimated. Of a 
total of 322 cervical vertebra in these 46 images, 313 were 
successfully estimated, meaning that 97% of the total test 
data could be detected. The IoU values for each cervical 
spine vertebra are listed in Table 2. The mean IoU value 
for all the 46-test data was 0.85.

Accuracy comparison between the proposed system 
measurements and the resident’s measurements
In the measurement of the CRoM angle in the test 
data, the number of places where automatic measure-
ment was possible was 133 out of 138 places for 23 
people × six (places where the CRoM angle was meas-
ured). The remaining five places were not measured 
because the cervical region could not be segmented. 
The mean error between the true value of the CRoM 

angle between each vertebra in the automatic and 
resident measurements is shown in Fig.  6. The errors 
between the true value and the automatic measure-
ment were compared with the errors between the true 
value and the resident’s measurement. Figure 6 shows a 
comparison of the average error between the resident’s 
and automatic measurements. There was no signifi-
cant difference in the average error between the resi-
dent’s measurements and the automatic measurements. 
Significant differences in error were examined for 
C1/2–C6/7. There was a significant difference between 
C2/3 and C5/6, and the resident’s measurement had 
a smaller error as compared to that of the automatic 
measurement. The difference between C3/4 and C4/5 
were also significant, but the automatic measurement 

Table 2  Intersection over union (IoU) of each cervical spine

The IoU value was used to evaluate the accuracy of detection in cervical spine 
regions. The maximum value was represented by 1. The higher the value, the 
higher the accuracy of object detection

IoU intersection over union

Position IoU

C1 0.74

C2 0.83

C3 0.88

C4 0.88

C5 0.87

C6 0.86

C7 0.86

Average 0.85

Fig. 6  Comparison of the mean absolute error between the 
resident’s and automatic measurements. There is a significant 
difference between C2/3 and C5/6, and the resident has a smaller 
error than that of the automatic measurement. C3/4 and C4/5 also 
have a significant difference, but the automatic measurement has 
a smaller error than that of the resident’s measurements. There was 
no difference in the overall mean error between the automatic and 
resident’s measurements. *P < 0.05
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had a smaller error as compared to that of the resident’s 
measurement. There was no difference in the overall 
mean error between the automatic and resident’s meas-
urements. However, the error variance was smaller for 
the automatic measurement. The standard deviations 
for each measurement by specialist and residents are 
shown in Table  3. In the automatic measurement, the 
standard deviation was zero because the same value 
was obtained even after three measurements.

Accuracy comparison between the proposed system 
measurements and the specialist’s measurements
The mean error between the true value of the CRoM 
angle between each vertebra in the automatic measure-
ments is shown in Table  4. C3/4, C4/5, and C6/7 had 
mean errors of less than 3°.

Discussion
In this study, a system was developed to automati-
cally measure the range of motion of the cervical verte-
brae using lateral images of cervical spine X-ray images 
and verified its accuracy. As a result, it was possible to 
measure the range of motion with an accuracy equiva-
lent to or better than that of an orthopedic resident. 

The measurement, which normally takes approximately 
3–5 min, can be performed within 10 s using a PC with 
an Intel Core i7-8565U CPU at 1.80  GHz (Additional 
file  1: Video), which is expected to greatly contribute 
to reducing the workload of the physicians. It would be 
especially meaningful for general physicians with no 
training in orthopedics to be able to perform screening as 
accurately as orthopedic surgeons in a short time.

Automatic image analysis technology has been widely 
studied and applied for the detection of cancer and 
fractures [23–26]. The image analysis technology and 
machine learning used in this study are unconventional 
in terms of the combination of these technologies and 
have the advantage that the measurement results do not 
change regardless of how many times the same data are 
used. It also demonstrated success in extracting impor-
tant information as an indicator of medical care. The 
standard deviation of the error of C2/3–C6/7 was not 
much different from that of the measurements made by 
the specialists and residents; therefore, it can be used in 
actual clinical practice and can be applied as an auxiliary 
system for diagnosis. However, there is a disadvantage in 
that the measurement accuracy of the movable angle of 
C1/2 is low, which may need to be solved using another 
cervical segmentation method.

Automatic image analysis technology in the medi-
cal field aims to reduce the workload of physicians and 
the disadvantages of patients by reducing the number of 
events missed by physicians, for which the positive rate 
is relatively low, and is expected to be widely used in the 
future [27, 28]. However, the direction of this study dif-
fers from existing studies in that it aims to reduce the 
workload of physicians and supplement their lack of 
experience by aiming to automate the measurement. 
The increased movement between the cervical vertebrae 
suggests that the intervertebral disc tissue has begun 
to degenerate or be damaged, and braking between the 
vertebrae has begun to fail, which may lead to nerve 
root or spinal cord compression due to disc herniation 
[29–31]. MRI is the standard method of evaluating spi-
nal cord compression. A skilled physician can empirically 
evaluate intervertebral movement without the need for 
imaging measurements. However, inexperienced or non-
specialized physicians need time to measure, given that 
not much effort is put into this in actual clinical practice. 
Quantitative evaluation of cervical spine mobility with 
a system such as this one will assist physicians in saving 
their time by avoiding manual measurements and help to 
understand the cause of spine compression.

This study had some limitations. First, the actual degree 
of spinal cord compression was not analyzed. Because the 
samples in this study were retrospectively collected and 
neurological examination and MRI were not performed 

Table 3  Standard deviation of the specialist’s and resident’s 
measurements

Vertebra Specialist value (°) Resident value (°)
Standard deviation Standard deviation

C1/2 4.4 5.2

C2/3 2.4 2.6

C3/4 2.9 2.9

C4/5 2.5 3.0

C5/6 2.7 2.7

C6/7 2.4 2.7

Average 2.9 3.2

Table 4  The mean absolute error and standard deviation of the 
specialist’s and automatic measurements

Vertebra Mean absolute error 
(degree)

Standard 
deviation 
(degree)

C1/2 5.7 4.4

C2/3 4.0 3.6

C3/4 2.5 2.4

C4/5 2.6 2.1

C5/6 3.6 2.3

C6/7 2.5 2.2

Average 3.5 2.8
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in all patients who underwent cervical X-ray, the rela-
tion among the neurological finding, range of motion and 
degree of spinal cord compression could not be exam-
ined. It is planned to analyze neurological symptoms in 
patients who have undergone both X-ray and MRI. Sec-
ond, because this was a single-institution study, selection 
bias could not be eliminated. In the future, the addition 
of training data from other hospitals and other cervical 
segmentation methods will be considered to improve 
the accuracy of the measurements. Moreover, this sys-
tem will be incorporated into an image viewer and widely 
applied to hospitals.

Conclusions
A system for measuring range of motion of each cervi-
cal vertebra on X-ray images was developed and showed 
accuracy comparable to that of spine surgeons. This sys-
tem will be effective in reducing the burden on and sav-
ing time of orthopedic surgeons by avoiding measuring 
X-ray image manually.
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