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Abstract 

Background:  The trapeziometacarpal (TMC) joint is a mechanically complex joint and is commonly affected by mus-
culoskeletal diseases such as osteoarthritis. Quantifying in vivo TMC joint biomechanics, such as joint angles, with tra-
ditional reflective marker-based methods can be difficult due to the joint’s location in the hand. Dynamic computed 
tomography (CT) can facilitate the quantification of TMC joint motion by continuously capturing three-dimensional 
volumes over time. However, post-processing of dynamic CT datasets can be time intensive and automated methods 
are needed to reduce processing times to allow for application to larger clinical studies. The purpose of this work is to 
introduce a fast, semi-automated pipeline to quantify joint angles from dynamic CT scans of the TMC joint and evalu-
ate the associated error in joint angle and translation computation by means of a reproducibility and repeatability 
study.

Methods:  Ten cadaveric hands were scanned with dynamic CT using a passive motion device to move thumbs in 
a radial abduction–adduction motion. Static CT scans and high-resolution peripheral quantitative CT scans were 
also acquired to generate high-resolution bone meshes. Abduction–adduction, flexion–extension, and axial rota-
tion angles were computed using a joint coordinate system. Reproducibility and repeatability were assessed using 
intraclass correlation coefficients, Bland–Altman analysis, and root mean square errors. Target registration errors were 
computed to evaluate errors associated with image registration.

Results:  We found good repeatability for flexion–extension, abduction–adduction, and axial rotation angles. Repro-
ducibility was moderate for all three angles. Joint translations exhibited greater repeatability than reproducibility. 
Specimens with greater joint degeneration had lower repeatability and reproducibility. We found that the difference 
in resulting joint angles and translations were likely due to differences in segment coordinate system definition 
between multiple raters, rather than due to registration errors.

Conclusions:  The proposed semi-automatic processing pipeline was fast, repeatable, and moderately reproducible 
when quantifying TMC joint angles and translations. This work provides a range of errors for TMC joint angles from 
dynamic CT scans using manually selected anatomical landmarks.
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Background
The trapeziometacarpal (TMC) joint at the base of the 
thumb provides the unique prehensile ability of the hand, 
allowing for grasping and pinching. Defined as a bicon-
cave-convex or saddle shaped joint [1] the TMC joint is 
supported by 16 ligaments [2] and has been shown to 
experience contact forces of up to 120 kg during strong 
grasps [3]. The biomechanical complexity of the TMC 
joint increases the joint’s predisposition to the devel-
opment of joint diseases such as osteoarthritis (OA), 
wherein ligament laxity [4] and repetitive motions [5–7] 
have been shown to increase the risk of development of 
OA. As such, better understanding the biomechanical 
behaviour of the TMC joint may provide new informa-
tion in the study of diseases of the hand. However, the 
quantification of joint biomechanics in the TMC joint is 
often difficult in vivo due to the small size of bones and 
inaccessibility for skin-based marker placement (e.g., car-
pal bones). To quantify joint motion in three dimensions 
(3D) in motion capture systems, reflective skin-based 
markers are placed on each bone segment in three spatial 
planes. However, non-invasively placing reflective mark-
ers on the TMC joint is often not possible, particularly 
for the trapezium located in the wrist. The use of non-
invasive medical imaging technologies, such as com-
puted tomography (CT), can provide 3D representations 
of joints. While previous imaging studies have shown 
changes in joint space and contact area [8, 9] in OA of the 
TMC joint, these studies have been limited to static imag-
ing, which may not represent true joint biomechanics, 
particularly in diseased joints. Capturing true dynamic 
TMC joint motion may improve our understanding of 
TMC joint biomechanics and how altered joint biome-
chanics may relate to the development of diseases such as 
OA. Dynamic CT is a technique that has been commonly 
used in cardiac and respiratory imaging and is now 
emerging as a potential technique for imaging joint bio-
mechanics in vivo. Dynamic CT provides 3D images over 
time, allowing for more accurate estimates of hand joint 
kinematics than is possible with motion capture systems. 
Several recent studies have utilized dynamic CT for vari-
ous musculoskeletal applications and have demonstrated 
the feasibility of dynamic CT imaging for measuring joint 
motion (i.e., rotations and translations), displacements, 
and even estimates of joint contact [10–14]. However, 
post-processing methods for dynamic CT datasets pub-
lished to date are time intensive, reducing the practicality 
of applying this technique to larger clinical studies. In one 
study, 120 h were required to process a single TMC joint 

for a single movement [11], highlighting the need for 
fast, automated tools to process data from dynamic CT. 
Dynamic CT protocols typically suffer from low spatial 
resolution when compared to static CT scans, requiring 
additional post-processing to overcome these limitations. 
These additional post-processing steps often introduce 
new sources of error from image processing techniques, 
such as image registration between dynamic CT frames 
or registration between static, high-resolution CT images 
to dynamic CT frames.

When describing joint motion, segment coordinate 
systems (SCS) must first be defined. Using 3D bone 
meshes obtained from CT imaging, SCSs can be defined 
using points placed on anatomical landmarks (AL) to 
define each axis of the SCS, similar to the process used in 
motion capture systems. Previous motion capture studies 
using skin-based reflective markers have shown that the 
subjective task of manually placing markers on ALs can 
cause large variations in the resulting joint angle meas-
urements [15]. These errors are often due to skin motion 
artifacts and inconsistencies between raters. While plac-
ing ALs directly on the bony anatomy in dynamic CT 
datasets removes the effect of skin motion artifacts, 
inconsistencies between raters may still produce errors in 
resulting joint biomechanics. Thus, the error associated 
with manually placed ALs in dynamic CT datasets war-
rants further investigation.

The purpose of this study was to introduce a fast, semi-
automated pipeline to measure TMC joint angles from 
dynamic CT scans, and to evaluate the repeatability and 
reproducibility of manual AL placement on resulting 
joint angles. As a secondary analysis, we evaluated the 
effect of manual AL placement on the repeatability and 
reproducibility of joint translations. For this study, we 
define the repeatability as the precision of resulting joint 
angles and translations after repeated AL placement by a 
single rater. Reproducibility was defined as the precision 
of resulting joint angles and translations after AL place-
ment by three separate raters. It was hypothesized that 
manually placed ALs will provide excellent repeatability 
and moderate reproducibility in resulting joint angles 
and translations.

Materials and methods
Specimen preparation
Ten cadaveric hands were acquired from the Advanced 
Technical Skills Simulation Laboratory at the Univer-
sity of Calgary (right hands, 4 female, 6 male, mean age: 
81.6 ± 13.9 years). Each specimen contained the entire 
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hand, wrist, and a portion of the forearm (Fig. 1). The 
medical history of each specimen was not obtained for 
this study. All methods were performed in accordance 
with guidelines set by the Conjoint Health Research 
Ethics Board at the University of Calgary (REB20-0039).

Experimental setup
Prior to scanning, each specimen was securely strapped 
onto a custom 3D-printed passive motion device 
designed to move the thumb in a radial abduction–
adduction motion (i.e., functional flexion–extension) 
(Fig.  1). An Arduino Uno microcontroller powered 
a servo motor using software developed using C++ 
(Arduino IDE, v1.8.13). A resting position was defined 
as laying all fingers flat, pointing forward, and pressed 
together to minimize space between fingers. From sev-
eral pilot scans, a time of 5  s for the thumb to move 
from a resting position to a fully abducted position and 
back to resting position, was determined to qualita-
tively minimize motion artifact. Range of motion was 
not standardized between specimens as we were only 
interested in errors associated between and within 
raters, not errors due to the passive motion device.

Imaging protocol
Each specimen underwent dynamic CT scanning (GE 
Revolution HD GSI scanner, GE Healthcare, Chicago, 
USA) at the Centre for Mobility and Joint Health, Univer-
sity of Calgary. Dynamic CT scans were performed using 
120 kVp, 100 mA, 0.4 s/gantry revolution, 40 mm longi-
tudinal coverage, and 0.625 × 0.625 × 2.5 mm voxel size. 
Each specimen was scanned for 15 s, resulting in approxi-
mately three radial abduction–adduction movements and 
60 frames of data. Dynamic CT images were resampled 
to 0.625 mm3 isotropic voxels. Due to scanner spatial 
resolution and longitudinal coverage limitations, static 
CT scans (120 kVp, 150  mA, 0.375 × 0.375 × 0.625  mm 
voxel size, and 0.531 pitch factor) were also performed 
to ensure the TMC joint was fully captured. Addition-
ally, high-resolution peripheral quantitative CT images 
(HR-pQCT, XtremeCT II, Scanco Medical, Brüttisellen, 
Switzerland) were acquired to provide greater detail in 
the bony anatomy when selecting ALs. HR-pQCT scans 
were obtained using a standard in vivo imaging protocol 
(68 kVp, 1470 µA, 43  ms integration time, 900 projec-
tions/180°, 61 µm3 voxels) with an extended longitudinal 
coverage to capture the full TMC joint.

Image processing
All processing was performed using custom Python 
scripts (v.3.8.5) using the VTK (v8.2.0, Schroeder et  al. 
[16]), ITK (v5.2.1, McCormick et al. [17]), and SimpleITK 
(v2.0.2, Lowekamp et  al. [18]) libraries. All scripts used 
in this study are made available through a public GitHub 
repository (https://​github.​com/​Mansk​eLab/​DYNACT). 
Binary masks for the first metacarpal (MC1) and tra-
pezium (TRP) were obtained from HR-pQCT images 
(Fig.  2). Then, a series of image registration steps were 
performed to move the bone masks to the dynamic CT 
space (Fig. 3). Each bone was processed individually and 
recombined in the dynamic CT image space.

Image segmentation
Grayscale HR-pQCT images were first binarized using 
a fixed global threshold (520 ≤ threshold ≤ 6600 Houns-
field units). Next, binary smoothing and a series of binary 
morphological operations (binary opening and closing) 
removed the binary components resulting from noise. 
A manual step was occasionally required to disconnect 
the MC1 and TRP bones when joint space was very nar-
row. Connected component labelling was then applied to 
isolate each bone. Further morphological operations and 
mesh smoothing were performed to obtain the final bone 
mask (Fig. 2). These bone masks were then used to select 
ALs.

Fig. 1  The passive motion device designed to move thumbs of each 
specimen in a radial abduction–adduction movement. An Arduino 
Uno microcontroller powers a servo motor to move the thumb 
through the range of motion. The main device platform was 3D 
printed

https://github.com/ManskeLab/DYNACT


Page 4 of 13Kuczynski et al. BMC Medical Imaging          (2022) 22:192 

Fig. 2  Processing pipeline for binarizing the TMC joint from HR-pQCT scans. The pipeline outlined is run for the first metacarpal and trapezium 
separately. The segmentation pipeline is semi-automated, only requiring manual intervention if the automated segmentation cannot differentiate 
between the first metacarpal and trapezium bones due to narrow joint space. The binary threshold (t) is provided in Hounsfield Units (HU) and the 
kernel size (k) for binary morphological operations are provided for the first metacarpal (MC1) and trapezium (TRP)

Fig. 3  Overview of the image registration pipeline. Intensity-based registration is used to generate rigid, 3D transformation matrices that transform 
binary masks from the high-resolution CT scans to each frame of the dynamic CT dataset. Anatomical landmarks chosen in the high-resolution 
image space by each rater are also transformed to each dynamic CT frame using the same rigid transformation
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Image registration
Bone masks and ALs were rigidly transformed to each 
frame of the dynamic CT scan in a three-step process 
(Fig.  3). This was required as the drastic resolution 
change from HR-pQCT to dynamic CT did not visually 
produce adequate alignment when registered directly. 
First, three manually placed landmarks were selected 
on each grayscale image (HR-pQCT, static CT, and the 
first frame of the dynamic CT scan) to generate an ini-
tial transformation between image spaces. Final image 
alignment was obtained automatically using intensity-
based image registration between each set of images. 
Registration for HR-pQCT to static CT and static CT 
to the first dynamic CT frame used a Mattes Mutual 
Information metric [19], Powell optimizer, linear inter-
polator, and rigid 3D transform. Image registration 
between dynamic CT frames was performed using a 
sequential registration approach that utilized the posi-
tion of the previous frame to provide initial alignment. 
A mean squares metric, Powell optimizer, linear inter-
polator, and rigid 3D transform were used to obtain 
binary masks and SCSs in each dynamic CT frame. 
Each registration provided a transformation matrix 
that could be used to transform the bone masks and 
ALs to the dynamic CT image space.

Joint kinematics
Segment coordinate system definition
Joint angles in the dynamic CT image space were com-
puted using a joint coordinate system (JCS) represen-
tation [20] previously defined for the TMC joint that 
minimizes kinematic cross-talk [21] (Fig. 4). To establish 
a SCS, a custom visualization tool was developed using 
Python and VTK to visualize each bone model in 3D, 
allowing for AL selection. Three ALs were defined on the 
MC1: (1) LDT: centre of the lateral distal MC1 tubercle, 
(2) MDT: centre of the medial distal MC1 tubercle, and 
(3) M1TJ: centre of the MC1-TRP joint surface. The ori-
gin of the MC1 SCS was defined as M1TJ. Four ALs were 
defined on the TRP: (1) TM1J: centre of TRP-MC1 joint 
surface, (2) TM2J: centre of the TRP-second metacarpal 
joint surface, (3) TSTJ: centre of the junction between the 
TRP-trapezoid and TRP-scaphoid joint surfaces, and (4) 
TDET: distal end of the dorsoradial tubercle (viewed lat-
erally). The origin of the TRP SCS was defined as TM1J. 
The definition of the SCSs for each bone have been previ-
ously described [21] and are shown in Fig.  4. ALs were 
later transformed to the dynamic CT image space where 
JCSs were defined in each frame.

Fig. 4  Visual representation of the anatomical landmarks (AL) used to define segment coordinate systems (SCS) on the first metacarpal (MC1) and 
trapezium (TRP) bones. A The three ALs required for the MC1 SCS, and B the four ALs required for the TRP SCS. Definitions of the SCS axes for each 
bone are provided below each figure. Similar figures were provided in the AL instruction document provided to each rater
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Joint coordinate system definition
In accordance with a previous JCS definition in the TMC 
joint [21], the following mobile axis sequence was used: 
flexion–extension about the Z-axis of the TRP SCS 
(Fig.  4, ZTRP), abduction–adduction about the X-axis of 
the MC1 SCS (Fig.  4, XMC1), and axial rotation about a 
floating axis mutually orthogonal to ZTRP and XMC1. ALs 
were transformed to each dynamic CT frame using trans-
formation matrices obtained from the image registration 
process defined above (Fig.  3). Orientation of the MC1 
relative to the TRP ( RTRP_MC1 ) was then computed by 
decomposing the ZYX mobile axis sequence:

where α is the abduction–adduction angle (abduction is 
positive), β is the axial rotation angle (internal rotation is 
positive), and γ is the flexion–extension angle (flexion is 
positive). Joint translation was computed by determining 
the translation of the MC1 SCS origin (landmark M1TJ) 
with respect to the TRP SCS [22].

Reproducibility and repeatability
Three raters (MTK, JJT, and TB) selected ALs on HR-
pQCT bone masks to evaluate the reproducibility of the 
processing pipeline. One rater (MTK) selected ALs in three 
repeated trials on all images to evaluate repeatability. Each 
rater was provided with a document outlining the locations 
of each AL. The document described each AL, showing 
the surface on which to place the AL and examples of AL 
placement on one specimen. Each rater’s ALs were trans-
formed to the dynamic CT image space to compute joint 
angles and translations and compare results between raters.

Image registration accuracy
Experimental setup
As the post-processing pipeline used to quantify joint angles 
relied on intensity-based image registration, we estimated 
the accuracy of the image registration by computing target 
registration errors (TRE). Three fiducial markers (boro-
silicate beads, 4.76 mm diameter) were implanted into the 
MC1 bone of one specimen. An incision along the anatomi-
cal snuffbox was made and fiducial markers were implanted 
by drilling holes into the bone and gluing beads into place.

Target registration error
The 3D rigid transformation between image spaces 
defined by aligning the centroids of the fiducial mark-
ers was considered as the gold-standard transformation 

RTRP_MC1 = RXMC1
· RY · RZTRP

=

cos(γ )cos(β) sin(γ )cos(α)+ cos(γ )sin(β)sin(α) sin(γ )sin(α)− cos(α)cos(γ )sin(β)

−sin(γ )cos(β) cos(γ )cos(α)− sin(γ )sin(β)sin(α) sin(α)cos(γ )+ sin(γ )sin(β)cos(α)

sin(β) −sin(α)cos(β) cos(β)cos(α)

( TGS ). Fiducial markers were binarized manually using 
ITK-SNAP (v3.8.0) [23] and centroids of each fiducial 
marker in each image space were computed. Then, the 
TRE is defined as the difference between TGS and the 
transformation resulting from the intensity-based reg-
istration ( TIR ), in a least squares sense. This calculation 
was performed over all n voxels ( vi ) of the moving image 
(Eq. 1).

The accuracy of the TRE is limited by the accuracy 
of the gold-standard transformation. To estimate the 
error associated with the gold-standard transforma-
tion, the fiducial registration error ( FRE ) was first 
calculated using three manually selected landmarks 
on the bony geometry, referred to as targets. The root 
mean square (RMS) difference between the centroids 
of these targets and the fiducial markers provides 
an estimate of the FRE (Eq.  2), which is used to esti-
mate the fiducial localization error ( FLE ) (Eq. 3) [24]. 
Finally, an estimate of the TRE for the TGS is calculated 
using the principal axes (PA) of the fiducial marker 
distribution (Eq. 4).

where nf  is the number of fiducial markers, ci is the cen-
troid of each fiducial marker, ĉi is the centroid of the tar-
get, p is the target location, di is the distance from the 
centroid of the target to the PA, and fi is the RMS dis-
tance from each fiducial marker’s centroid to the PA.

Statistical analysis
All statistical analyses were performed using R (v.4.1.1) 
[25] and SPSS (v.28.0.0.0) [26]. Inter- and intra-rater 
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reliability coefficients (ICC), Bland–Altman analysis, 
and frame-by-frame RMS error (RMSE) of joint angles 
between raters were calculated to evaluate reproduc-
ibility and repeatability. Inter-rater ICC was modelled 
as a two-way, random effects, absolute agreement, sin-
gle measurement model. Intra-rater ICC was modelled 
as a two-way, mixed effects, absolute agreement, single 
measurement model. Agreement between and within 
raters was interpreted as follows: excellent agreement 
(ICC ≥ 0.9), good agreement (0.75 ≥ ICC > 0.9), moder-
ate agreement (0.5 ≥ ICC > 0.75), and poor agreement 
(ICC < 0.5) [27]. Bland–Altman analysis was performed 
by comparing each rater’s angle results to the mean 
angles between all raters. A linear regression of each 
rater’s Bland–Altman results was used to evaluate the 
slope of each rater’s angles compared to the mean. As 
a secondary analysis, frame-by-frame RMSE of joint 
translations were calculated for each spatial plane.

To evaluate the error in SCS definition between 
raters, the orientation difference between SCS axes was 
calculated between each pair of raters. First, the dot 
product between corresponding SCS axes was com-
puted (e.g., XSCS_1 · XSCS_2 , XSCS_1 · XSCS_3 , etc.) in the 
HR-pQCT image space and again in each of the 60 
dynamic CT frames. Then, for each SCS axis and for 
each pair of raters, the RMSE between the HR-pQCT 
SCS orientation difference and each dynamic CT SCS 

orientation difference was computed, resulting in 60 
RMSE values. This process was then repeated for each 
specimen.

Results
Joint kinematics
To compare the TMC joint range of motion with previ-
ous studies, the mean joint angle across all specimens 
and across all raters is provided along with the angle 
range. Mean joint angles were 40.7° ± 5.8° (range: 20.0° 
to 53.2°) for abduction–adduction, −16.3° ± 7.1° (range: 
−28.4° to −5.2°) for flexion–extension, and -5.4° ± 4.1° 
(range: -13.2° to 4.6°) for axial rotation.

Joint kinematics reproducibility and repeatability
Intra-rater ICC values had the following ranges across 
all specimens: abduction–adduction: 0.64–0.91, flex-
ion–extension: 0.50–0.99, axial rotation: 0.46–0.98. 
Inter-rater ICC values had the following ranges: 
abduction–adduction: 0.21–0.90, flexion–extension: 
0.07–0.71, axial rotation: 0.12–0.85. All ICC values 
are presented in Fig.  5. A comparison of joint angles 
from one specimen are shown in Fig. 6. Results of the 
Bland–Altman analysis for one specimen are shown in 
Fig. 7. While roughly half of the slopes were statistically 
significantly different than zero, all regression lines 
had slopes with small values (< 0.06, absolute value). 
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Average RMSEs are presented in Fig. 8 and intra-rater 
RMSE tended to be lower than inter-rater RMSE. Aver-
age inter-rater RMSE across specimen was 1.76° ± 1.54° 

for abduction–adduction, 1.58° ± 1.19° for flexion–
extension, and 1.08° ± 0.69° for axial rotation. Average 
intra-rater RMSE across specimen was 2.03° ± 1.38° for 
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abduction–adduction, 1.36° ± 0.84° for flexion–exten-
sion, and 1.19° ± 0.85° for axial rotation. The following 
joint translation RMSEs were computed: X < 1.44  mm, 
Y < 1.55  mm, Z < 2.15  mm for inter-rater RMSE, and 
X < 1.26  mm, Y < 0.83  mm, Z < 1.05  mm for intra-rater 
RMSE.

Image co‑registration accuracy
TREs for the manually selected targets were found 
to be 0.0010, 0.0010, and 0.0011  mm for the registra-
tion between HR-pQCT and static CT, 0.64, 0.43, and 
0.66 mm for the registration between static CT and the 
first dynamic CT frame, and 0.33, 0.33, and 0.27 mm for 
the registration between the first and second dynamic CT 
frame. The error associated with the gold-standard trans-
formation (i.e., using the centroids of the implanted fidu-
cial markers) was found to be 0.00049 mm for the image 
registration between HR-pQCT and static CT, 0.31 mm 
for image registration between static CT and the first 
frame of the dynamic CT dataset, and 0.62 mm between 
the first and second dynamic CT frames.

When analyzing the orientation difference between 
each bone’s SCS axes in the HR-pQCT and dynamic CT 
image space, we found that the RMSE between image 

spaces for each dynamic CT frame, for all pairs of raters, 
was less than 1.3e−11 mm (data not shown).

Discussion
We propose a semi-automated pipeline to quantify joint 
motion in the TMC joint using dynamic CT. Our joint 
angle results (Table  1) fall within range of previously 
reported TMC joint angles for similar thumb move-
ments [1, 21, 28]. While much of this pipeline has been 
automated, SCSs were defined using manually placed 
ALs. Contrary to our original hypothesis, we found 
good repeatability (i.e., intra-rater) and moderate repro-
ducibility (i.e., inter-rater) for joint angle computation. 
Additionally, we found joint translational errors to be 
lower when ALs were selected by a single rater as com-
pared to ALs selected by multiple raters, for each plane 
of motion. However, we found that within rater results 
exhibited lower variability (Fig. 5, Intra-Rater ICC) com-
pared to between rater results (Fig.  5, Inter-Rater ICC) 
for all joint angles. Inter-rater flexion–extension angles 
demonstrated lower ICC values when compared to inter-
rater abduction–adduction angles. Trapezium morphol-
ogy has been shown to change with age and disease state 
[29], which may lead to greater variability between AL 
placement and explain the decreased inter-rater ICC for 
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Fig. 8  Box plots showing the inter- and intra-rater root mean square error (RMSE) of joint angles across all specimens (n = 9). RMSE values were 
computed across each dynamic CT frame, resulting in 60 RMSE values for each specimen
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the flexion–extension angles. In previous studies, auto-
mated methods have been developed to define joint SCSs 
based on joint surface geometry in the TMC joint [30], 
and use statistical shape modelling (SSM) to estimate 
lower limb geometry and pose [31]. While such meth-
ods may improve the reproducibility of SCS definition in 
healthy TMC joints, it is not yet clear how robust such 
automated methods are to changes in articular morphol-
ogy, particularly in diseased TMC joints. In a post-hoc 
qualitative analysis, we found that joints with consider-
able joint degeneration had poorer agreement between 
raters compared to joints that appeared healthy. In joints 
that visually appeared healthy, ICC values were moder-
ate to excellent between and within raters (ICC > 0.5). 
These results indicate that manual selection of ALs to 
compute TMC joint kinematics may be appropriate for 
healthy joints. While our results indicate only moderate 
reproducibility in joint angle computation using manu-
ally placed ALs, the use of automated approaches for SCS 
definition [30] for diseased TMC joints warrants further 
investigation.

In Bland–Altman analysis, we compared each rater’s 
resulting joint angles to the mean across all raters. Apply-
ing a linear regression model to each rater’s Bland–Alt-
man plot revealed very small slopes across all raters 
and specimens (Table  2). While approximately half of 
these slopes were statistically significantly different than 
zero (p < 0.05), the small magnitude of regression slopes 
indicates that the difference between each rater and the 
average was not related to the magnitude of the average 
angle measurement. Further, we found that there was 
consistent bias between raters and the mean (Fig. 7), rep-
resentative of expected differences between rater’s AL 
placement. Whether differences detected between raters 
is clinically relevant warrants further investigation.

The image processing required for dynamic CT scans 
introduces new sources of error that are not prevalent 
in motion capture systems. In this study, intensity-based 
image registration was first performed between the HR-
pQCT and dynamic CT image spaces. However, we 
were not able to determine an optimal set of registra-
tion parameters that visually produced adequate bone 

Table 1  Mean joint angles across three raters

Specimen Joint angle mean [Range] (degrees)

Abduction–adduction Flexion–extension Axial rotation

1 34.2 [32.8, 36.9] −24.3 [−25.8, −21.1] −8.2 [−9.6, −6.8]

2 43.4 [41.1, 45.7] −17.5 [−19.8, −16.0] −4.4 [−6.5, −2.6]

3 46.9 [44.3, 48.6] −11.9 [−12.8, −10.3] −10.6 [−12.9, −9.7]

4 46.3 [43.7, 49.8] −3.1 [−5.2, −1.0] −10.4 [−13.2, −7.9]

5 33.8 [30.7, 37.8] −13.8 [−15.1, −9.5] −1.9 [−3.3, 0.7]

6 38.2 [36.5, 41.6] −20.3 [−21.6, −18.2] 1.7 [−0.8, 4.6]

7 40.4 [36.9, 47.8] −18.1 [−24.1, −15.1] −7.5 [−9.6, −4.4]

8 48.7 [46.6, 53.2] −11.5 [−13.5, −10.0] −1.9 [−4.0, 0.5]

9 34.4 [20.0, 40.1] −26.2 [−28.4, −20.1] −5.9 [−7.9, −1.5]

Table 2  Slopes of regression lines plotted for Bland–Altman analysis

Bold indicates statistical significance, where p < 0.05

Specimen Abduction–adduction Slope Flexion–extension slope Axial rotation slope

Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3

1 0.03 −0.01 −0.02 −0.02 0.02 0.01 −0.01 −0.02 0.01

2 0.01 0.01 −0.02 −0.01 0.02 0.01 0.00 −0.04 0.00

3 −0.03 −0.02 −0.02 0.04 0.03 0.00 −0.02 −0.01 −0.01

4 0.00 0.05 0.01 0.00 −0.05 0.04 −0.01 −0.01 −0.05
5 0.00 −0.01 0.01 0.00 0.02 −0.04 −0.01 −0.01 −0.01

6 0.02 −0.01 0.02 −0.01 0.00 −0.01 −0.01 0.01 0.00

7 −0.01 0.00 −0.02 0.01 −0.01 −0.01 0.00 0.01 0.00

8 0.02 −0.01 −0.02 −0.04 0.00 0.01 0.01 0.00 −0.02
9 0.06 −0.01 −0.03 0.00 −0.01 0.06 −0.06 0.01 −0.04
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alignment. This was likely due to the drastic change in 
spatial resolution between the HR-pQCT and dynamic 
CT image spaces. With the addition of an intermediate 
registration step using static CT scans of the specimens, 
we were able to obtain improved bone alignment when 
assessed visually. Further, quantitative analysis of the 
TREs associated with each image registration found voxel 
or sub-voxel level errors, suggesting that only a small por-
tion of the error in the joint angle results between raters 
was due to the image registration steps. When compar-
ing SCS orientation between raters in the HR-pQCT and 
dynamic CT image space, we found little difference in 
the orientation of SCS axes between image spaces. This 
suggests that any orientation difference between SCSs 
defined in the HR-pQCT image space are held constant 
after transforming all data to the dynamic CT space, fur-
ther reinforcing our confidence that the resulting differ-
ence in joint angles and translations between raters are 
due to rater biases when defining SCSs, not due to the 
image registration.

This study had several limitations. First, the dynamic 
CT image quality prevented the direct image segmen-
tation and SCS definition. Our scanner was limited to a 
spatial resolution of 0.625 × 0.625 × 2.5 mm and a longi-
tudinal coverage of 40 mm, not enough to fully capture 
the MC1 bone; however, newer scanners have dynamic 
protocols with larger longitudinal coverage and improved 
spatial resolution (e.g., 160  mm longitudinal coverage, 
0.625 mm3 spatial resolution). We utilized HR-pQCT 
scans to obtain full joint images for initial image seg-
mentation. However, this step poses challenges in  vivo 
due to the long scanning time and increased exposure to 
ionizing radiation. Instead, a high-resolution static CT 
scan that includes the whole bone can be obtained from 
other clinical CT scanners that are widely available. For 
example, recent developments in cone beam CT scan-
ners allows for imaging of the hand at resolutions up to 
0.2 mm3 (e.g., CurveBeam HiRise weight-bearing CT 
scanners), which may be sufficient for providing a more 
detailed initial segmentation than images obtained from 
dynamic CT. Despite the additional image processing 
steps used here to overcome the scanner limitations, 
the TRE results indicate there was no substantial impact 
on joint angles. Second, the TMC joints in the acquired 
specimens varied in joint condition. Some specimens 
had considerable degeneration (e.g., joint space narrow-
ing, presence of osteophytes, etc.) and others appeared 
healthy. We found that joint angle RMSE results were 
as high as 5.33° and 4.25° for inter-rater and intra-rater 
abduction–adduction, respectively (Fig.  8). However, 
the degree to which error is influenced by differences 
between healthy and diseased joints requires further 

study. Third, while we found that repeatability was higher 
than reproducibility (Fig. 5, 6), it is worth noting that the 
repeatability analysis was only performed using one rater. 
This rater was considered the most experienced in terms 
of TMC joint anatomy among the raters in this study and 
therefore our improved repeatability results may reflect 
this. Finally, the workflow we present in this study is 
semi-automated, with manual corrections only needed 
during image segmentation when joint space is narrow. 
However, employing more advanced methods for image 
segmentation (i.e., statistical shape modelling approaches 
[32]) may be incorporated to completely automate the 
post-processing of dynamic CT datasets and further 
reduce processing time.

Conclusions
This work has shown that our image processing pipeline 
to quantify joint angles and translations from dynamic 
CT scans of the TMC joint is fast, repeatable, but only 
moderately reproducible. We found poor reproducibility 
of joint angle computation using our pipeline in joints 
that appeared diseased or had severe joint degeneration. 
If ALs are to be placed manually on dynamic CT data-
sets of diseased joints, we recommend placement of ALs 
by a single rater. Moreover, we recommend the use of a 
detailed document to ensure consistency when plac-
ing ALs. Future work will be performed to determine 
whether the pipeline is sufficiently sensitive to differen-
tiate between healthy and diseased TMC joint kinemat-
ics. Moreover, the clinical significance of the difference in 
joint angles and translations found in this work between 
raters warrants further investigation. Many dynamic CT 
studies process their datasets using closed-source soft-
ware that is not widely available (e.g., Materialise Mim-
ics). Our open-source pipeline to quantify joint angles 
from dynamic CT scans requires approximately 1.5 h to 
completely process a single movement. Finally, this pipe-
line can be easily implemented for different motions, 
joints, and scan acquisition parameters, and can there-
fore enhance the utilization of dynamic CT to assess joint 
kinematics.
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