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Abstract 

Background:  Computed tomographic pulmonary angiography (CTPA) is the diagnostic standard for confirming 
pulmonary embolism (PE). Since PE is a life-threatening condition, early diagnosis and treatment are critical to avoid 
PE-associated morbidity and mortality. However, PE remains subject to misdiagnosis.

Methods:  We retrospectively identified 251 CTPAs performed at a tertiary care hospital between January 2018 to 
January 2021. The scans were classified as positive (n = 55) and negative (n = 196) for PE based on the annotations 
made by board-certified radiologists. A fully anonymized CT slice served as input for the detection of PE by the 2D 
segmentation model comprising U-Net architecture with Xception encoder. The diagnostic performance of the 
model was calculated at both the scan and the slice levels.

Results:  The model correctly identified 44 out of 55 scans as positive for PE and 146 out of 196 scans as negative for 
PE with a sensitivity of 0.80 [95% CI 0.68, 0.89], a specificity of 0.74 [95% CI 0.68, 0.80], and an accuracy of 0.76 [95% CI 
0.70, 0.81]. On slice level, 4817 out of 5183 slices were marked as positive for the presence of emboli with a specific-
ity of 0.89 [95% CI 0.88, 0.89], a sensitivity of 0.93 [95% CI 0.92, 0.94], and an accuracy of 0.89 [95% CI 0.887, 0.890]. The 
model also achieved an AUROC of 0.85 [0.78, 0.90] and 0.94 [0.936, 0.941] at scan level and slice level, respectively for 
the detection of PE.

Conclusion:  The development of an AI model and its use for the identification of pulmonary embolism will support 
healthcare workers by reducing the rate of missed findings and minimizing the time required to screen the scans.

Keywords:  Artificial intelligence, Pulmonary embolism, Computed tomographic pulmonary angiography, U-Net 
architecture
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Introduction
Pulmonary embolism (PE) is an emergency condition 
associated with a high mortality and morbidity rate. 
The annual incidence of embolism is approximately 
60–70 cases per 1,00,000 people, resulting in up to 
1,00,000—3,00,000 deaths annually [1]. PE is the third 

most common cause of cardiovascular disease events, 
with only myocardial infarction and stroke having a 
higher prevalence [2]. Cancer-associated PE imposes an 
additional burden on patients and healthcare systems. 
Incidental diagnosis of cancer in patients hospitalized 
for acute PE was associated with 90% increase in over-
all mortality, longer period of stay at hospitals, higher 
cost of hospitalization, and higher risk of rehospitaliza-
tion and home health services on discharge from hospital 
[3]. On the other hand, PE is also incidentally diagnosed 
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in approximately 5% of patients with cancers on routine 
medical imaging. Cancer patients with incidental PE are 
at higher risk of recurrent venous thromboembolism 
despite anticoagulant treatment [4]. The most common 
cause of death from PE is a failure to diagnose [5]. The 
diagnostic approach to PE usually involves a series of 
investigations, including echocardiography and D-dimer, 
establishing the necessity for further confirmatory exam-
inations like Computed Tomographic Pulmonary Angi-
ography (CTPA) and ventilation/perfusion scans [6]. 
Because of its convenience of operation, CTPA enables a 
definitive diagnosis of PE and has practically eliminated 
the use of ventilation/perfusion scans [7]. According to 
multiple published studies, CTPA has a sensitivity and 
specificity of approximately 90% for detecting throm-
bus in the main pulmonary and segmental arteries [8, 
9]. CTPA has no contraindications and a low (0.3–1.8%) 
associated morbidity [8]. Because of COVID-19 pneumo-
nia, the frequency of cases diagnosed with PE on CTPA 
has increased. Planquette et al. reported a 5% prevalence 
of PE in the total COVID-19-affected population and a 
20% prevalence in the clinically suspected population 
with acute PE [10].

A test lacking a high degree of sensitivity results in a 
delay in the timely initiation of anticoagulant therapy 
for embolus-positive patients, consequently leading to a 
higher mortality rate. Early anticoagulation therapy has 
been documented to reduce the mortality rate from 30% 
to 8% [11]. However, the increase in the utilization of 
medical imaging has made a timely and reliable diagno-
sis of CTPE extremely difficult for the healthcare system 
and radiology practitioners. The usage of CTPA in emer-
gency departments has increased over 27-fold in the last 
two decades [12, 13]. The increased use of cross-sectional 
imaging has disproportionately increased the workload 
in emergency settings, and fatigue from long work hours 
and overnight shifts may contribute to an increase in 
diagnostic errors [14–16]. Although CTPA has become 
the gold standard in diagnosing PE, accurate predic-
tion of PE using the modern multidetector row CTPAs 
requires time and expertise in reading cross-sectional 
CT images [17, 18]. These challenges can be addressed by 
employing automated detection algorithms for diagnos-
ing PE in clinical settings. The advantage of AI over other 
conventional methods for the detection and diagnosis 
of pathologies has made it an attractive option for radi-
ologists and healthcare providers [19]. Applications of AI 
in medical imaging help automate and standardize the 
protocols, which saves time and effort, improves diag-
nostic performance, and optimizes the workflow of radi-
ologists [20, 21]. A well-trained neural network can help 
healthcare practitioners by highlighting the exams that 
are positive for PE in the worklist, thereby accelerating 

the diagnosis and communication workflow [22]. Previ-
ous computer-aided detection (CAD) algorithms for the 
automatic identification of PE on CTPAs had low sensi-
tivities [23–26]. Recent studies have focused on the use of 
CTPA imaging for PE diagnosis using deep learning and 
convolutional neural networks.

The objective of our study is to externally validate the 
performance of a 2D segmentation model with U-Net 
architecture for automated detection of PE in CTPAs 
using clinically relevant data from the CTPAs performed 
at a tertiary care hospital. In this study, we validate an 
externally developed deep learning model “DxPE AI 
Screen” for early detection of emboli on CTPA to pro-
vide radiologists with a tested high-performance tool to 
help triage patients with PE. This tool has the potential 
to enable rapid and reliable radiology reporting while 
minimizing the substantial disparities between general 
radiologists and subspecialty-trained radiologists in 
interpreting scans. The U-Net architecture is generally 
used to address segmentation problems, but we effec-
tively utilized it to solve a classification task by deriv-
ing probabilistic output from segmentation output. Our 
approach of converting slice-level segmentation predic-
tions to scan-level classification predictions resulted in a 
high area under the curve and a short processing time.

Materials and methods
Patient selection (external validation dataset)
The study was reviewed and approved by the Institu-
tional Review Board of a tertiary care centre. The study 
was performed in a Health Information Portability and 
Accountability Act (HIPAA) compliant manner. Due to 
the retrospective nature of data collection, the need for 
written informed consent from the individual patients 
was waived. 251 CTPAs performed at the institution 
between January 2018 and January 2021 were retrospec-
tively collected. Extraction of datasets was performed 
utilizing the hospital Picture and Archiving Commu-
nication System (PACS). The diagnosis of PE included 
both clinical information (D-dimer test and echocardi-
ography) and CTPA findings. CTPAs with poor-quality 
images or motion artifacts were excluded from the study. 
The flowchart illustrating the selection of scans after 
the implementation of inclusion and external criteria is 
represented in Fig.  1. CTPA studies were performed on 
a 128-slice multidetector Philips Ingenuity CT scanner 
using the standard protocol. The tube voltage was kept 
constant at 120  kV, and the scan was performed in the 
craniocaudal direction with the slice thickness of 0.9 mm 
for 248 scans, 1 mm for 2 scans, and 2 mm for 1 scan. For 
contrast injection, the region of interest (ROI) was placed 
below the carina at the level of the pulmonary trunk with 
an ROI on the pulmonary artery. For the test bolus, the 
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patient was administered 20  mL of non-ionic contrast 
with a 10 mL saline chaser at a rate of 5 mL/s. The actual 
scan procedure was performed with the administration 
of 60 mL non-ionic contrast with a 100 mL saline chaser 
at a rate of 5 mL/s.

Establishing ground truth
A total of 942 CT scans from two open-source datasets, 
Kaggle FUMPE [27] and RSNA STR Pulmonary Embo-
lism Detection [28], were used for training and inter-
nal validation of the model. The external test dataset, 
consisting of 251 scans, was obtained from a tertiary 
care centre. To establish the ground truth, three board-
certified expert radiologists with 23, 15, and 9  years of 
experience categorized scans in multiple batches of 25 
and highlighted emboli in each slice, if present, using the 
ITK-Snap software (version 3.8.0). This data was used to 
calculate the performance of the model at both slice and 
scan levels.

Case definition
The radiologists used several indications to identify the 
presence of PE. For annotating and categorizing the scan 
as positive or negative, we used the established defini-
tions of PE. Acute PE is defined as (a) the blockage of an 
artery with the absence of enhancement of the arterial 
lumen due to a filling defect, which completely obstructs 
the lumen. Consequently, the artery may enlarge in com-
parison to neighboring patent vessels. (b) Partial blockage 
of the artery by a filling defect that partially obstructs the 
lumen, often producing the “polo mint” sign on sections 
acquired perpendicular to the long axis of the vessel, and 
the “railway-track” sign on longitudinal visualization of 
the vessel. (c) Peripherally located intraluminal defect 
which forms an acute angle with the arterial wall [29].

Model details
A 2D segmentation model consisting of U-Net architec-
ture with an Xception encoder was used to detect pul-
monary embolism from CTPAs. The input comprised a 
slice of a CT scan that was preprocessed as mentioned 
below. The DICOM images were converted to Hounsfield 
Units, and a window of (40, 400) (Window Level, Win-
dow Width) was applied. Subsequently, the images and 
masks were resized to 512 × 512 voxels for uniformity. 
The model was trained using Adam Weight Decay as an 
optimizer and a combination of binary cross-entropy loss 
(at voxel level) and Dice Loss (at slice level) as loss func-
tions. The output comprised a 512 × 512 image contain-
ing the predicted mask. Each voxel of the output image 
had a value between 0 and 1, indicating confidence in the 
presence of embolism in that region. Because the model 
only predicts the masks at the slice level, a method was 
developed to determine the presence of embolism at the 
scan level. All voxels having a value greater than 0.5 were 
assigned the value 1 (corresponding to a ‘positive voxel’), 
while those with a value less than or equal to 0.5 were 
assigned the value 0 (corresponding to a ‘negative voxel’). 
The average number of positive voxels per slice was com-
puted by dividing the total number of positive voxels in a 
scan by the number of slices in the CT scan. If a CT scan 
with n slices contains x1, x2, x3… xn positive voxels, then 
the average number of positive voxels per slice (X) is cal-
culated as:

The model training was monitored by its performance 
on a separate validation data set. The model with the 
lowest validation loss was chosen as the final model. 
The PE mask prediction process is represented in Fig. 2. 
The distribution of the number of CT scans and slices in 
the training, validation, and external test set is given in 
Table 1.

Statistical analysis
The comprehensive evaluation of the model performance 
on the test set included sensitivity, specificity, PPV, NPV, 
accuracy, F1 score, and ROC. To measure the variability 
in these values, we used 95% confidence intervals using 
the empirical bootstrapping method. To better under-
stand the performance of the model in diagnosing PE, we 
also calculated confusion metrics on the entire test set.

Results
Patient population
A total of 251 CTPAs corresponding to 251 patients 
were used to evaluate the performance of the model on 
the test set. Among 251 patients, 145 were males and 

X =

n

i=1
xi

n

Fig. 1  Flowchart illustrating the external validation CT datasets used 
in the study after implementing inclusion and exclusion criteria
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106 were females, with an average age of 49.7 (S.D. 17.4) 
years. The age distribution of participants included in 
the study is represented in Fig. 3. The rate of exams posi-
tive for PE was 21.74% (55/251). A total of 3.55% of slices 
(5183/146167) were positive for PE. There was no miss-
ing data.

Performance of U‑Net model
Table 2 illustrates the segmentation results of the U-Net 
model on the clinical dataset. The model had a sensitivity 

of 0.80 [95% CI 0.68, 0.89] and 0.93 [95% CI 0.92, 0.94] at 
scan level and slice level, respectively. Figure 4 represents 
the sensitivity and specificity values of the model when 
the average positive voxels per slice threshold were varied 
at the scan level. In this study, we set our operating point 
at a threshold that maximizes both sensitivity and speci-
ficity on the external test dataset. Although the threshold 
> 15 resulted in high specificity values, the corresponding 
sensitivity values declined. However, in clinical settings, 
applications are usually tuned to maximize sensitivity 

Fig. 2  A schematic representation of the PE mask prediction process. Each 2D slice of the CT scan was processed and passed through the model 
that produced the corresponding mask. The mask highlights emboli. The results of all the slices were combined to form the scan level prediction

Table 1  Distribution of the number of CT scans and slices in training, validation, and test sets

Set Training set Validation set Test set

Number of Slices Number of Scans Number of Slices Number of Scans Number of Slices Number of Scans

Negative 167,359 557 (65.4%) 13,217 56 (63%) 140,984 196 (78%)

Positive 14,427 296 (34.6%) 1106 33 (37%) 5183 55 (22%)

Total 181,786 853 14,323 89 146,167 251
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in order to minimize false negative rates. Therefore, to 
calculate the threshold for our model, we calculated the 
geometric mean of sensitivity and specificity at different 
thresholds, varying the threshold on steps of 15 from 0 to 
300. A threshold of 15 voxels per slice was chosen as the 
final scan level threshold because it maximized both sen-
sitivity and specificity. This threshold allowed the model 
to achieve a sensitivity of 0.80 [0.68, 0.89] and specificity 
of 0.74 [0.68, 0.80].

The model achieved an AUROC of 0.85 [0.78, 0.90] and 
0.94 [0.936, 0.941] at scan level and slice level, respec-
tively (Fig. 5).

The low number of true positives in the dataset and our 
choice of operating threshold for high sensitivity resulted 
in lower PPV (47%) and higher NPV (93%). However, in 
the clinical setting, improving the sensitivity of the posi-
tive cases is more important than PPV (more false posi-
tives). The distribution of TPs, FPs, TNs, and FNs for 
both scan and slice levels are represented in the confu-
sion metrics (Fig. 6).

Model output
The output of the model contained voxel-wise probabil-
ity for the input images. The average number of positive 
voxels per slice was computed by adding all the positive 
voxels and dividing them by the number of axial slices of 
the CT scan. An illustration of the same is represented in 
Fig. 7. The localization of emboli is represented as masks 
in the CT slice. The model was able to mark the presence 
of pulmonary embolism in most positive cases. The aver-
age segmentation DICE coefficient score per scan for the 
test set was 0.743 ± 0.155, indicating the high degree of 

Fig. 3  Histogram representing the age distribution of patients 
included in the study

Table 2  Performance metrics of 2D segmentation U-Net model

Metrics Performance at slice level 
[95% CI]

Performance at 
scan level [95% 
CI]

Sensitivity 0.93 [0.92, 0.94] 0.80 [0.68, 0.89]

Specificity 0.89 [0.88, 0.89] 0.74 [0.68, 0.80]

PPV 0.23 [0.23, 0.24] 0.47 [0.36, 0.57]

Accuracy 0.89 [0.88, 0.89] 0.76 [0.70, 0.81]

F-1 Score 0.37 [0.36, 0.38] 0.59 [0.49, 0.68]

ROC 0.94 [0.936, 0.941] 0.85 [0.78, 0.90]

NPV 0.997 [0.996, 0.997] 0.93 [0.89, 0.97]

Fig. 4  Sensitivity and specificity of the model across different operating points (average positive voxels per slice threshold) on the external test 
dataset
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similarity between the reference and the AI-predicted 
embolus masks.

Reading time per scan
The standalone model required a mean time of 30.15  s 
(std. dev: 11.03  s) to process the thin angiography 

sequences, make inferences, and categorize the scan as 
positive or negative for emboli.

Discussion
Suspected pulmonary embolism is a prevalent, and 
potentially life-threatening condition in emergency 
patients [30]. Therefore, an accurate and timely diag-
nosis of PE is critical for improving prognosis. Previous 
CAD solutions for the automated detection of PE on 
CTPAs were limited by the low sensitivity of the model 
[23–26, 31]. Additionally, many of the evaluations were 
performed on a small dataset with less than 50 cases in 
the testing set [23, 31–33]. We developed a U-Net-based 
classification approach for PE detection and tested it on 
the clinical dataset containing 251 CTPAs. The model 
achieved high sensitivity, accuracy, and ROC in detecting 
pulmonary embolism at both slice level and scan level. 
We also observed that the slice level predictions were 

Fig. 5  Performance of 2D segmentation U-Net model. The AUROC for the external clinical test set

Fig. 6  Confusion matrix of PE detection at a slice level and b scan 
level
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slightly better than scan level predictions for AUC, sen-
sitivity, and specificity values. Our model had an AUC of 
0.85 at scan level, which is comparable to the previously 
reported deep learning models. Rajan et al. developed and 
tested their Convolutional neural network (CNN) model 
on open-source datasets, reporting an AUC of 0.85 for 
severe PE and 0.70 for all other PE cases. However, their 
model was not tested on an independent external dataset 
[34]. Huhtanen et al. evaluated two deep-learning neural 
network models for the automated detection of PE from 
CTPAs using weakly labeled training data. Although one 
of their models achieved a specificity of 93.5% and sen-
sitivity of 86.6%, they used the same dataset for training 
and testing [18]. Shi et  al. tested a ResNet-based model 
on a multi-institutional dataset and obtained an AUC 
of 0.812 [35]. However, the source of their data was not 
well elucidated. Tajbakhsh et  al. evaluated the perfor-
mance of a CNN model on an internal dataset containing 
121 CTPAs with 326 emboli and achieved a sensitivity 
of 83%. However, their model had a sensitivity of 34.6% 
on a relatively small test dataset of 20 CTPAs with 133 
emboli from the PE challenge [36]. Our model had a slice 
level sensitivity of 93% and a scan level sensitivity of 80% 
when tested on an external dataset (not used for model 
development) with 251 CTPAs (5183 slices containing 
emboli). Our model matched the performance of the 
PENet model developed by Huang et al. which achieved 
an AUC of 0.85 on the external dataset. While they had 
the advantage of testing their model on two independent 
external datasets, the maximum sensitivity of their model 

was 75% [37] at a given threshold. Similarly, Yang et  al. 
reported a sensitivity of 75% for their CNN model, but 
their test set had only 129 scans (269 emboli) [38].

The use of automated algorithms with a human-
in-the-loop approach to triage pulmonary embolism 
within seconds of a CTPA examination has the poten-
tial to be used in clinical practices. It can shorten the 
time between diagnosis and therapy by highlighting all 
suspected positive scans for immediate reporting by a 
radiologist. Li et al. used the computer-aided diagnostic 
method that effectively improved the detection rate of 
PE, specifically for intra-arterial embolism above grade 
3 [39]. In places where there is insufficient night-time 
coverage by an experienced radiologist, the algorithm 
can provide a preliminary diagnosis to the emergency 
physician, assuring a reliable diagnostic method. Stud-
ies have indicated that even in locations with a 24 × 7 
radiologist, the quality of reporting is significantly 
affected, with a discrepancy of nearly 13% between day-
time only and night-time faculties in detecting embo-
lism in CTPA studies [40–42]. The use of AI models 
for the detection of PE can serve as a reliable second 
opinion for resident radiologists. Additionally, the algo-
rithm can run on a centralized picture archiving and 
communication system (PACS) or on any edge device 
in the absence of PACS. The use of edge devices on 
X-ray, CT, and MRI for diagnostic purposes has already 
proven to be a huge success, allowing the algorithm to 
be integrated into the basic system and multiplying its 
reach [43].

Fig. 7  Example of model prediction on a CT slice with a embolism present and b no embolism



Page 8 of 9Ajmera et al. BMC Medical Imaging          (2022) 22:195 

We reported an average DICE coefficient score per 
scan of 0.743 ± 0.155, which was better than the score 
reported by Cano-Espinosa et  al. on 2D, 2.5D, and 3D 
networks [44]. Our DL model provides an explainable 
solution to detect PE, which has the potential to mini-
mize the time required to interpret positive scans and 
ensure that the peripherally located emboli are not over-
looked in cases where a more centrally located embolus 
is also present.

Our approach  testing the 2D segmentation model on 
the external dataset has certain limitations. Firstly, valida-
tion of our model was performed on a single external test 
dataset. Therefore, future studies will include datasets 
from multiple clinical institutions to validate the model 
performance across multiple institutions. Secondly, our 
model had a low PPV on the external test dataset at both 
slice and scan levels. This could have resulted because of 
the low prevalence of the positive CTPAs i.e., 55 scans 
(though our scans were feature-rich in terms of having a 
high number of slices containing emboli, i.e., 5183) in our 
dataset and due to our choice of particularly high sensi-
tivity operating point, which resulted in a lower PPV and 
higher NPV of 0.47 and 0.93, respectively at scan level. 
While this approach could falsely label negative scans 
as positive and increase the urgency of diagnosis, it is 
important to interpret this in terms of the role this DL 
model will play in the clinical setting. In a clinical setting, 
it is acceptable to spend time reassigning a false positive 
scan into the negative category rather than the disease 
cost of missing a true positive finding. The model is pri-
marily built for detecting PE and all the scans should be 
interpreted by a radiologist to provide the final verdict. 
This human-in-the-loop approach is favored as it reduces 
the likelihood of missing or delay in reporting a positive 
scan.

In conclusion, our DL algorithm is on par with the cur-
rent state-of-the-art DL algorithm and exceeds the per-
formance of some previous DL algorithms. Our approach 
allows the algorithm to categorize the scan as positive or 
negative for an embolus in minimal time (mean time of 
30.15  s). The mask highlights the region affected by the 
embolus, thus providing the radiologist with a rapid, reli-
able, and explainable solution.
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