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Abstract
Introduction  Breast cancer patients treated with neoadjuvant chemotherapy (NACT) are at risk of recurrence 
depending on clinicopathological characteristics. This preliminary study aimed to investigate the predictive 
performances of quantitative dynamic contrast-enhanced (DCE) MRI parameters, alone and in combination with 
clinicopathological variables, for prediction of recurrence in patients treated with NACT.

Methods  Forty-seven patients underwent pre- and post-NACT MRI exams including high spatiotemporal resolution 
DCE-MRI. The Shutter-Speed model was employed to perform pharmacokinetic analysis of the DCE-MRI data and 
estimate the Ktrans, ve, kep, and τi parameters. Univariable logistic regression was used to assess predictive accuracy 
for recurrence for each MRI metric, while Firth logistic regression was used to evaluate predictive performances for 
models with multi-clinicopathological variables and in combination with a single MRI metric or the first principal 
components of all MRI metrics.

Results  Pre- and post-NACT DCE-MRI parameters performed better than tumor size measurement in prediction of 
recurrence, whether alone or in combination with clinicopathological variables. Combining post-NACT Ktrans with 
residual cancer burden and age showed the best improvement in predictive performance with ROC AUC = 0.965.

Conclusion  Accurate prediction of recurrence pre- and/or post-NACT through integration of imaging markers and 
clinicopathological variables may help improve clinical decision making in adjusting NACT and/or adjuvant treatment 
regimens to reduce the risk of recurrence and improve survival outcome.

Keywords  Breast cancer, Dynamic contrast-enhanced (DCE) MRI, Recurrence, Neoadjuvant chemotherapy, Transfer 
rate constant (Ktrans)
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Introduction
Breast cancer is the most commonly diagnosed cancer in 
women, and the second most common cause of death [1]. 
Locally advanced breast cancer is a subset where patients 
have either stage IIB disease (T3N0) or stage IIIA to IIIC 
disease. Neoadjuvant chemotherapy (NACT) is being 
utilized as the standard of care for treatment of this sub-
set of patients [2]. The main objectives of NACT is to 
downstage the malignancy to make the cancer amenable 
to breast conservation surgery, as well as real-time evalu-
ation of response to NACT to guide adjuvant treatment 
decisions. Many variables assessing response to NACT 
have been linked to prognosis, including residual cancer 
burden (RCB) [3], breast cancer subtype [4], clinical and 
pathological staging[5], and estrogen receptor status and 
tumor grade [6].

Patients who achieve pathological complete response 
(pCR) exhibit excellent prognosis. This is, however, not 
the case for most patients who have residual disease fol-
lowing NACT [7]. Measurement of residual breast cancer 
burden using RCB index has shown to be able to predict 
distant recurrence free survival after NACT, patients 
with RCB II or higher being at higher risk of these recur-
rences [3]. But by itself, RCB is an unreliable marker of 
recurrence and there is a need for a better biomarker. For 
example, data from the CREATE-X clinical trial show 
that 74% of patients with Human Epidermal growth fac-
tor Receptor 2 (Her2)-negative residual disease (many 
with RCB II or III) were alive and free from recurrence at 
three years without any adjuvant treatment [8]. In a study 
of Her2-positive patients, the KATHERINE trial showed 
that 77% of patients with residual disease were disease 
free after 3 years with continued adjuvant trastuzumab 
therapy [9]. Accurate identification of patients at high 
risk of recurrence post NACT may help select for appro-
priate treatment escalation and de-escalation strategies 
to improve outcomes. Current risk assessment models 
such as RCB rely on knowledge of surgical pathology fol-
lowing NACT, and do not offer an opportunity to adjust 
or escalate therapy in the neoadjuvant setting. This is 
where early prediction of treatment resistance and sub-
sequently risk of recurrence using imaging combined 
with clinicopathologic variables can help guide treatment 
decisions, including evaluation of novel therapies aimed 
to augment response and improve patient outcomes.

Multiple studies have been conducted to predict 
pathological complete response in patients undergoing 
NACT using tumor tissue, blood or imaging biomark-
ers [10–12]. Quantitative imaging biomarkers derived 
from pharmacokinetic (PK) analysis of dynamic con-
trast-enhanced magnetic resonance imaging (DCE-MRI) 
data have been shown capable of predicting pathologic 
response of breast cancer to NACT after only one or two 
NACT cycles [13–16]. Quantitative DCE-MRI not only 

measures tumor morphology such as tumor size and 
shape, but also estimates quantitative parameters related 
to the physiologies of microvasculature and perivascu-
lar tissue, which include perfusion and permeability, and 
extravascular and extracellular volume fraction [17, 18]. 
In response to cancer therapies, changes in these quan-
titative functional imaging biomarkers are often found 
to precede any observable changes in tumor size [13, 
19–21].

A few breast DCE-MRI studies demonstrated predic-
tion of survival following NACT using quantitative [22] 
or semi-quantitative imaging biomarkers [23]. However, 
few DCE-MRI studies have reported prediction of breast 
cancer recurrence following NACT and none of them 
used quantitative DCE-MRI parameters [24–26]. In this 
preliminary study, by retrospectively correlating post-
NACT breast cancer recurrence outcomes with pre- and 
post-NACT quantitative DCE-MRI parameters and MRI 
tumor size measurements, we sought to investigate the 
predictive performances of these MRI metrics, alone and 
in combination with clinicopathological variables, for 
prediction of recurrence in patients treated with NACT.

Methods
Patient cohorts
Data collection for this study was conducted under the 
institutional review board approved protocol 5492 at 
Oregon Health & Science University (Portland, Oregon, 
U.S.A.). All patients who were diagnosed with grade 
2–3 invasive breast tumors and scheduled to undergo 
NACT as standard of care were eligible for the study. 
An informed consent was obtained for participation in a 
longitudinal study using a research MRI protocol, which 
was conducted from 2012 to 2016 and included four 
MRI sessions: before NACT (visit 1 (V1)), after the first 
but before the second NACT cycle (V2), at midpoint of 
NACT (V3; before the change of NACT drugs), and after 
completing the entire NACT course but prior to surgery 
(V4), respectively. Clinicopathological variables collected 
for study participants included patient demographics, 
chemotherapy regimens, tumor histology, grade, stage, 
receptor status (estrogen receptor (ER), progesterone 
receptor (PR) and HER2), and nodal status. Pathologic 
response to NACT and RCB index (0, I, II, and III with 
RCB = 0 equivalent to pCR) were determined from the 
post-NACT resection specimens. The recurrence and 
survival outcome data were collected in September 2021 
from the electronic medical records.

The forty-seven patients who consented to this study 
received standard of care NACT with taxanes and 
anthracyclines, in addition to trastuzumab for those 
with HER2-positive malignancy. Three of the 47 patients 
were enrolled in the NACT ISPY-2 trial [27], where 
they received standard of care regimen in addition to an 
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experimental drug. As a requirement for participation 
in the ISPY-2 trial, this subset of patients also under-
went a separate ISPY-2 MRI protocol, which included a 
DCE-MRI scan with much lower temporal resolution 
(80–100 s) compared to the DCE-MRI scan used in this 
research study (see data acquisition details below), at the 
same four time points. For these three patients, there was 
an interval of at least 24 h between this study’s research 
MRI and the ISPY-2 MRI studies to allow gadolinium-
based contrast agent clearance from the body. The DCE-
MRI results from the first 28 patients of this study cohort 
were previously reported [13] to demonstrate the capa-
bilities of quantitative DCE-MRI PK parameters for early 
prediction and evaluation of breast cancer pathologic 
response to NACT.

DCE-MRI data acquisition
All the breast MRI scan sessions were performed using 
a 3 T Siemens Tim Trio system. The built-in body coil 
was used as the RF transmitter and a four-channel bilat-
eral phased-array breast coil was used as the receiver. In 
each MRI session, pilot scans and axial T2-weighted MRI 
with fat-saturation and axial T1-weighted MRI with-
out fat-saturation were performed before axial DCE-
MRI with bilateral full breast coverage. The DCE-MRI 
images with fat-saturation (using the method of water 
excitation only) were acquired using a 3D gradient echo 
TWIST (Time-resolved angiography WIth Stochastic 
Trajectories) sequence, which adopts a scheme of k-space 
undersampling during acquisition and view sharing dur-
ing reconstruction to achieve high temporal and spatial 
resolution simultaneously. [28] The acquisition param-
eters included: 10o flip angle, TE/TR = 2.9/6.2 ms, paral-
lel imaging factor (iPAT) of 2, 30–34 cm FOV, 320 × 320 
resolution in both read and phase directions, and 1.4 mm 
slice thickness. The DCE-MRI scan time was limited to 
about 10  min. Due to differences in patient breast size, 
the number of image slices in each DCE frame varied 
from 96 to 128, resulting in 14–20 s temporal resolution 
and 28–38 frames. The contrast agent, Gd(HP-DO3A) 
[ProHance (Bracco Diagnostic Inc.)], was injected intra-
venously at a dose of 0.1 mmol/kg and a rate of 2 mL/s by 
a programmable power injector at the beginning of the 
third DCE frame acquisition, followed by a 20-mL saline 
flush at the same injection rate. For the purpose of quan-
tifying native tissue T1, T10, proton density-weighted 
images spatially co-registered with the DCE-MRI images 
were acquired immediately before the DCE scan [28, 
29], with the same acquisition sequence and parameters 
except for 5° flip angle and TR = 50 ms.

DCE-MRI data analysis
Using post-contrast DCE images at approximately 
120–150 s after the contrast injection, the breast tumor 

boundaries were manually delineated by experienced 
radiologists on all image slices containing the contrast-
enhanced tumor, generating tumor regions of interest 
(ROIs) for quantitative analysis. The longest diameter 
(LD) of the tumor was measured by the same radiologists 
based on the RECIST (Response Evaluation Criteria in 
Solid Tumors) guidelines [30, 31].

The DCE-MRI time-course data in each voxel within 
the tumor ROIs were subjected to PK analysis using a 
home-built Matlab software package based on the Shut-
ter-Speed PK model [13, 32, 33] which takes into account 
the intercompartmental water exchange kinetics. The 
fast-exchange-regime version [13, 33] of the Shutter-
Speed model was used to fit the DCE data in this study 
to extract the following three parameters: Ktrans (transfer 
rate constant), ve (extravascular and extracellular vol-
ume fraction), and τi (mean intracellular water lifetime). 
τi is unique to the Shutter-Speed model and is used to 
account for cross-cell membrane water exchange kinetics 
in the model. The efflux rate constant, kep, was calculated 
as Ktrans/ve. The tumor mean PK parameter value was cal-
culated by averaging all the voxel parameter values. The 
detailed formulations used for PK analysis of the DCE-
MRI data collected in this study are shown in Tudorica 
et al. [13].

Arterial input function (AIF) and T10 are usually 
required in PK analysis of DCE-MRI data. For this study, 
an average AIF from individually measured AIFs (from 
an axillary artery) in a separate breast DCE-MRI study 
[34] [with sagittal single-breast coverage and higher 
temporal resolution (< 10 s)] was used for PK analysis. It 
has been shown that it is a reasonable approach to use a 
population-based mean AIF for PK analyses of DCE-MRI 
data from the same tissue of interest if the contrast agent, 
dose, injection rate, and injection site are kept the same 
[35], which is the case for this study in relation to the 
separate study [33]. Using the equation for steady-state 
signal from a spoiled gradient-echo sequence [13, 28], the 
voxel T10 values within the tumor ROIs were calculated 
by comparing the voxel signal intensities between the 
images in the second baseline DCE frame and the spa-
tially co-registered proton density images.

Six of the 12 patients who achieved pCR show no vis-
ible tumor contrast enhancement at V4. For the purpose 
of PK analysis of V4 DCE-MRI data in these 6 cases, the 
radiologists copied three tumor ROIs on three consecu-
tive image slices through the central portion of the tumor 
from V3 DCE-MRI, where tumor contrast enhancement 
was clearly visible in all the cases, and pasted onto three 
consecutive slices in V4 DCE-MRI based on assessment 
of anatomic similarities between V3 and V4 MRI. Since 
the low temporal resolution and small number of time 
frames of the ISPY-2 DCE-MRI data are not suitable 
for accurate PK data analysis, the Shutter-Speed model 
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analysis was not applied to the additional ISPY-2 DCE-
MRI data from the three patients enrolled in the ISPY-2 
trial.

Statistical analysis
Appropriate descriptive statistics were used to summa-
rize the patient clinicopathological and MRI character-
istics for the study cohort by recurrence status. Means 
and standard deviations were reported for continuous 
variables and proportions were reported for categorical 
variables. To align with the current standard clinical man-
agement of breast cancer patients treated with NACT, 
where usually only pre- and post-NACT MRI exams are 
prescribed, only the V1 and V4 MRI metrics from this 
study, as well as the corresponding percent changes (V4 
relative to V1, V4_1%), were included in statistical analy-
sis. To compare means of continuous variables between 
the recurrence and non-recurrence groups, independent 
t-test assuming equal variance was used, as there is no 
prior evidence from studies of similar patient cohorts 
with sufficient sample size in the literature to assume 
that the two groups have different variance in MRI char-
acteristics. Fisher’s exact test was used to compare the 
distribution of categorical variables between the groups. 
Univariable logistic regression (ULR) C statistics, also 
known as the area under the receiver operating charac-
teristic (ROC) curve (ROC AUC), for discrimination of 
the recurrence and non-recurrence groups was reported 
for each MRI metric. 95% confidence interval (CI) for 
AUC was calculated using the DeLong method [36].

In building multivariable models for recurrence pre-
diction, Firth logistic regression was used to mitigate 
potential bias caused by rare events and accommodate 
quasi-complete separation in the data [37, 38]. Clinico-
pathological variables with a p-value < 0.2 in the univari-
ate analysis, which were RCB, stage, and age, were used 
to build the initial multivariable Firth logistic regression 
model. Next, an automated stepwise (backwards) model 
selection procedure by AIC (Akaike information crite-
rion) was used to select a parsimonious main effect only 
model that accomplishes a desired level of prediction 
without over-fitting the current data. This final clinico-
pathological variable-only model included RCB and age. 
Based on this model, at the optimal cutoff point deter-
mined by Youden’s Index, which equivalently maximizes 
the sum of sensitivity and specificity, prediction perfor-
mance measures with 95% exact confidence interval were 
calculated [39]. Next, in this model, MRI metrics were 
added one at a time to assess added value of a single MRI 
metric in prediction of recurrence. In such models, Wald 
p-values were calculated to evaluate the significance 
of contribution by the MRI metric to the prediction of 
recurrence. ROC AUC was used to examine predictive 
performance for these models, whether including RCB 

and age only or including RCB, age, and one MRI metric. 
Repeated 5-fold cross validation was performed to obtain 
mean cross-validated (cv) ROC AUC.

In addition, the added value of multiple MRI metrics 
in predictive performance was investigated. Since many 
MRI metrics were highly correlated such as Ktrans and 
kep, principal components (PCs) of all MRI metrics at 
V1 and V4, as well as V4_1%, were calculated to capture 
variances in fewer dimensions. With the aid of PC scree 
plots, adding only the first PC (PC1) to RCB and age in 
the predictive model was determined to be the optimal 
approach to avoid severe over-fitting by adding multiple 
PCs. ROC AUCs from the MRI metric-enhanced models 
(with a single metric or PC1) were compared to that from 
the clinicopathological variable-only model (RCB and 
age) using the DeLong test based on U-statistics theory 
and asymptotic normality for paired ROC curves [36]. 
The calculated p-values are nominal p-values without 
multiple testing adjustments.

All statistical analysis was performed using R version 
4.1.1 [40].

Results
Table  1 shows the clinicopathological data of all the 
patients who were enrolled in this study. Of these 47 
patients, seven experienced a recurrence with a median 
time to recurrence of 5 months, whether locoregional 
or distant. The distributions of these two subgroups 

Table 1  Clinicopathological data of enrolled participants (N = 47)
Clinicopathological Variables Entire 

cohort
(N = 47)

Non-re-
currence 
(N = 40)

Recur-
rence
(N = 7)

Age (Mean ± SD) 47.6 ± 12.9 
years

48.6 ± 13.3 
years

39.7 ± 8.2 
years

Follow up (Median, IQR) 80, 33.5 
months

85.5, 44.4 
months

27.1, 
41.4 
months

Tumor type (N [%]) 
 IDC 
 ILC
 IMC

42 (89.3%)
2 (4.3%)
3 (6.4%)

36 (90%)
2 (5%)
2 (5%)

6 (85.7%)
0
1 (14.3%)

Breast Cancer subtype (N [%])
Hormone Receptor Positive (ER 
or PR)

27 (57.4%) 23 (57.5%) 4 (57.1%)

HER2-Receptor Positive 24 (51.1%) 21 (52.5%) 3 (42.9%)

Triple Negative Receptor 8 (17.0%) 7 (17.5%) 1 (14.3%)

RCB Index (N [%])
 pCR
 Class I
 Class II
 Class III

12 (25.5%)
10 (21.3%)
18 (38.3%)
7 (14.9%)

12 (30%)
9 (22.5%)
16 (40%)
3 (7.5%)

0
1 (14.3%)
2 (28.6%)
4 (57.1%)

Recurrence (N [%]) 7 (14.9%)
IQR – Interquartile range, IDC-Invasive Ductal Carcinoma, ILC- Invasive Lobular 
Carcinoma, IMC- Invasive Mammary Carcinoma, ER – Estrogen Receptor, PR – 
Progesterone Receptor, HER2 – Human Epidermal growth factor Receptor 2, 
RCB – Residual Cancer Burden, pCR – Pathological Complete Response
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were similar in terms of tumor type and receptor status. 
As described below, age and RCB Index were different 
between the groups and predicted recurrence. The follow 
up time was longer for patients without recurrence, as 
they were more likely to be alive and in follow up.

Prediction of recurrence with a single MRI metric
Table 2 shows the mean ± SD values of the breast tumor 
MRI metrics, including LD and DCE-MRI parameters, 
for the recurrence and non-recurrent groups, the t-test 
p-values in comparing the two groups, as well as the 
ULR C statistics values for prediction of recurrence vs. 
non-recurrence. At V1 (pre-NACT), only Ktrans and kep 

showed significant (p < 0.05) differences between the two 
groups of patients; at V4 (post-NACT), Ktrans, kep, and LD 
exhibited significant (p < 0.05) differences with the differ-
ence in τi approaching statistical significance (p = 0.083). 
For V4_1% of the MRI metrics, again, only Ktrans and kep 
demonstrated significant (p < 0.05) differences. For pre-
diction of recurrence, only V1 Ktrans and V4 LD, Ktrans, 
kep, and τi showed a ROC AUC > 0.7 with V4 Ktrans having 
the largest AUC of 0.812. As an example, Fig. 1 shows the 
voxel-based color tumor Ktrans (left panels) and τi (right 
panels) parametric maps on a single image slice for a 
patient with breast cancer recurrence (48 years old, grade 
3 invasive ductal carcinoma, ER-, PR+, HER2-, RCB = III) 

Table 2  MRI Metrics for Prediction of Recurrence
MRI metrics No recurrence 

(N = 40)
Mean (SD)

Recurrence (N = 7)
Mean (SD)

p-value ULR C statistics 
value

95% CI

RECIST tumor size measurement
LD_V1 (mm) 38.73 (20.37) 48.83 (35.64) 0.29 0.541 [0.26, 0.822]

LD_V4 (mm) 16.23 (14.28) 34.09 (27.18) 0.013 0.714 [0.459, 0.97]

LD_V4_1% -0.58 (0.33) -0.36 (0.36) 0.12 0.684 [0.43, 0.938]

DCE-MRI parameters
Ktrans_V1 (min− 1) 0.14 (0.10) 0.30 (0.25) 0.007 0.725 [0.501, 0.95]

ve_V1 0.54 (0.11) 0.57 (0.07) 0.5 0.553 [0.349, 0.757]

kep_V1 (min− 1) 0.31 (0.23) 0.53 (0.40) 0.047 0.681 [0.45, 0.913]

τi_V1 (s) 0.78 (0.30) 0.69 (0.20) 0.45 0.593 [0.375, 0.812]

Ktrans_V4 (min− 1) 0.03 (0.03) 0.14 (0.17) < 0.001 0.812 [0.636, 0.988]

ve_V4 0.63 (0.19) 0.56 (0.13) 0.347 0.647 [0.445, 0.848]

kep_V4 (min− 1) 0.08 (0.08) 0.35 (0.41) < 0.001 0.752 [0.530, 0.974]

τi_V4 (s) 0.99 (0.44) 0.67 (0.39) 0.083 0.726 [0.489, 0.962]

Ktrans_V4_1% -0.74 (0.24) -0.37 (0.60) 0.006 0.62 [0.288, 0.953]

ve_V4_1% 0.18 (0.38) -0.02 (0.16) 0.175 0.699 [0.537, 0.861]

kep_V4_1% -0.66 (0.48) 0.00 (1.13) 0.012 0.628 [0.295, 0.961]

τi_V4_1% 0.53 (1.07) 0.02 (0.50) 0.223 0.617 [0.389, 0.844]
ULR - Univariable logistic regression, 95% CI – 95% confidence interval for the C value, LD – Longest diameter, V1 – Visit 1 (pre-NACT MRI), V4 – Visit 4 (post NACT, 
pre-surgery MRI), V4_1% - corresponding percent changes (V4 relative to V1)

Fig. 1  Breast tumor color Ktrans (left panels) and τi (right panels) parametric maps from a patient with recurrence (48 years old, grade 3 invasive ductal 
carcinoma, ER-, PR+, HER2-, RCB = III) following NACT and a patient without recurrence (39 years old, grade 2 invasive ductal carcinoma, ER+, PR+, HER2+, 
RCB = 0 (pathologic complete response)). The color maps are overlaid onto the post-contrast DCE-MRI image slices that were through the centers of the 
two tumors, respectively. The maps in the top row were obtained from the DCE-MRI data collected pre-NACT (at V1), while those in the bottom row were 
obtained post-NACT (at V4). The color scales of Ktrans and τi are kept the same, respectively, for both patients and both MRI visits for comparison purposes. 
This figure is intended to show voxel-based quantitative DCE-MRI parameter values pre- and post-NACT. The images displayed for the two patients are 
cropped and zoomed at different scales, and therefore, should not be used to compare tumor size between the patients
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and a patient without recurrence (39 years old, grade 2 
invasive ductal carcinoma, ER+, PR+, HER2+, RCB = 0 
(pathologic complete response)) at V1 (top row) and V4 
(bottom row). The color scales for Ktrans and τi are kept 
the same, respectively, for both patients and both MRI 
visits for the purpose of comparison. The patient with 
recurrence showed substantially high Ktrans values in the 
tumor compared to the patient without recurrence at 
V1, and the difference in Ktrans between the two tumors 
became even more prominent at V4. On the other hand, 

the difference in tumor τi between the two patients was 
not clearly observable at V1, with the patient without 
recurrence showing slightly higher τi. However, at V4, the 
patient without recurrence showed substantially higher 
tumor τi compared to the patient with recurrence. For 
both DCE-MRI parameters, the patient without recur-
rence showed substantially larger changes from V1 to 
V4 (decreases in Ktrans and increases in τi) compared to 
the patient with recurrence. Figure 2 shows plots of LD 
and mean tumor Ktrans, ve, kep, and τi values for all the 

Fig. 2  Scatter plots of tumor LD and mean tumor Ktrans, ve, kep, and τi values for all the individual patients with (red triangle) and without (blue circle) 
recurrence. The data points at V1 and V4 are connected with solid lines of corresponding colors
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individual patients at V1 and V4. It is important to note 
that mean tumor values of the DCE-MRI parameters are 
reported in Fig. 2, while the parametric maps in Fig. 1 are 
shown for only one image slice through the center of the 
tumor.

We also examined the association between time to 
recurrence from time of surgery and each MRI metric 
using univariable Cox PH model. Statistical significance 
of the results from this alternative approach, reflected 
in the p values (data not shown), is consistent with that 
from t-test, as shown in Table 2.

Prediction of recurrence with multi-clinicopathological 
variables
As described above, the parsimonious multivariable Firth 
logistic regression model for prediction of recurrence 
using the clinicopathological variables contained RCB 
and age only. The ROC AUC of this combination was 
0.900 (95% CI [0.762, 1]) (Table  3). At the optimal cut-
off point determined by Youden’s index, the sensitivity 
was 0.86 (95% CI [0.42-1.00]), specificity was 0.89 (95% 
CI [0.75–0.97]) and the positive predictive value was 0.60 
(95% CI [0.35–0.99]).

Added value of MRI metrics in prediction of recurrence
Table  3 shows ROC AUC (with 95% CI) and cv ROC 
AUC values for prediction of recurrence vs. non-recur-
rence when using clinicopathological variables of RCB 
and age only, combining RCB and age with a single MRI 
metric, and combining RCB and age with PC1 of all 
MRI metrics (including V1, V4, and V4_1%). The listed 
Wald test p-values indicate the significance of adding 
a single MRI metric or PC1 of all MRI metrics (to RCB 
and age) in prediction of recurrence. The addition of V1, 
V4, or V4_1% LD to RCB and age in the model did not 
improve the predictive performance with AUCs ≤ 0.900. 
However, with the exception of V4_1% of τi, the addi-
tion of each single quantitative DCE-MRI parameter 
or PC1 of all parameters, improved predictive accuracy 
with AUCs > 0.900. The addition of V4 Ktrans to RCB and 
age showed the largest improvement in predictive accu-
racy from AUC = 0.900 to AUC = 0.965. It is interesting to 
note that, at V1 (pre-NACT), the addition of Ktrans alone 
improved AUC from 0.900 to 0.946. As an example, Fig. 3 
shows the ROC curves for models including RCB and age 
only (black), RCB and age and V4 LD (red), RCB and age 
and V4 Ktrans (green), and RCB and age and PC1 (blue), 
respectively. The Wald test shows that the additional con-
tributions of V4 Ktrans, V4 kep, and PC1 (on top of RCB 
and age) in prediction of recurrence were approaching 
statistical significance, with p = 0.081, 0.071, and 0.071, 
respectively. However, the increases in ROC AUC val-
ues were not statistically significant: e.g., p = 0.371 when 
comparing AUC of RCB and age and PC1 with that of 
RCB and age only.

Discussion
The preliminary results from this study of 47 patients 
show the potential of added value of MRI metrics when 
combined with clinicopathological data in prediction 
of breast cancer recurrence in patients who underwent 
NACT. None of any single MRI metric, LD or quantita-
tive DCE-MRI parameters pre- or post-NACT, was as 
accurate as the combined clinicopathological variables 
of RCB and age in prediction of recurrence. However, 
when a single quantitative DCE-MRI parameter or PC1 
of all MRI metrics was added to RCB and age in the pre-
dictive model, this integration of imaging and clinico-
pathological characteristics seemed to perform better 
than the approach of clinicopathological variables only in 
prediction of recurrence. The increases in predictive per-
formances following the addition of MRI metrics were 
not statistically significant. This may be partially due 
to potentially less reliable AUC estimates in our small 
sample size and inflated AUC values due to class imbal-
ance between the recurrence (N = 7) and non-recur-
rence (N = 40) groups [41]. It is worth noting that, while 
the addition of functional and quantitative DCE-MRI 

Table 3  Predictive Performances for Recurrence Using 
Clinicopathological Variables Only and Combinations of 
Clinicopathological Variables and MRI Metrics
Model Wald 

test 
p-

value ROC 
AUC

95% CI cv 
ROC 
AUC

Clinicopathological variables
RCB + Age N/A 0.900 [0.762, 1] 0.797

Clinicopathological variables and individual MRI metrics
LD_V1 0.807 0.892 [0.747, 1] 0.744

LD_V4 0.537 0.900 [0.760, 1] 0.769

LD_V4_1% 0.647 0.900 [0.778, 1] 0.730

Ktrans_V1 0.116 0.946 [0.878, 1] 0.798

ve_V1 0.659 0.907 [0.795, 1] 0.777

kep_V1 0.137 0.942 [0.872, 1] 0.755

τi_V1 0.486 0.911 [0.797, 1] 0.754

Ktrans_V4 0.081 0.965 [0.916, 1] 0.814

ve_V4 0.441 0.919 [0.808, 1] 0.814

kep_V4 0.071 0.961 [0.908, 1] 0.845

τi_V4 0.367 0.911 [0.812, 1] 0.725

Ktrans_V4_1% 0.296 0.938 [0.862, 1] 0.781

ve_V4_1% 0.289 0.927 [0.824, 1] 0.843

kep_V4_1% 0.582 0.911 [0.799, 1] 0.782

τi_V4_1% 0.668 0.892 [0.770, 1] 0.720

Clinicopathological variables and Principal Components of all MRI 
metrics
PC1 0.071 0.961 [0.910, 1] 0.837
ROC AUC - area under the receiver operating characteristic curve, 95% CI – 95% 
confidence interval for ROC AUC, cv – cross validated, N/A – not applicable, LD 
– Longest diameter, V1 – Visit 1 (pre-NACT MRI), V4 – Visit 4 (post NACT, pre-
surgery MRI), V4_1% - corresponding percent changes (V4 relative to V1), PC1 
– first principal components of all MRI metrics



Page 8 of 11Thawani et al. BMC Medical Imaging          (2022) 22:182 

parameters to clinicopathological variables improved 
predictive performance for recurrence, the addition of 
RECIST-based tumor LD at V1, V4 or V4_1% showed no 
positive effects.

The results from this preliminary study suggest that the 
addition of quantitative DCE-MRI parameters to clini-
copathological variables can potentially help risk-stratify 
patients who are at a higher risk of recurrence, as it con-
fers a poor prognosis in these patients with 5-year overall 
survival in only 58–71% of them [42]. The level of predic-
tive accuracy for recurrence demonstrated in this study 

can help identify the exact patients who will benefit from 
addition of adjuvant treatment to prevent recurrence 
after NACT and surgery. Importantly, the RCB informa-
tion is only available after NACT and surgery, precluding 
the ability to augment neoadjuvant therapy approaches, 
which is currently an active area of investigation. Ongo-
ing trials such as the ISPY-2 study are evaluating novel 
designs to predict RCB based on clinical including imag-
ing criteria prior to surgical resection. This would allow 
patients predicted to have residual disease the oppor-
tunity to enroll and receive novel therapies, including 

Fig. 3  Empirical ROC curves for prediction of recurrence vs. non-recurrence: RCB and age only (black, AUC = 0.900), RCB and age and LD at V4 (red, 
AUC = 0.900), RCB and age and Ktrans at V4 (green, AUC = 0.965), and RCB and age and PC1 of all MRI metrics (blue, AUC = 0.961), respectively
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investigational targeted and immune therapies, in an 
attempt to improve pathologic responses. It is in this set-
ting that a robust imaging biomarker can be extremely 
useful to help accurately identify these patients, and 
spare ones predicted to have a complete response added 
toxicity. In our study, the predictive accuracy for recur-
rence by the Ktrans parameter alone before NACT (ULR 
C = 0.725 in this study) may potentially help guide the cli-
nicians towards intensifying NACT regimens to improve 
pCR in certain cases, while de-escalating in others to 
avoid overtreatment.

There are only a few other studies that used DCE-MRI 
to predict recurrence in similar groups of patients, which 
performed radiomics analysis of DCE images rather than 
extracting quantitative functional parameters [26, 43]. 
This preliminary study shows that, similar to the case 
of predicting pathologic complete response to NACT 
[13–16], quantitative DCE-MRI parameters that measure 
breast tumor biological properties are superior to tumor 
size measurement in prediction of breast cancer recur-
rence following NACT, whether alone or in combination 
with clinicopathological variables. As measures of perfu-
sion and permeability, both pre- and post-NACT tumor 
Ktrans and kep tended to be higher in patients with recur-
rence compared to those without recurrence, suggesting 
high perfusion and permeability is associated with high 
risk for recurrence. Several studies [44–47] have dem-
onstrated that the τi parameter, which is exclusive to 
the Shutter-Speed PK model, is an imaging biomarker 
of tissue metabolic activity with an inverse relationship. 
There was no clear difference in pre-NACT τi between 
patients with and without recurrence. For post-NACT 
τi, although not statistically significant, the patients with 
recurrence tended to have lower post-NACT τi, or higher 
metabolic activity, compared to those without recur-
rence, suggesting that risk of recurrence could be high if 
the tumor metabolic activity remains high after NACT 
treatment. The approach of PC analysis of all the MRI 
metrics is equivalent to a multi-parametric approach of 
combining the tumor size and DCE-MRI parameters of 
perfusion and permeability (Ktrans and kep), metabolic 
activity (τi), and interstitial space (ve). It is not surprising 
that the predictive accuracy for recurrence was among 
the best when PC1 of all the MRI metrics was added to 
the clinicopathological variables of RCB and age.

There are a few limitations in this study. One major 
limitation is the small sample size. As mentioned earlier, 
AUC estimates can be unstable in small samples [41]. 
This preliminary study was not designed to power reli-
able predictive modeling; rather, it is mainly an explor-
atory study of the potential for enhancing prediction of 
recurrence by adding MRI metrics to clinicopathologi-
cal variables. Small sample size also poses more risk for 
over-fitting of the data. In fact, the calculated cv ROC 

AUC values were decidedly lower than the apparent 
ROC AUC values. In addition, receptor status-based 
breast cancer molecular subtypes were not predictive of 
recurrence vs. non-recurrence. The number of patients 
was not adequate to draw meaningful conclusions in 
comparing the subtypes for discriminating patients 
with and without recurrence. As such, the preliminary 
findings reported here reflect the average results from 
a general breast cancer population undergoing NACT. 
Secondly, the data sets used in this study had moderate 
class imbalance with N = 7 for the recurrence group and 
N = 40 for the non-recurrence group. ROC AUC is com-
monly used in this field as the metric for predictive per-
formance. However, when there is a large class imbalance 
in the outcome variable, ROC curves can be deceptively 
optimistic. This can also cause challenges in comparing 
predictive models. ROC AUC of the clinicopathological 
variable-only model already provided an inflated view 
of performance with AUC = 0.900, which left little room 
for improvement when adding the MRI metrics. In such 
cases, Precision-Recall (PR) curves are often assessed as 
they can show differences between models that are not 
discernible in ROC analysis, and give a more informative 
presentation of the predictive performance. We explored 
the PR curves of the predictive models used in this study. 
However, they did not reveal more differences between 
the models than the ROC curves (data not shown). 
Thirdly, the mean tumor DCE-MRI PK parameter values 
were used in this study for correlations with the recur-
rence endpoint. It is well known that malignant tumors 
are heterogeneous in nature and responses to treatment 
are likely heterogeneous as well. However, the heteroge-
neity in breast tumor functional changes in response to 
NACT was not captured in computing mean DCE-MRI 
parameter values. Recent studies show that radiomics 
analysis of either raw image data [26, 43] or parametric 
maps of quantitative functional parameters [48, 49] can 
be a valuable tool for characterizing tumor heterogene-
ity. Measurement and integration of both mean values 
and texture features of DCE-MRI parameters through 
radiomics analysis may further improve the robustness 
of quantitative DCE-MRI for prediction of breast cancer 
recurrence following NACT.

In conclusion, the results from this preliminary study 
show that quantitative DCE-MRI parameters may out-
perform tumor size measurement in prediction of breast 
cancer recurrence following NACT, whether alone or in 
combination with clinicopathological variables. Com-
bining a single DCE-MRI parameter of perfusion and 
permeability or PC1 of all MRI metrics with clinico-
pathological variables in a predictive model showed 
potential of added value of MRI for improving accuracy 
in prediction of recurrence. Accurate prediction of recur-
rence pre- and/or post-NACT may help improve clinical 
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decision making in adjusting NACT and/or adjuvant 
treatment regimens to reduce the risk of recurrence and 
improve survival outcome. It is important to validate our 
preliminary findings from this small patient cohort with 
a larger patient population in the future and update the 
predictive models to account for differences in NACT 
and adjuvant therapy regimens among the patients.
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