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Abstract 

Background:  Preoperative pelvic lymph node metastasis (PLNM) prediction can help clinicians determine whether 
to perform pelvic lymph node dissection (PLND). The purpose of this research is to explore the feasibility of diffusion-
weighted imaging (DWI)-based radiomics for preoperative PLNM prediction in PCa patients at the nodal level.

Methods:  The preoperative MR images of 1116 pathologically confirmed lymph nodes (LNs) from 84 PCa patients 
were enrolled. The subjects were divided into a primary cohort (67 patients with 192 positive and 716 negative LNs) 
and a held-out cohort (17 patients with 43 positive and 165 negative LNs) at a 4:1 ratio. Two preoperative pelvic 
lymph node metastasis (PLNM) prediction models were constructed based on automatic LN segmentation with 
quantitative radiological LN features alone (Model 1) and combining radiological and radiomics features (Model 2) 
via multiple logistic regression. The visual assessments of junior (Model 3) and senior (Model 4) radiologists were 
compared.

Results:  No significant difference was found between the area under the curve (AUCs) of Models 1 and 2 (0.89 vs. 
0.90; P = 0.573) in the held-out cohort. Model 2 showed the highest AUC (0.83, 95% CI 0.76, 0.89) for PLNM prediction 
in the LN subgroup with a short diameter ≤ 10 mm compared with Model 1 (0.78, 95% CI 0.70, 0.84), Model 3 (0.66, 
95% CI 0.52, 0.77), and Model 4 (0.74, 95% CI 0.66, 0.88). The nomograms of Models 1 and 2 yielded C-index values of 
0.804 and 0.910, respectively, in the held-out cohort. The C-index of the nomogram analysis (0.91) and decision curve 
analysis (DCA) curves confirmed the clinical usefulness and benefit of Model 2.

Conclusions:  A DWI-based radiomics nomogram incorporating the LN radiomics signature with quantitative radio-
logical features is promising for PLNM prediction in PCa patients, particularly for normal-sized LNM.
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Background
Extended pelvic lymph node dissection (ePLND) or 
PLND is recommended in intermediate- and high-risk 
prostate cancer (PCa) patients when the estimated risk 

for positive lymph nodes (LNs) exceeds 5% according to 
the European Association of Urology (EAU) guidelines 
[1]. To date, PLND represents the most accurate staging 
procedure to assess the presence of pelvic lymph node 
metastasis (PLNM) in PCa patients [2]. However, PLND 
may be associated with a higher risk of complications, 
and PLND at radical prostatectomy (RP) is currently per-
formed blindly, without knowledge of the presence of 
metastases [3, 4].
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Studies have shown that the incidence of LN involve-
ment in patients with PCa is relatively low in patients 
who have undergone PLND at RP. Yaxley et al. reported 
that the positive rate of PLNM was only 5.5% in a series 
of 1,180 patients treated with ePLND [5]. Another 
cohort of 19,633 patients who had undergone PLND 
reported 505 positive LNs, translating to 2.5% of this 
cohort having node metastases [6]. These findings indi-
cate that many patients are overtreated and must bear 
substantial adverse effects, morbidity, and health care 
costs. Therefore, accurate detection and identifica-
tion of the LN status noninvasively and preoperatively 
are essential and helpful for clinicians to determine 
whether to perform a PLND, as well as which postop-
erative adjuvant therapy to use.

Pelvic multiparametric magnetic resonance imag-
ing (mpMRI) has been accepted as the first choice for 
prebiopsy imaging of PCa patients, enabling the syn-
chronous diagnosis of local nodal staging (N0/N1) [7, 
8]. Diffusion-weighted imaging (DWI) is widely used to 
differentiate metastatic LNs from nonmetastatic LNs 
in patients with PCa, and the apparent diffusion coeffi-
cient (ADC) value is a critical parameter to identify the 
presence or absence of PLNM [9, 10]. However, their 
limitations are also clear. The traditional size criterion 
for metastatic LN evaluation on DWI images is a short 
diameter greater than 8–10  mm, which is considered 
unsatisfactory because of hyperplastic and micrometa-
static LNs [11]. The suboptimal accuracy of DWI and 
ADC in diagnosing nodal metastasis for PCa presents 
a crucial challenge and opportunity to develop more 
accurate diagnostic methods.

Radiomics is a rapidly evolving field of research 
concerned with the extraction of a set of quantitative 
imaging features that can predict nodule and tumor 
behavior noninvasively, thus potentially overcoming 
some human limitations in diagnostic accuracy [12, 13]. 
However, to date, the specific PLNM prediction using 
radiomics analysis based on MRI remains limited.

Additionally, traditional radiomics models require 
radiologists to manually draw the volumes of interest 
(VOI), a time-consuming and challenging process [14]. 
Advances in deep learning techniques have facilitated 
the development of processes for automated and accu-
rate lesion segmentation on MRI images and that can 
be used as the input to develop a radiomics model [15, 
16].

Therefore, in this study, we aimed (1) to establish and 
validate an LN radiomics model based on automatically 
segmented VOIs of pelvic LNs on DWI images for pre-
operative PLNM prediction and (2) to further explore 
the clinical value of the radiomics model compared with 
quantitative radiological features and radiologists.

Materials and methods
This retrospective study was approved by our institu-
tional review board, and the requirement for informed 
consent was waived (2021-060).

Study sample
A total of 537 consecutive patients with pathologically 
confirmed PCa between January 2017 and June 2021 
were identified for this study. The patient inclusion cri-
teria were as follows: (1) patients who had undergone 
ePLND/PLND at RP; (2) patients with at least one patho-
logically confirmed PLNM; (3) patients without preop-
erative treatment and other coexisting malignancies; (4) 
patients who had undergone MRI examinations includ-
ing DWI performed less than 30 days before RP. Patients 
were excluded for the following reasons: (1) patients 
without available clinical and pathological characteris-
tics; (2) patients with poor image quality (images with 
motion or susceptibility artifacts).

The preoperative MR images of 1116 pathologically 
confirmed LNs from 84 PCa patients were finally enrolled 
(Fig.  1). We divided the subjects into a primary cohort 
(January 2017 to December 2020) and a held-out cohort 
(January 2021 to June 2021) at a ratio of 4:1 according to 
the MRI examination time. The primary cohort included 
67 patients [median age (interquartile range): 68 (62, 74) 
years] with 908 pelvic LNs (positive LNM, n = 192; nega-
tive LNM, n = 716), and the held-out cohort included 17 
patients [70 (65, 72) years] with 208 LNs (positive LNM, 
n = 43; negative LNM, n = 165).

The clinicopathologic characteristics of the patients 
were obtained from the medical records, including age, 
the Gleason score, prostate-specific antigen (PSA) level, 
and clinical and pathological T stage. The preoperative 
radiological features of the pelvic LNs include the ADC 
value, LN size (the shortest and longest diameters), and 
LN volume. All the enrolled patients were anonymous.

MRI acquisition
To eliminate contents from the bowel, the patients were 
prepared to self-administer a cleansing enema (Folium 
Sennae) the day before their scheduled mpMRI. All the 
patients had undergone pretreatment mpMRI using 
one of two 3.0 T scanners (Achieva, Philips Health care, 
The Netherlands; Discovery HD 750, GE Healthcare, 
USA) and a 16-channel matrix torso coil. The standard 
mpMRI protocol at our institution included transverse 
T1-weighted images (T1WI), transverse T2-weighted 
images with fat suppression (fT2WI), dynamic contrast-
enhanced (DCE) images and axial DWI with the recon-
struction of ADC maps. DWI images with two b values 
(800  s/mm2 and 0  s/mm2) were obtained, and the ADC 
parameters were calculated and constructed based on the 
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two b values. Detailed information on the DWI param-
eters is presented in Table 1.

Pelvic LN segmentation
Once an LN is visualized in the setting of a patient 
with PCa, many potentially useful features can be 
used to determine whether it is involved with metas-
tases [17]. Therefore, we used a previously trained 

3D U-Net segmentation model based on deep learn-
ing to automatically segment the visible pelvic LNs on 
DWI images[18]. The segmented LNs located in the 
presacral, common iliac, internal iliac, external iliac, 
and obturator fossa sites were selected and used for 
PLNM prediction. The quantitative radiological fea-
tures, including the ADC value, volume, short diam-
eter, long diameter, and short-to-long diameter ratio of 

Fig. 1  The flow chart of patient enrollment. LNM: lymph node metastases. The clinicopathologic characteristics of the patients were obtained from 
the medical records, including age, the Gleason score, prostate-specific antigen (PSA) level, and clinical and pathological T stage. The preoperative 
radiological features of the pelvic LNs include the ADC value, LN size (the shortest and longest diameters), and LN volume
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the segmented pelvic LNs based on deep learning, were 
measured automatically.

Standard reference
The standard reference of the status of pelvic LN was 
a node-by-node correspondence between DWI and the 
final pathological assessment of ePLND/PLND. If not 
all the LNs were metastatic or nonmetastatic at one 
site, the location of the metastatic LN was discussed by 
one dedicated uropathologist and an expert radiologist. 
Any LNs without a confirmed pathological status were 
excluded.

Radiomics analysis
The radiomics analysis workflow included the follow-
ing four steps: (1) feature extraction, (2) feature selec-
tion, (3) cross-validation and 4) predictive performance 
evaluation.

The radiomics features were extracted using the PyRa-
diomics package in Python. In total, 1070 radiomics 
features were extracted from each VOI, containing 840 
texture features, 216 first-order statistical features, and 14 
shape-based features (Additional file 1: S1 and Table S1).

The radiomics models were developed for the primary 
cohort according to the following 5 steps: (i) data balance 
(3 methods); (ii) data normalization (4 methods); (iii) 
dimension reduction (2 methods); (iv) feature selection 
(3 methods, each with the top 1–20 features); (v) classi-
fication (6 methods) (Additional file 1: Table S2). Finally, 
8640 (3 × 4 × 2 × 3 × 20 × 6) models were built. Fivefold 
cross-validation was applied to the primary cohort for 
model training and validation, and the held-out cohort 
was used to investigate the predictive power of the radi-
omics models in metastasis prediction for each LN. All 
the work related to radiomics model building and test-
ing was completed using Feature Explorer Pro (FAEPro, 
v0.3.4) in Python (v3.6.0) [19].

Development of PLNM prediction models
Model 1: quantitative radiological features of the LNs on DWI 
images
The difference in radiological features between PLNM 
and non-PLNM was first assessed by univariate analy-
ses. Next, features with P < 0.05 in the univariate analyses 
were entered into multivariate analyses to build Model 
1 using forward selection logistic regression for PLNM 
prediction.

Model 2: radiomics and radiological features based on DWI 
images
The radiomics model achieving the best performance 
among the 8640 built models in the fivefold cross-vali-
dation was finally selected as the best model for PLNM 
prediction. A combined radiomics model (Model 2) was 
developed based on the incorporation of radiomics fea-
tures and quantitative radiological features using multi-
variable logistic regression analysis in the primary cohort.

Models 3 and 4: visual assessment of the radiologists
Two junior radiologists (with 5 and 6  years of reading 
experience, respectively) and two senior radiologists 
(with 10 and 15 years of reading experience, respectively) 
participated in reading the mpMR images. The consen-
sus reached by the two junior radiologists to determine 
the metastatic status of LNs was recorded as the result 
of Model 3. Similarly, the consensus reached by the two 
senior radiologists was regarded as the result of Model 4. 
All the available imaging and clinical information were 
unblinded to the four radiologists.

Evaluation of the PLNM prediction models
The diagnostic performance of the models in the held-
out cohort was divided into three parts: discrimination 
ability, clinical usefulness and clinical benefit. The dis-
crimination performance was assessed using the receiver 
operating characteristic (ROC) curve, and the corre-
sponding area under the curve (AUC), accuracy, sen-
sitivity, specificity, positive likelihood ratio (PLR), and 
negative likelihood ratio (NLR) were also calculated. 
Additionally, we divided the held-out cohort into two 
subgroups according to the short diameter of each LN—
(a) LNs with a short diameter of ≤ 10  mm and (b) LNs 
with a short diameter of > 10 mm—to facilitate subgroup 
analysis of PLNM discrimination.

To provide a visualized and individual tool to predict 
the probability of PLNM, nomogram analysis was con-
ducted based on Models 1 and 2. The C-index was cal-
culated to assess the discrimination performance of the 
nomograms. The calibration curve was plotted to explore 
the consistency between the nomogram-predicted 

Table 1  The detailed imaging parameters for diffusion-weighted 
imaging

Parameters 3.0 T discovery 3.0 T achieva

B value (s/mm2) 800 800

Imaging matrix 256 × 256 156 × 180

Echo time (ms) 60 54

Repetition time (ms) 4000 3300

Field of view (mm2) 450 × 366 512 × 356

Section thickness (mm) 8 7

Number of slices 25 24
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probability of PLNM and actual results accompanied by 
Hosmer–Lemeshow tests. Decision curve analysis (DCA) 
was adopted to assess the clinical benefits of the four 
models at a range of threshold probabilities [20].

Statistical analysis
After testing normality, the Mann–Whitney U test was 
used to assess the characteristic differences between 
patients in the primary and held-out cohorts (age, F-PSA, 
T-PSA, F/T PSA) and between LNs in the LNM and 
non-LNM groups (ADC value, LN volume, short diam-
eter, long diameter, and short-to-long diameter ratio) 
using Statistical Package for Social Sciences, SPSS 19.0 
(SPSS Inc., Chicago, IL, USA). ROC analyses were per-
formed using MedCalc statistical software version 15.2.2 

(MedCalc Software bvba, Ostend, Belgium), and multiple 
and pairwise comparisons of AUCs were achieved using 
the DeLong nonparametric approach. The nomogram 
and DCA were performed using R 3.5.1 (Comprehen-
sive R Archive Network, www.r-​proje​ct.​org). A signifi-
cant test statistic of the calibration curve implies that the 
models’ prediction does not match the observed outcome 
perfectly [21]. The level of statistical significance was set 
at P < 0.05.

Results
Patients and LN characteristics
The statistical and clinical characteristics of the patients 
and pelvic LNs are summarized in Table  2. The preva-
lence rates of PLNM and non-PLNM were 26.82% 

Table 2  Characteristics of patients in the primary and held-out cohorts

ADC = apparent diffusion coefficient; LNM = lymph nodes metastases; PSA: prostate specific antigen; F-PSA = Free PSA; T-PSA = Total PSA

Characteristics Primary cohort (n = 67) Held-out cohort (n = 17) P value

LN characteristics LNM ( +) LNM (-) P value LNM ( +) LNM (-) P value

Number 192 716 43 165

ADC value (10−3 mm2/s) 1.15 (0.92, 1.54) 1.54 (1.22, 2.05) 0.001 1.14 (1.08, 1.30) 1.38 (1.14, 1.75) 0.321 0.001

LN volume (cm3) 1.31 (0.75, 3.32) 0.41 (0.24, 0.75) 0.001 1.85 (0.90, 4.23) 0.44 (0.27, 0.80) 0.001 0.111

Short diameter (mm) 10.93 (8.99, 16.69) 7 (5.94, 8.57) 0.001 14.02 (9.13, 18.19) 7.79 (6.33, 9.12) 0.001 0.002

Long diameter (mm) 23.66 (13.06, 35.92) 10.07 (9. 21.64) 0.001 23.97 (20.41, 37.67) 14.42 (9.00, 21.51) 0.001 0.614

Short-to-long diameter ratio 0.54 (0.42, 0.67) 0.57 (0.40, 0.68) 0.632 0.56 (0.45, 0.65) 0.57 (0.40, 0.78) 0.660 0.178

Patients characteristics

Age (median, IQR, y) 68 (62,74) 70 (65,72) 0.346

T-PSA (median, IQR, ng/ml) 47.16 (15.67,89.18) 35.62 (9.25, 48.64) 0.263

F-PSA (median, IQR, ng/ml) 5.17 (1.71, 11.22) 4.55 (2.08, 7.05) 0.426

F/T PSA (median, IQR, ng/ml) 0.11 (0.07, 0.18) 0.12 (0.09, 0.18) 0.486

Gleason score [N (%)]

3 + 4 6 (8.96%) 1 (5.88%)

4 + 3 14 (20.89%) 2 (11.76%)

4 + 4 14 (20.89%) 2(11.76%)

4 + 5 24 (35.82%) 7 (41.18%)

5 + 4 6 (8.96%) 3 (17.64%)

5 + 5 3 (4.48%) 2 (11.76%)

Pathological T staging [N (%)]

pT2 20 (29.85%) 2 (11.76%)

pT3a 11 (16.42%) 2 (11.76%)

pT3b 22 (32.84%) 12 (70.59%)

pT4 14 (20.89%) 1 (5.88%)

Clinical T staging [N (%)]

T2a 10 (14.93%) –

T2b 4 (5.97%) –

T2c 14 (20.89%) 3 (17.65%)

T3a 7 (10.45%) 2(11.76%)

T3b 15 (22.39%) 9 (52.94%)

T4 17 (25.37%) 3 (4.48%)

http://www.r-project.org
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(192/716) in the primary cohort and 26.06% (43/165) 
in the held-out cohort. No significant differences were 
found between the primary and held-out cohorts regard-
ing age and the PSA level (including T-PSA, F-PSA, 
and F/T PSA). The median ADC value of the metastatic 
LNs was significantly lower than that of the nonmeta-
static LNs in both the primary and held-out cohorts 
(primary cohort: 1.15 × 10–3 mm2/s vs. 1.54 × 10–3 
mm2/s, P < 0.001; held-out cohort: 1.04 × 10–3 mm2/s vs. 
1.38 × 10–3 mm2/s, P < 0.001). The short-to-long diameter 
ratio showed no significant difference between metastatic 
LNs and nonmetastatic LNs (primary cohort: 0.54 vs. 
0.57, P = 0.632; 0.56 vs. 0.57, P = 0.660).

Performance of pelvic LN segmentation
The Dice scores between manual and automated LNs seg-
mentation in the primary and held-out cohort were 0.85 
± 0.09 and 0.84 ± 0.07, respectively (P = 0.08). The Dice 
score distributions in the primary and held-out cohort 
are shown in Fig. 2. No significant differences were found 
between the Dice scores of metastatic LNs and non-met-
astatic LNs in both primary and held-out cohorts (P = 
0.124, 0.09) according to the notched box plots.

Agreement of quantitative radiological characteristics
The agreement between the automatically segmented 
LNs and manually segmented LNs in terms of these 
quantitative radiological characteristics (ADC value, LN 
volume, short diameter, long diameter, and short-to-long 
diameter ratio) is shown in Fig.  3. The Bland–Altman 
analysis of the radiological features showed good consist-
ency between the automated segmentation and manual 
annotation in the held-out cohort, and most values were 
within the consistency interval.

Construction of Model 1 based on the quantitative 
radiological features
On univariate analysis, the radiological features of the 
pelvic LNs were compared and are summarized in 
Table 2. The ADC value, LN volume, short diameter and 
long diameter showed significant differences between the 
metastatic and nonmetastatic LNs and were then used to 
establish a radiological model to discriminate the status 
of the LNs using multivariate logistic analysis (Table 3). 
The equation to calculate the probability of metastases 
was generated as follows:

Construction of Model 2 based on the radiomics 
and radiological features
The construction pipeline of the best model in the pri-
mary cohort was as follows: data balance: downsampling; 
data normalization: Z score; dimension reduction: Pear-
son correlation coefficient (PCC); feature selection: anal-
ysis of variance (ANOVA); classification: least absolute 
shrinkage and selection operator (LASSO). The detailed 
interpretation of the pipeline is shown in Additional 
file 1: S2.

Among the 1070 extracted radiomics features, after 
dimension reduction and feature selection, the top 10 
best features for the model were selected for modeling 
using feature selectors (Table 4). The LN Rad-score was 
calculated by summing the selected features weighted by 
their coefficients. Multivariate logistic regression analy-
sis of the combined radiomics model showed that a short 
diameter and LN Rad-score were significant risk factors 

x =− 1.962− 0.01× ADCvalue + 0.002

× LNvolume + 0.264 × LNshortdiameter

− 0.137× LNlongdiameter

Fig. 2  Notched box plots of the Dice scores in the primary and held-out cohort. a Dice scores in the primary cohort; b Dice scores in the held-out 
cohort



Page 7 of 13Liu et al. BMC Medical Imaging          (2022) 22:190 	

for PLNM prediction (Table 3). The equation to calculate 
the probability of metastases was generated as follows:

PLNM discrimination performance of the prediction 
models
The four models yielded AUCs of 0.89 (95% CI 0.85–
0.94), 0.90 (95% CI 0.86–0.94), 0.71 (95% CI 0.69–0.78) 
and 0.78 (95% CI 0.77–0.88) in the held-out cohort for 
PLNM prediction (Table  5, Fig.  4a). Subgroup analysis 
(Fig. 4b, c) for PLNM prediction in LNs with short diam-
eters ≤ 10 mm showed that Model 2 achieved the highest 

x =− 1.439− 0.405× LNRadscore + 0.215

× LNshortdiameter

Fig. 3  Agreement between the automatically segmented and manually segmented lymph nodes. a ADC values; b volume; c short diameter; d 
long diameter; e short-to-long diameter ratio

Table 3  Independent predictors of metastases in the Model 1 
and Model 2

Data in parentheses are 95% confidence interval

β indicates the regression coefficient; CI = confidence interval; LN = lymph node

Model Parameters β Odds ratio (95% CI) P

Model 1 ADC value − 0.001 (0.999,1.00) 0.001

LN volume 0.002 (1.001, 1.003) 0.001

Short diameter 0.264 (1.161, 1.460) 0.001

Long diameter − 0.137 (0.837,0.908) 0.001

Constant − 1.962 – 0.001

Model 2 Short diameter 0.215 (1.066, 1.442) 0.005

LN rad-score − 0.405 (0.003, 0.089) 0.001

Constant − 1.493 – 0.001

Table 4  Key radiomics features and their coefficient

Key features Coefficient

original_shape_Sphericity 0.856

original_shape_SurfaceVolumeRati − 0.581

log-sigma-1-0-mm-3D_glcm_Idn 0.63

log-sigma-1-0-mm-3D_glcm_Imc1 0.096

log-sigma-1-0-mm-3D_gldm_DependenceNonUniformityNormalized − 0.188

log-sigma-5-0-mm-3D_glcm_DifferenceEntropy 1.236

log-sigma-5-0-mm-3D_glcm_InverseVariance − 0.139

log-sigma-5-0-mm-3D_gldm_DependenceNonUniformityNormalized 0.475

wavelet-HLL_glcm_Correlation 0.231

wavelet-HHH_glszm_SizeZoneNonUniformityNormalized − 0.453
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AUC (0.83; 95% CI 0.85–0.94) compared with the other 
models. Models 1 and 2 achieved high AUC values for 
PLNM prediction in the subgroup of LNs with short 
diameters > 10  mm, and both AUC values were signifi-
cantly higher than that for Model 3 (Model 1 vs. Model 
3: 0.91 vs. 0.73, P = 0.001; Model 2 vs. Model 3: 0.92 vs. 
0.73, P = 0.001) according to the DeLong test (Fig. 4d–f). 

Example figures of PLNM prediction on different models 
are shown in Fig. 5.

In addition, at the patient level, Model 1, Model 2 and 
Model 4 discriminated all 17 patients as positive PLNM 
in the held-out cohort (sensitivity: 100%), while two 
patients with positive PLNM were wrongly taken as neg-
ative by Model 1 (sensitivity: 88.24%).

Table 5  The discrimination performance of models for PLNM prediction in the held-out cohort

Data in parentheses are 95% confidence interval

AUC = area under the curve; ACC = Accuracy; SEN = Sensitivity; SPE = Specificity; PLR = Positive likelihood ratio; NLR = Negative likelihood ratio; PLNM = pelvic lymph 
node metastases

AUC​ ACC​ SEN (%) SPE (%) PLR (%) NLR (%)

Model 1 0.89 (0.85, 0.94) 0.79 (0.73, 0.85) 79.07 (64.01, 90.02) 89.09 (83.34,93.41) 7.25 (4.62, 11.51) 0.23 (0.12,0.43)

Model 2 0.90 (0.85, 0.94) 0.81 (0.75, 0.86) 88.37 (74.91, 96.12) 83.64 (77.13, 88.94) 5.40 (3.81, 7.82) 0.14 (0.06, 0.30)

Model 3 0.71 (0.69, 0.78) 0.74 (0.68, 0.79) 69.77 (53.91, 82.8) 75.15 (67.80, 81.5) 2.81 (2.01, 3.92) 0.40 (0.32, 0.61)

Model 4 0.78 (0.77, 0.88) 0.84 (0.78, 0.88) 81.40 (66.63, 91.63) 84.24 (77.80, 89.41) 5.17 (3.54, 7.62) 0.22 (0.13, 0.42)

For LNs with short diameter ≤ 10 mm

Model 1 0.78 (0.70, 0.84) 0.82 (0.75, 0.88) 84.62 (54.61, 98.12) 70.45 (61.90, 78.12) 2.86 (2.01, 4.12) 0.22 (0.06, 0.82)

Model 2 0.83 (0.76, 0.89) 0.84 (0.77, 0.89) 76.92 (46.2, 95.00) 84.85 (77.6, 90.5) 5.08 (3.1, 8.4) 0.27 (0.1, 0.7)

Model 3 0.66 (0.52, 0.77) 0.65 (0.53, 0.76) 73.33 (54.12, 87.73) 57.78 (39.2, 74.5) 1.73 (1.12, 2.74) 0.46 (0.23, 0.91)

Model 4 0.74 (0.66, 0.88) 0.78 (0.66, 0.86) 86.67 (69.31, 96.25) 69.70 (51.32, 84.46) 2.86 (1.72, 4.93) 0.19 (0.07, 0.51)

For LNs with short diameter > 10 mm

Model 1 0.91 (0.82, 0.97) 0.73 (0.61, 0.82) 80.00 (61.42, 92.31) 90.91 (75.73, 98.12) 8.80 (2.91, 26.32) 0.22 (0.15, 0.52)

Model 2 0.92 (0.80, 0.96) 0.81 (0.69, 0.89) 83.33 (65.3, 94.4) 84.85 (68.1, 94.9) 5.50 (2.4, 12.5) 0.2 (0.09, 0.4)

Model 3 0.73 (0.62, 0.78) 0.78 (0.70, 0.84) 61.54 (31.6, 86.1) 79.55 (71.7, 86.1) 3.01 (1.71, 5.23) 0.48 (0.22, 1.00)

Model 4 0.79 (0.71, 0.85) 0.86 (0.79, 0.91) 69.23 (38.6, 90.9) 87.88 (81.1, 92.9) 5.71 (3.2, 10.3) 0.35 (0.21, 0.83)

Fig. 4  ROC curves and Delong test of the four models. a ROC curves of the four models in the held-outcohort, b LNs with short diameter ≤ 10 mm 
of the held-out cohort, and c LNs with short diameter > 10 mm of the held-out cohort. d Delong test of the four models in the held-out cohort, e 
LNs with short diameter ≤ 10 mm of the held-out cohort, and f LNs with short diameter > 10 mm of the held-out cohort
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Fig. 5  Examples for comparison of discrimination ability on PLNM. The red arrows point to the target LNs. LN: lymph node; PLND: pelvic lymph 
node dissection; PLNM: pelvic lymph node metastasis

Fig. 6  Nomograms and calibration curves in the held-out cohort. a The radiological nomogram of Model 1 integrated only quantitative 
radiological factors. b The radiomics nomogram of Model 2 integrated radiological factors with the radiomics signature. c The calibration curve of 
Model 1 based on the quantitative radiological features. d The calibration curve of Model 2 based on the radiomics and radiological features
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Clinical usefulness of Model 1 and Model 2
The nomograms of Models 1 and 2 yielded C-index 
values of 0.804 and 0.910, respectively, in the held-out 
cohort. The nomograms and calibration curves of Mod-
els 1 and 2 are shown in Fig. 6. The Hosmer–Lemeshow 
test showed a nonsignificant statistic (P = 0.075 and 
P = 0.088, respectively) for Models 1 and 2, demon-
strating no significant deviation between the calibra-
tion curve and a perfect fit for PLNM prediction.

Clinical benefit of the prediction models
The DCA curves of the four models for PLNM prediction 
are presented in Fig.  7. All the models obtained higher 
net benefits than the PLNM-all or PLNM-none proto-
col in different ranges of threshold probabilities. If the 
risk threshold probability is set over 35%, Models 1 and 
2 have more advantages to predict PLNM than Models 3 
and 4.

Discussion
In this retrospective study, we constructed two prediction 
models for PLNM based on automatic LN segmentation 
with quantitative radiological LN features alone (Model 
1: ADC value, LN volume, short diameter and long diam-
eter) and the combination of quantitative radiological 
features and radiomics signatures (Model 2: short diam-
eter and LN Rad-score) via multiple logistic regression. 
Our results showed no significant difference between the 
AUCs of Models 1 and 2 [0.89 (95% CI 0.85, 0.94) vs. 0.90 
(95% CI 0.85, 0.94), P = 0.573) in the held-out cohort. 
Considering that the size, particularly the short diameter, 
of the LNs is an important factor influencing the perfor-
mance of the model for LN prediction, all the LNs were 
divided into two subgroups according to a threshold of 
10  mm [17, 22]. Regarding the subgroup of LNs with a 
short diameter ≤ 10 mm of the held-out cohort, Model 2 
showed a higher AUC than Model 1 [0.83 (95% CI 0.76, 
0.89) vs. 0.78 (95% CI 0.70, 0.84), P = 0.048]. Therefore, 

the prediction model of the combination of the radiom-
ics signature and radiological features demonstrated bet-
ter predictive efficacy than the radiological factors alone, 
indicating that the predictive model could be a better tool 
to predict PLNM in PCa patients.

MRI has been widely used as a noninvasive imaging 
modality to evaluate the LN status with mixed results 
because the diagnostic accuracy of LN metastases 
depends largely on the level and experience of the radiol-
ogists [23]. As a functional imaging technique, DWI ena-
bles the noninvasive characterization of biological tissues 
based on the random translational molecular motion of 
water molecules. The degree of diffusion restriction can 
be quantitatively expressed by calculating ADC maps, 
allowing tissue characterization [10, 24]. Several stud-
ies have reported significant differences between the 
ADC values in benign and malignant LNs, yielding high 
accuracy to differentiate between malignant and benign 
LNs [25, 26]. Fewer promising results were shown in 
other studies. For example, Thoeny et  al. reported non-
significant findings in the ADC values of metastatic and 
benign LNs, which were (0.94 ± 0.18) × 10−3 mm2/s and 
(1.01 ± 0.28) × 10−3 mm2/s, respectively [27]. Therefore, 
although a trend exists toward a lower mean ADC value 
in metastatic LNs, the role of ADC in the assessment of 
nodal status remains debatable.

Size is usually considered a fundamental criterion to 
diagnose nodal metastases. Various benign LN sizes can 
substantially overlap with the size of metastatic nodes, 
resulting in the suboptimal sensitivity and specificity pro-
file of size criteria [28]. The shape of LNs can also be a 
helpful diagnostic feature. A normal LN has a fatty hilum 
and is an oblong kidney-bean-shaped structure, and a 
higher short-to-long-axis ratio (rounder than oblong) is 
more likely to be malignant [17]. In a study of patients 
with cervical cancer, the short-to-long ratio was not 
found to be a significant factor to differentiate metastatic 
and nonmetastatic LNs [29]. Given the limited accuracy 
of any of these features considered alone, using a com-
bination of size, shape and ADC value criteria together 
seems prudent.

In this study, we built a multivariate model based on 
quantitative radiological features for PLNM prediction. 
Patterns of the LN short diameter, long diameter, ADC 
value and volume were finally included through multi-
variate logistic analysis. The AUC value of the model was 
0.89 (95% CI 0.85, 0.94) in the held-out cohort but was 
relatively lower in the subgroup of LNs with short diam-
eters ≤ 10 mm [0.78 (95% CI 0.70, 0.84)]. These normal-
sized LNs represent the most challenging problem in 
clinical practice. Therefore, the diagnostic performance 
of normal-sized LNs must be improved.Fig. 7  Decision curve analysis comparing the net benefits of the four 

model



Page 11 of 13Liu et al. BMC Medical Imaging          (2022) 22:190 	

Considering that radiomics features comprise quantita-
tive and detailed information in multiple dimensions and 
could reflect the heterogeneity and biological behavior of 
metastases [30], we hypothesized that radiomics could 
provide more information to distinguish metastases that 
are challenging for traditional radiologic interpretations. 
In this study, ten radiomics features were included—2 
shape features, 5 Gy level cooccurrence matrix (GLCM) 
features, 1 Gy level size zone matrix (GLSZM), and 2 Gy 
level dependence matrix (GLDM) features. Only features 
closely correlated with the LN status were selected for 
redundancy elimination by narrowing their regression 
coefficients based on the widely used LASSO algorithm. 
This proposed algorithm could identify wide associations 
between the extracted radiomics data and construct a 
robust radiomics signature with a panel of selected steady 
variables. This approach not only effectively identifies 
important radiomics features but also avoids the overfit-
ting problem for the classification task [31, 32].

In this research, the model with the highest AUC 
value for PLNM prediction was finally regarded as the 
best model. Downsampling was selected as the method 
of data balance in the pipeline of the best model, which 
eliminated the impact of data imbalance on model devel-
opment by by sampling the signal at a lower rate [33]. 
PCC and ANOVA were used to reduce the dimensions of 
the feature matrix and to select the best features, respec-
tively [34]. LASSO is a popular penalized regression 
method that minimizes the residual sum of squares and 
places a bound on the sum of the absolute value of the 
coefficients [35].

Previous studies on PLNM prediction have shown that 
radiomics features combined with clinical and/or radio-
logical features enable superior prediction ability [29, 
36]. Therefore, in this study, Model 2 was constructed 
by combining the radiological features and the LN Rad-
score using multivariate logistic regression. Because 
some radiological features might be covered by the radi-
omics signatures, radiological factors such as the ADC 
value and LN volume were no longer independent pre-
dictors when multifactor regression was performed.

Our results showed that Model 2 improved the dis-
crimination ability of PLNM compared with Model 1, 
particularly for normal-sized LNs. An explanation might 
be that normal-sized metastatic LNs have a higher prob-
ability of being in the early phase, and the metastatic 
foci inside the LNs may be very tiny or even at the cel-
lular level. These changes may be challenging to detect 
by MRI. Additionally, the high C-index of the nomogram 
analysis for Model 2 further confirmed its reliability and 
clinical usage. This radiomics nomogram model is prom-
ising as a visualized and easy-to-use tool for preoperative 

PLNM and helps clinically make individualized treat-
ment decisions in patients with PCa.

Several studies have demonstrated the potential ben-
efit of radiomics nomograms to predict PLNM in PCa 
[37, 38]. Almost all of these studies were conducted at 
the patient level. The main reason is that a node-by-node 
correspondence between DWI and histopathology could 
be challenging to obtain. In this study, we applied care-
fully matched one-to-one MR-pathologically confirmed 
LNs as the standard reference for PLNM prediction 
according to the ePLND/PLND results. All the labeled 
LNs were within the dissection region, and LNs with an 
uncertain status were neglected.

Additionally, comparing the visual assessments of the 
junior radiologists (Model 3) and senior radiologists 
(Model 4), we found that the AUC value of Model 2 was 
superior to that of the junior radiologists [AUC: 0.90 
(95% CI 0.85, 0.94) vs. 0.71 (95% CI 0.69, 0.78), P = 0.001] 
and equivalent to that of senior radiologists [AUC: 0.90 
(95% CI 0.85, 0.94) vs. 0.78 (95% CI 0.77, 0.88), P = 0.061] 
in the held-out cohort. For the subgroup of LNs with 
short diameters ≤ 10 mm of the held-out cohort, Model 
2 achieved significantly higher discrimination ability 
than senior radiologists [AUC: 0.83 (95% CI 0.76, 0.89) 
vs. 0.74 (95% CI 0.66, 0.88), P = 0.048], demonstrating 
that our proposed radiomics approach could also prom-
isingly provide an outperformed prediction performance 
for PLNM compared with the visual assessments of the 
radiologists.

Some practical issues should be considered when 
applying radiomics in the clinic, such as time and labor 
resources. VOI acquisition is a critical but time-con-
suming job that usually presents an obstacle for radiolo-
gists to perform radiomics analysis [39]. In this study, we 
applied a pretrained deep learning approach that enables 
rapid and accurate detection and segmentation of LNs 
on DWI images in the setting of PCa N-staging. Based 
on automatic nodal staging, Model 2 achieved excellent 
performance in PLNM prediction concerning accuracy, 
sensitivity, and specificity.

We acknowledge limitations to our study. First, this 
study was retrospective with limited sample size, and 
extending the primary cohort to more patients might 
further promote the performance of the radiomics 
model for clinical application. Second, in this study, all 
the data in the primary and held-put cohorts were col-
lected from a single institution, therefore the applica-
tion and performance of the model in other institutions 
remains unclear until now. Multi-institution validation 
is vital for model application in practice. Third, we did 
not compare or combine our results with radiomics 
analysis of other MRI sequences, such as T2WI or DCE, 
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which might improve the diagnostic efficiency. We will 
compare the diagnostic efficiency in future research. 
Fourth, the sample size of positive LNM and negative 
LNM was imbalanced in the primary cohort (192:716). 
Although preprocessed down-sampling was performed 
for data balance, the influence of this operation on the 
diagnostic performance was not ensured. Finally, deep 
learning models have been shown to perform relatively 
well in many tasks and might outperform radiomics 
models [40]. Developing a prediction model based on 
deep learning and comparing its performance with the 
current study may be necessary for the future.

In conclusion, the noninvasive LN radiomics model 
based on the quantitative radiological features and 
radiomics signature in our study can achieve accurate 
PLNM prediction based on DWI preoperatively. A 
key advantage of this study is indicated by the result 
that the combined radiomics model has more predic-
tive efficacy than senior radiologists for differentiating 
malignant and benign normal-sized PLNM, a finding 
that could be helpful for patients with PCa to optimize 
decision-making and adjust adjuvant treatments.
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