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Abstract 

Background: Nowadays doctors and radiologists are overwhelmed with a huge amount of work. This led to the 
effort to design different Computer‑Aided Diagnosis systems (CAD system), with the aim of accomplishing a faster 
and more accurate diagnosis. The current development of deep learning is a big opportunity for the development 
of new CADs. In this paper, we propose a novel architecture for a convolutional neural network (CNN) ensemble for 
classifying chest X‑ray (CRX) images into four classes: viral Pneumonia, Tuberculosis, COVID‑19, and Healthy. Although 
Computed tomography (CT) is the best way to detect and diagnoses pulmonary issues, CT is more expensive than 
CRX. Furthermore, CRX is commonly the first step in the diagnosis, so it’s very important to be accurate in the early 
stages of diagnosis and treatment.

Results: We applied the transfer learning technique and data augmentation to all CNNs for obtaining better perfor‑
mance. We have designed and evaluated two different CNN‑ensembles: Stacking and Voting. This system is ready to 
be applied in a CAD system to automated diagnosis such a second or previous opinion before the doctors or radiol‑
ogy’s. Our results show a great improvement, 99% accuracy of the Stacking Ensemble and 98% of accuracy for the the 
Voting Ensemble.

Conclusions: To minimize missclassifications, we included six different base CNN models in our architecture (VGG16, 
VGG19, InceptionV3, ResNet101V2, DenseNet121 and CheXnet) and it could be extended to any number as well as we 
expect extend the number of diseases to detected. The proposed method has been validated using a large dataset 
created by mixing several public datasets with different image sizes and quality. As we demonstrate in the evaluation 
carried out, we reach better results and generalization compared with previous works. In addition, we make a first 
approach to explainable deep learning with the objective of providing professionals more information that may be 
valuable when evaluating CRXs.
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Background
Coronavirus disease (COVID-19) is an infectious disease 
caused by a newly discovered coronavirus. The world 
is facing an unprecedented challenge with communi-
ties and economies everywhere affected by the grow-
ing COVID-19 pandemic. Globally, until 18 May 2021, 
there have been 163,212,543 confirmed cases of COVID-
19, including 3,383,979 deaths, reported by WHO [1]. 
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Currently, the number of cases continues to increase up 
to 511,252,681 including 6,238,149 deaths, until 4 May 
2022 [2]. The method commonly used to detect COVID-
19 is the Reverse Transcription Polymerase Chain 
Reaction (RT-PCR) test. However, RT-PCR test is a time-
consuming, laborious, and complicated manual process 
[3]. A current need required now is a fast, simple-to-
use, portable, and affordable early detection system for 
COVID-19.

Pulmonary function diagnostic is often examined by 
medical imaging, primarily using X-Ray, but also com-
plemented with scan Computed tomography (CT) and 
ultrasound, due to the significant comparison in the lung 
medical image data. During the pandemic, the fatigue 
of the doctors was exposed, they was forced to work 
many hours with high pressure. Doctors and radiologists 
needed to diagnose many lung X-RAY per day to distin-
guish COVID-19 disease versus others pathologies. This 
situation remark the necessity of new Computer-Aided 
Diagnosis systems (CAD systems).

In recent years, in the field of medical image analysis, 
especially in radiology, deep learning techniques have 
been used to improved detection, diagnosis, and treat-
ment of several diseases [4]. Since lungs X-Ray serves as 
the foundation for other imaging studies, using X-Rays 
and deep learning to diagnose COVID-19 is the predomi-
nant first option for evaluating pulmonary symptoms 
using imaging techniques [5–7]. Application of Con-
volutional Neural Network (CNN) techniques coupled 
with radiological imaging can be helpful in the accurate 
identification of this disease and can also be supportive in 
overcoming the issue of a shortage of trained physicians 
in remote communities [8]. Thus, efforts have been taken 
in this area, [9] present a CAD for segmentation and clas-
sification of pulmonary nodules in radiological 3D imag-
ing .

However, any CNN model generates a certain percent 
of erroneous classifications, in the form of false positives 
and false negatives. One possibility recently suggested to 
minimize those errors is to use CNN ensembles [10–12] 
, the combination of different convolutional neural net-
works architectures can improve the system robustness 
and generalization [13, 14]. In this paper, we propose a 
novel architecture for a CNN-based ensemble for classi-
fying chest X-Ray images into four classes: Viral Pneumo-
nia, Tuberculosis, COVID-19, and Healthy. To minimize 
missclassifications, we included six different base CNN 
models in our architecture (VGG16, VGG19, Incep-
tionV3, REsNet101V2, DenseNet121 and CheXnet) and 
it could be extended, which output is fed to a classifier for 
definitive classification. The six base CNN networks have 
different internal architectures to push dissimilarity in 

the decision process. VGG16 and VGG19 are Deep CNN, 
InceptionV3 as an architecture that is wider than deeper, 
ResNet101V2 belongs to the deep residual networks fam-
ily, while DenseNet121 and CheXnet have dense blocks 
which are densely connected. We applied the transfer 
learning technique [15] to all CNNs for obtaining better 
performance.

The main contributions of this paper are as follows:

• Design an generalizable and functional CAD to diag-
noses different diseases only with chest X-Ray (CRX). 
This diagnosis could be use as a first stage in the 
medical flow for pulmonary diagnosis.

• Creating a large dataset of COVID-19 chest X-Ray 
images for training, validation, and testing models. 
We are mixing chest X-Ray images from different 
subjects, so that we reach the biggest generalization.

• Designing and evaluating two different CNN-ensem-
bles (Stacking and Voting Ensemble) for pulmonary 
disease classification by using CRX. To look for the 
best way to ensemble CNN applied to CRX.

• Proposing a model that not only achieves a high level 
of accuracy but also can detect misclassified chest 
X-Rays. Moreover, it could be helpful for doctors to 
detect other lung diseases (i.e., pneumonia, tubercu-
losis).

• Analyzing the heatmaps of the ensembles and adapt-
ing the Gradient-weighted Class Activation Mapping 
(Grad-CAM) algorithm to do a mixed heatmap with 
all the base CNNs. This system will be able to detect 
radiological abnormalities in CRXs, and assist doc-
tors and radiologist in the interpretation.

This paper is organized as follows. The second section 
include the related work. Section “Methods” includes 
description of data-set, illustration of the base CNNs 
models, the ensemble approach proposed in this paper, 
the evaluation metrics, and the technique of Grad-CAM. 
Following sections present the results obtained with our 
proposed models and a discussion of it. Section “Discus-
sion” analyzes the experimental results obtained. Finally, 
the conclusion remarks are presented in last section.

Related work
This paper presented an automated computer system 
based on neural networks that have proved to be a fast 
and non-invasive way to detect several lung diseases from 
CRX images [16]. X-Rays are not as expensive as other 
medical images (i.e. PET or TAC), however specialized 
experts (mainly radiologists) are needed to analyze them.
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By this reason, previous studies analyses the diagnosis 
of lung diseases, such as COVID, by using CT [17, 18]. 
The availability of large datasets with medical images, the 
advances in deep learning, and the computer power evo-
lution have boosted the development of computer medi-
cal aid systems to assist experts to make their diagnosis 
[19].

Earlier studies have shownn the effectiveness of using 
CNNs to detect diseases. Rezaeijo, Seyed Masoud, et al. 
[20] detect COVID-19 using CT images, assessing the 
detection results using different deep learning mod-
els (DenseNet201, ResNet50, VGG16 and Xception) 
and combining them with machine learning algorithms 
(RF, SVM, DT, KNN and LGR). Obtaining the highest 
accuracy using CNN DenseNet201. Brunese et  al. [21] 
proposed to use two VGG16 networks: The first one dis-
criminates between healthy or diseased X-Rays, while the 
second focuses on distinguishing COVID-19 from other 
pulmonary diseases. They reached an accuracy of 0.96 
and 0.98 respectively. This study used 6523 chest X-Ray, 
but only 250 were from COVID-19 patients. Alhudhaif 
et al. [22] proved the capacity of the CNN to differenti-
ate COVID-19 from other types of pneumonia. The study 
used transfer learning with three CNNs (DenseNet, 
ResNet, and SqueezeNet). Its dataset included 318 
COVID-19 images and 650 images from other types of 
pneumonia. The best performance was achieved by using 
DenseNet, with an accuracy of 94.96%.

The capacity of multiple CNNs for detecting tubercu-
losis was presented by Rahman et al. [23]. This study also 
analyzed the advantages of using pulmonary segmenta-
tion, reaching their best results using DenseNet201 with 
a previous segmentation of the CRX. Rangarajan et  al. 

proposed in [24] an AI-based system for COVID diagno-
sis. The study analyzed five pre-trained CNNs and then 
deployed the two better models in a smartphone. The 
better performance was for VGG16, with an accuracy 
of 98.6%. This study used a not well-balanced dataset, 
with fewer COVID-19 images. To balance the data, the 
authors applied GAN networks and data augmentation.

Several research groups have also recently published 
deep learning ensemble strategies for pulmonary disease 
detection by using CRX [25–28]. In the results section, 
Table 6 shows a comparative study of our enhanced CNN 
ensemble with the aforementioned works.

Methods
Proposed architecture
Figure  1 shows the architecture of the ensemble imple-
mented in this work. This architecture has three stages: 
preprocessing, CNN classification, and ensemble 
classification.

Preprocessing stage enables to homogenize images 
coming from different datasets by resizing and rescal-
ing the input images. After preprocessing, images are fed 
to the base CNN models that run in parallel to classify 
images. As explained before, we have included six base 
CNNs, with different models and architectures. Thus, we 
ensure dissimilarities in classification. After this stage, 
we have six classification results, which are fed to the 
ensemble. In the last stage, the ensemble receives all the 
previous inputs and finally produces the definitive classi-
fication of the image. In this work, we have implemented 
and evaluated different ensembles, Voting and Stacking, 
as explained in this section.

CNN 3

Prediction

CNN 2

CNN 1

EnsemblePreprocessing

Fig. 1 Proposed architecture of computer‑aided diagnosis system based on CNN‑ensemble
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Dataset description
One of the main objectives of this work is to use a large 
number of images for both training and testing models. 
With a large dataset, we can reach a bigger generalization as 
the dataset has a wide range of CRX from different subjects.

Our dataset has 11,954 chest X-Ray radiographies 
labeled with different pulmonary diseases or labeled as 
healthy (images without lung pathology). The dataset is 
not balanced, this imbalance is due to the lower number 
of viral pneumonia radiographies. The database is com-
posed of 3616 COVID-19, 1345 viral pneumonia, 3493 
tuberculosis, and 3500 healthy images. In order to facili-
tate the reproducibility of this work, our CRX database 
is composed of available databases. Additionally, we have 
included images with considerable quality and other that 
comes even from mobile phones photographs to harden 
the detection capacity of the models. Figure  2 shows 
examples of images of the dataset for the different dis-
eases including a healthy subject.

Both healthy and tuberculosis images are from “Tuber-
culosis (TB) Chest X-Ray Database” [29] collected by 
researchers from Qatar and Dhaka University, Doha, 
Qatar, and collaboration with doctors from Hamad 
Medical Corporation and Bangladesh. All the images are 
CRX in PNG format and a size 512 ×  512. The COVID 
and Pneumonia images are also from a Kaggle dataset: 
“COVID-19 Radiography Database” [30], which collects 
images from different sources. This dataset was collected 
by the same researchers as the “Tuberculosis (TB) Chest 
X-Ray Database”. All the images in this database are CRX 
in PNG format and a size 256 × 256. An assembled ver-
sion of the dataset is provided.1

For the training and evaluation of the system, we use 
a hold-out cross-validation scheme. We divided the 

complete dataset in three datasets. Table  1 shows how 
we divided the dataset into train, validation, and test sub-
sets. First, we allocated 25% of the images of each class 
for testing, to prove the results of our model. The remain-
ing 75% was randomly split again between train (80%) 
and validation (20%). The training images were the only 
ones that we used to train our models, while the valida-
tion split was used for tuning the hyperparameters and 
selecting the best base-CNNs for the ensembles.

Pre‑processing of the images
Due to the heterogeneity of the images’ sources, there 
were images of different sizes. Thus, first, we resized all 
the X-Ray images to 256× 256 to homogenize the input 
for the different CNN models. Additionally, all images 
were normalized into a 0–1 range to narrow down the 
values of the images and accelerate the neural network. 
The radiography images are in grey scale (1-channel 
images), while the base-CNNs expect for 3-Channel 
images. By this reason, we compose false-RGB images, 
replicating the grey-scale information in every image 
channel.

For the training of the base CNNs, we applied data 
augmentation using the ImageDataGenerator of Keras 
tool, which is designed for real-time data augmentation. 
With this tool, images are randomly rotated, shifted, and 
zoomed in every epoch and for every CNN. Thereby, 

(a) COVID-19. (b) Viral Pneumonia. (c) Tuberculosis. (d) Healthy.
Fig. 2 CRX examples from the dataset

Table 1 Dataset split into train, validation, and test

Total CRX Train Validation Test

COVID‑19 3616 2170 542 904

Healthy 3500 2100 525 875

Pneumonia 1345 808 201 336

TB 3493 2097 524 874

Total 11,954 7175 (60%) 1792 (15%) 2989 (25%)

1 https:// doi. org/ 10. 5281/ zenodo. 66378 54.

https://doi.org/10.5281/zenodo.6637854
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every epoch all the images used to train the Base-CNN 
are changed. Data augmentation process avoids overfit-
ting, enlarges the dataset, and improves the generaliza-
tion of our models.

Proposed convolutional neural network for base classifiers
For this work, we have chosen six different base CNN archi-
tectures trying to obtain different features of every image: 
VGG16, VGG19 [31], InceptionV3 [32], ResNet101V2 [33], 
DenseNet121 [34] and CheXnet [35]. Each CNN worked 
completely independently of the other. Each base model 
was trained with the original data, learned and fit from the 
images, to issue a prediction. After running all them in par-
allel, their predictions were introduced into the ensemble 
models to obtain the final prediction.

The first two CNNs (VGG16 and VGG19) are deep 
networks that employ small convolutional filters ( 3× 3 ) 
followed by maxpool layers. These CNNs have 16 and 
19 layers respectively. These CNNs have shown a great 
performance in other related works [21]. InceptionV3 
belongs to a family of networks that use a 48 layers 
architecture that is wider than deeper. InceptionV3 uses 
specific blocks that take the output of one layer, uses 
different convolutional filters at the same level, and con-
catenates the results into the next layer. ResNet101V2 
belongs to the deep residual networks family. It employs 
residual blocks, which take one previous signal, skip 
some layers, and then this signal is added later in the 
network. ResNet101V2 has 101 layers and is the net-
work with more weights used in this work, which 
results in a longer time for training. The last two base 
CNNs classifiers are DenseNet121 and CheXnet, which 
have the same architecture with 121 layers. These net-
works have dense blocks which are densely connected, 
all layers are connected inside each block. The differ-
ence between the two CNNs classifiers is their weights. 
CheXnet was trained with 112,120 frontal-view chest 
X-Rays with 14 different thoracic anomalies.

All the base CNNs classifiers are used with previous 
learning. This technique is called “Transfer Learning”, 
which takes advantage a neural network with previously 
training. In our case, we considered the weights of each 
network obtained with the ImageNet dataset [36]. This 
dataset is a classification challenge with more than 12 
million images and 1000 different classes. CheXnet man-
ages the weights reached in the training with the 112,120 
CRXs. By including CheXnet, we want to study the 
impact in classification and generalization when we use a 
pre-trained network with a similar dataset to the current 
one.

Convolutional neural network classifiers implementation 
details
All the base-CNNs were trained with the same train-
ing images during 100 epochs using a batch size of 16. 
In each epoch, every image was randomly modified with 
the ImageDataGenerator defined previously. We also 
defined an early stopping with patience of 20 epochs, 
which monitors the accuracy of the training data. Dur-
ing the training, we froze the convolutional weights so 
that only the dense layers were trained. We selected the 
categorical cross-entropy (see Eq. 1) as loss function and 
the Adam Optimizer from Keras with the learning rate 
of 0.001. All those hyperparameters were selected taking 
into account the validation results of the base model.

As our dataset is not well-balanced, we decided to weight 
the loss function to assist with the network training. 
Equation  2 assigns a different weight to every class (c), 
so that a big weight is assigned to the class with fewer 
images and a small weight is assigned to the class with 
more images. This makes the model pay more attention 
to the classes under-represented.

Architectural details of the proposed Metamodels
The proposed architecture provides two ensemble alter-
natives : a simple voting (Voting Ensemble) and a deep 
learning based ( Stacking Ensemble) ensembles. Ensem-
bles are metamodels, which combine the predictions of 
the base models to obtain the final prediction.

The approach for the Voting Ensemble consists of 
selecting the most frequent classes by the CNN base, 
following a majority vote. First, the classifications are 
predicted by all six base models, executed, and col-
lected in parallel. Those classifications are fed as inputs 
to the ensemble. A vote indicates that an image belongs 
to a specific class. The most frequent voted class is 
considered by the ensemble as the predicted one. In 
the case that two or more classes have the maximum 
vote frequency, the ensemble selects the class that has 
been voted for the CNN model with the highest valida-
tion accuracy. The algorithm for the Voting Ensemble is 
shown in Algorithm 1.

(1)

Categorical Cross-entropy = −

NClases
∑

i

Targeti · log(Predictionsi)

(2)

WeightClass(c) =
1

2
· 1−

NO images belong to the class c

NO total of images
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the learning ensemble (see Fig. 3). This ensemble learns 
from the base model outputs to make its final prediction.

In this case, we take advantage of the different percent-
ages that the base CNNs assign, not only to the selected 
class, but also to the rejected ones. This step is done to 
check if our Stacking Ensemble approach can extract new 
and better conclusions from this information.

Metamodels implementation details
For the Stacking Ensemble, we stacked all the predictions 
of the base models and trained the ensemble during 100 
epochs with a batch size of 16. The optimizer selected 
was Adam (learning rate of 0.001) and the mean squared 

With this Voting Ensemble, we avoid the errors due 
to X-Ray images that could be misclassified by one base 
CNN, but not by all them. This ensemble emulates the 
case where the situation is not clear for a doctor or a 
specialist and she needs to be questioned by a whole 
team to conclude the diagnosis.

For the second approach, Stacking Ensemble, we 
designed a dense neural network to find the best way 
for combining the base CNN predictions. The learn-
ing ensemble is designed with 3 layers with 24, 12, and 
4 neurons, and a dropout of 0.1 between them. The first 
two layers use relu as an activation function and the last 
layer uses a softmax. The output of the base classifiers 
models for an image are stacked and used as input for 
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error(see equation 3) was selected as a loss function. We 
only need to train the Stacking Ensemble, for the Voting 
Ensemble, we only needed to correctly join all predic-
tions of the base models without previous training.

Performance evaluation metrics
To evaluate the performance of the different CNN and 
ensembles, we use metrics such as accuracy, precision, 
recall, and F1. The accuracy is an intuitive way to assess 
the global performance of the system by dividing the total 
of the well-classified samples between the total number 
of samples:

Our study is based on a multiclass classification so, it’s 
very important to make the evaluation of each class. For 
this assess we employ the following metrics:

(3)

MSE =
1

NClases
·

NClases
∑

i=1

(Targeti − Predictionsi)
2

(4)Accuracy(ACC) =
CorrectPredictions

TotalSamples

(5)Precision(P) =
TP

TP + FP

(6)Recall(R) =
TP

TP + FN

(7)F −measure(F1) =
2 · Precision · Recall

Precision+ Recall

where true positives (TP) are the images well predicted 
into their class, true negatives (TN) are the images cor-
rectly denoted as not belonging to the class, false posi-
tives (FP) are the samples predicted wrongly as a different 
class, and, finally, false negatives (FN) are the samples 
that, although they belong to the class being studied, are 
classified in another. All these metrics can be extracted 
elaborating the confusion matrix, which represents 
how the system predicted the samples into the different 
classes, representing the actual value versus the predicted 
value. We also construct confidence intervals (CIs) with 
the boostrap method.

For evaluation of the diagnosis significance, we provide 
the Receiver Operating Characteristic (ROC) and the 
Precision-Recall curve (PR curve). We also use T-distrib-
uted Stochastic Neighbor Embedding (t-SNE) transfor-
mation for visualizing the data in two-dimensions.

Attention heatmaps
Another technique to evaluate convolutional neural 
networks is Grad-CAM [37]. This technique is a vis-
ual method to check that the CNN is not biased by the 
training images and is looking at the lung area to carry 
out predictions. The Gradient-weighted Class Activation 
Map was presented in [37]. It uses the gradient flowing 
into the last convolutional layer to localize and highlight-
ing the areas more important for the classification of an 
image. This technique can be used with any type of CNN, 
which is very important for our study, because we can 
compare the performance of the different types of CNN 
used in the ensemble.

Fig. 3 Stacking Ensemble architecture
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Grad-CAM provides us a visual explanation of our sys-
tem decision, letting us know the parts where models are 
paying more attention to the classification. As we use six 
different convolutional networks, we need to build indi-
vidual heatmaps. To analyze the complete ensemble, we 
aggregate all the heatmaps to conform a single image. 
By using this method, we can reduce the overfitting of 
the training data, as we can visually test if our system is 
biased for any external factors. Furthermore, this under-
standing of the network could be useful for experts to 
make decisions about the diagnostic.

Results
Convolutional neural network classifiers performance 
analysis
The result of the Base-CNN based on validation images 
is shown Table 2. In this table, we can compare the recall, 
precision, and F1-Score for every CNN and class. Fur-
thermore, the table presents the global accuracy for every 
CNN. We achieved an accuracy greater than 90% in all 
the base-CNNs taking into account the validation images.

The highest accuracy reached belongs to the VGG 
models, 0.96 for VGG19 and 0.95 for VGG16. There 
is a slight difference between the performance of the 
ResNet101V2, DenseNet121 and VGG16. All them 
achieved an accuracy of 0.95. That slight difference is 
due to the dissimilar classification of the different classes 
(COVID, Healthy, TB or Pneumonia). The worst accuracy 
was for CheXnet and InceptionV3 with accuracy 0.93 
and 0.92 respectively. The CheXnet and DenseNet121 
have the same architecture. However, DenseNet121 was 
trained with general images and CheXnet with X-Ray 
images, so they have different weights. We highlight that 
the specific training images for the convolutional part 
lack of have a positive impact on the final classification. 
This is motivated by the general features, which are more 
useful for the classification of diseases.

We evaluated newer CNNs to be sure of making the 
best base-CNN selection. The first one is EfficientNet 
[38] the second CNN evaluated was MNasNet [39], The 
CNNs were training the same way as our base-CNN. 
The EfficientNetB7 was not adequate for our classifica-
tion problem, despite their good results with ImageNet 
and CIFAR-100 [38], this CNN classifies all the valida-
tion images as Tuberculosis, for this reason was discard 
for the ensemble. For the MNasNet the result were sim-
ilar to base-CNN (Table 3).

MNAsNet reflects low precision than the selected 
Base CNN for Viral Pneumonia. Viral Pneumonia is the 
smallest class and these bad results can affect the whole 
ensemble’s performance. This classifier was discarded for 
this reason.

Figure 4 contrasts the ROC and PR curves for the base 
CNN and MNasNet. ROC, as well as the PR curve, are 
metrics for binary classification, so we evaluate every 
CNN with compute micro-averaging ROC and PR. The 
micro-averaging reflects a global assess of the system.

Aggregate heatmaps interpretation
All the models have very good performances with the 
pneumonia classification, with a recall near to 1 in all the 
base models.

We analyze the possibility of overfitting to discard the 
existence of artifacts in the lungs that the network could 

Table 2 Base‑CNN individual performance based on validation 
images

Precision Recall F1‑score Accuracy

VGG19 COVID‑19 0.95 0.92 0.94 0.96

Healthy 0.95 0.98 0.97

Viral pneu‑
monia

0.95 0.99 0.97

Tuberculosis 0.96 0.95 0.96

VGG16 COVID‑19 0.98 0.89 0.93 0.95

Healthy 0.9 1.00 0.94

Viral pneu‑
monia

0.95 1.00 0.97

Tuberculosis 0.99 0.95 0.97

ResNet101V2 COVID‑19 0.98 0.91 0.94 0.95

Healthy 0.89 0.99 0.94

Viral pneu‑
monia

0.97 1.00 0.98

Tuberculosis 0.98 0.93 0.95

DenseNet121 COVID‑19 0.99 0.89 0.93 0.95

Healthy 0.9 0.99 0.94

Viral pneu‑
monia

0.91 1.00 0.95

Tuberculosis 0.98 0.94 0.96

CheXnet COVID‑19 0.96 0.91 0.93 0.93

Healthy 0.88 0.98 0.93

Viral pneu‑
monia

0.97 1.00 0.98

Tuberculosis 0.95 0.88 0.91

InceptionV3 COVID‑19 0.96 0.89 0.92 0.92

Healthy 0.85 0.99 0.92

Viral pneu‑
monia

0.96 0.99 0.97

Tuberculosis 0.96 0.86 0.91

Table 3 MNasNet performance based on validation images

Precision Recall F1‑score

MNasNET COVID‑19 0.97 0.93 0.95

Healthy 0.99 0.99 0.99

Viral Pneumonia 0.85 1.00 0.92

Tuberculosis 0.98 0.95 0.96
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be learning. To evaluate this, we extract Grad-CAM 
heatmaps.

The heatmaps highlight the parts of the image where 
the models pay more attention. The red color highlights 
the more important parts for the decision, the yellow and 
light blue colors point out areas with less importance. 
The images in Fig. 5 are the heatmaps of two CRX images 
with a diagnosis of pneumonia. We can see that the mod-
els are focusing inside the lung area to make decisions. In 
the left photo (a), we can observe that not all attention is 
inside the lungs. We have checked that only a few images 

look outside the chest. Thus, we can conclude that the 
various marks outside the lungs area are not decisive fac-
tors to make the decision.

To analyze more deeply the CNNs behavior, we com-
pared the places of the X-Ray that our system finds 
important for the classification with the actual radiologi-
cal findings. With this aim, we pass new images marked 
by experts through the CNNs. The images for this analy-
sis are from [40], a study that discusses the radiologic 
appearances of tuberculosis. The images selected show 
the localization of some radiological marks, in addition, 

Fig. 4 Receiver operating characteristic (ROC) and precision‑recall curve (PR) for the CNN (micro‑averaging)

Fig. 5 Grad‑CAM heatmaps for pneumonia CRX images
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we can know the causes of these. These images include 
arrows that could influence the final heatmaps.

The first image (Fig. 6a) belongs to a 50-year-old man 
with tuberculosis. The little arrows point to a cavitary 
lesion, and the big arrows point out airspace opacities, 
these anomalies are well localized by our base-CNNs as 
shown by areas in red color.

In the second image (Fig.  6b), the heatmap provides 
less valuable information. The big arrows point out new 
cavitary lesions, our system only signs the down lesion, 
which is the biggest one. According to [40], the little 
arrow points out a large lesion with an air-fluid level, 
this last lesion is not found by our system.

The last image (Fig.  6c) belongs to a 41-years old 
woman. The arrow points out a lobe collapse. In this 
case, our system is focusing at the radiological finding, 
but it is also looking at other places in the image. This 
could be due to the other affections of the patient under 
study. The 41 years old woman has an airway involve-
ment with tuberculosis. [40] also say that the central 
bronchi show an irregular thickening. These anomalies 

are localized by our network, getting more importance 
for our system than the one singed by the arrow.

Even though not all anomalies were found, we can 
conclude that the system learned for its own to focus 
on lung anomalies. The unnoticed anomalies could be 
explained by the fact that arrows were in the image, the 
insufficient quality of the images, or like in the last case, 
the accumulation of anomalies in a single X-Ray. This 
analysis is the first approach. To enhance the system to 
detect all the anomalies, we need to do more specific 
training with the support of qualified experts (radiolo-
gists and doctors) to validate the results.

Validation of the proposed ensemble system
In this section we analyze the performance of the 
ensembles based on validation images. Table  4 shows 
the results reached with the validation data. The num-
bers prove the better performances of the ensem-
bles over the base classification models. We can also 
observe that using the deep learning ensemble has a 
good repercussion in the results. This model reached an 
accuracy of 0.98 versus the 0.97 accuracy of the Voting 

Fig. 6 Grad‑CAM heatmaps for tuberculosis CRX images with radiological findings

Table 4 Ensembles performance based on validation images

Precision Recall Score‑F1 Accuracy

Stacking Ensemble COVID‑19 0.99 0.96 0.98 0.98

Healthy 0.98 0.99 0.99

Viral Pneumonia 0.99 1.00 0.99

Tuberculosis 0.98 0.99 0.98

Voting Ensemble COVID‑19 0.98 0.94 0.96 0.97

Healthy 0.95 1.00 0.97

Viral Pneumonia 0.97 1.00 0.98

Tuberculosis 0.99 0.96 0.98
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Ensemble. Anyway, those results are similar or better 
than other state of the art solutions [10, 41].

In Fig.  7 the confusion matrix of the ensembles are 
shown. The Stacking Ensemble (a)  misclassified 31 
images from the 1,792 validation images, less than 
2% of the images. The most common error for this 
ensemble is to confuse CRX labeled as COVID with 
tuberculosis or healthy CRX. In the case of the Voting 
Ensemble (b), 50 images are misclassified, only 2.8% of 
the validation images. In this ensemble, the major error 
is also the misclassification of the COVID images.

Figure 8 plots the evolution of loss and accuracy for 
the Stacking

Ensemble during the 100 epochs. We notice a slight 
overfitting as the validation loss is 0.008 upper than the 
training loss. The ensemble accuracy for the validation 
data is only 0.02 lower than training data. The perfor-
mance is similar for the validation and train data, this is 
an advantage of using a set of different CNN.

Performance analysis of the proposed system
To depthly analyze the behavior of the ensemble, we 
employed the 2989 test image set, which were never 
used to train or tune hyperparameters. Table  5 depicts 
that the performance is even better than for the valida-
tion images, reaching an accuracy of 0.99 for the Stack-
ing Ensemble and 0.98 for the Voting Ensemble. Also, we 
use the bootstrap method, with 1,000 bootstrap samples 
of the test set to construct the CIs around the accuracy of 
the ensembles. The Voting Ensemble has a median accu-
racy of 0.98 with a 95% CI of [0.97,0.98] and the Stack-
ing Ensemble median accuracy is 0.99 with a 95% CI of 
[0.98,0.99].

Figure  9 plots the confusion matrix of the ensembles. 
As may be seen, the behavior of the ensembles is similar 

Fig. 7 Validation confusion matrix (classes: 0‑COVID‑19, 1‑Healthy, 
2‑Pneumonia, and 3‑Tuberculosis)

Fig. 8 Training/validation loss and accuracy graph for the stacking ensemble
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using the validation and test images. In this case, the 
Stacking Ensemble misclassified 40 images (1.34% of the 
test images) and the Voting Ensemble 68 (2.38% of the 
test images).

We notice that the ensembles mostly confuse the same 
images collection. We analyzed a set of 32 images that 

are misclassified in both ensembles , with the objec-
tive of increasing our knowledge about the metamodels. 
The most misclassified images are the images labeled as 
COVID-19. Analyzing those images, we found two main 
causes. First, some images lack of quality, causing bad 
interpretation from the system. This problem appears in 
almost all classes. We could solve it by doing a deeper 
data sanitizing but we would lose flexibility in the mod-
els to classify new data. The second problem is that some 
images labeled as COVID-19 show a very clear lung area, 
almost without signs of disease. These images are mostly 
classified as healthy by our system. To analyze this in a 
better way, we would need to have access to metadata 
or clinical history. It could be possible that these images 
belong to asymptomatic patients, who normally show 
very low signs of the disease. If it was the case, we could 
solve the problem adding more chest X-Ray belonging to 
asymptomatic subjects to our dataset.

Figure 10a plots the t-SNE projection into two dimen-
sions for the original data . We can affirm that the green 
(Healthy) and Blue (COVID) cases are the images more 
nearby, although, all classes are mixed.

Figure  10b, c shows the t-SNE projection into two data 
dimensions in the base classifier with higher accuracy 
(VGG19). In the intermediate layer (b), the classes are 
mixed in a higher way, mainly due to use a transfer learning 
scheme. In ( c), we observe how CNN assists the discrimi-
nation of the four classes. Despite the high accuracy of this 
base CNN, the clustering of the classes is not clear in some 
areas, justifying the use of the ensemble to combine the 
power of different CNN to reach better results.

For evaluation of the ensembles , we provide the 
Receiver Operating Characteristic (ROC) (Fig.  11) 
and the Precision-Recall curve (PR curve) metrics 
(Fig.  12). The ROC as well as the PR curve are met-
rics for binary classification , therefore, we analyse 
every class individually. Additionally, it is important 
to note that the Voting Ensemble does not use proba-
bilistic methods, so its curves are approximation. The 

Table 5 Ensembles performance based on test images

Precision Recall Score‑F1 Accuracy

Stacking Ensemble COVID‑19 0.99 0.98 0.98 0.99

Healthy 0.99 0.99 0.99

Viral Pneumonia 0.99 1.00 1.00

Tuberculosis 0.99 0.99 0.98

Voting Ensemble COVID‑19 0.99 0.96 0.97 0.98

Healthy 0.95 1.00 0.97

Viral Pneumonia 0.98 1.00 0.99

Tuberculosis 1.00 0.97 0.98

Fig. 9 Test confusion matrix (classes: 0‑COVID‑19, 1‑Healthy, 
2‑Pneumonia, and 3‑Tuberculosis)
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curves illustrate the good performance achieved by 
the ensembles on the test set, with an AUC very near 
to 1 for every class.

Performance comparison with previous CRX ensembles
Table  6 depicts the ability of the CNN ensembles in the 
recognition of pulmonary diseases by using X-Ray. Our 
proposed ensemble obtains a better accuracy performance 
and a larger dataset than those in the previous studies. For 
example, in [43] , authors determined an accuracy of 0.99, 
very near to ours. The study defines an ensemble for clas-
sification between pneumonia, COVID-19, and healthy . 
However, we can stand out that they only use 1604 CRX, 
much fewer images than the 11,954 CRX used in our case.

Our system shows a better accuracy that the previous 
studies also, the ensembles was tested in a larger data-
set, that the previous studies with similar accuracy. Also 
the system is design not only to discriminate between 
two classes, is capable to detect COVID, pneumonia, 
tuberculosis, and healthy CRX. We expect to enlarge the 
number of diseases to develop a complete computer-aid 
diagnosis system to detect pulmonary diseases with CRX.

We ensemble six different CNN inducing a higher 
computation time. Results are compared in the Table  7 
including the computation time of the system. The execu-
tion time is only reported in [42], which specifies 0.077s 
(3 classes) and 0.135s (5 classes). These yields are com-
parable to our system, even though their ensemble only 
assembles three CNN.

Fig. 10 TSNE visualization for train and validation set. a Originals radiography images, b intermediate layer VGG19 (block3—pool), and c last layer 
VGG19 (dense layer). Classes: Blue‑COVID‑19, Green‑Healthy, Purple‑Pneumonia, and Orange‑Tuberculosis

Fig. 11 Receiver operating characteristic (ROC) for stacking ensemble (a) and voting ensemble (b) (classes: 0‑COVID‑19, 1‑Healthy, 2‑Pneumonia, 
and 3‑Tuberculosis)
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Finally, Table 7 shows the time needed to generate the 
heatmaps from the original image. As mentioned, heat-
maps can be extracted on demand to see the areas in 
which the system pays more attention to make the clas-
sification decision. This can be useful , especially, in case 
of doubtful or ambiguous images. We conclude that the 
assisted diagnosis system is of great value for the simulta-
neous analysis of large sets of images, such as in screen-
ing cases or pandemic situations such as that derived 
from COVID-19. The system enables a first diagnosis to 
be issued without the need to wait for biological tests ( 
i.e., PCR for COVID-19).

Discussion
This study has presented a system of two different 
CNN-ensembles for pulmonary disease classification 
using CRX. We used the transfer learning technique for 
the base-CNNs. We analyzed some of the more well-
known CNN architectures based on current literature, 
and have selected the six convolutional neural net-
works more adequate for the classification assignment 
(Table 2).

To exploit all the advantages of
the ensembles, we have evaluated the best way to com-

bine the predictions. Predictions of the base CNNs are 
aggregated by a Voting Ensemble and a Stacking Ensem-
ble (defined as a deep neural network). The Stacking 
Ensemble has the disadvantage of needing prior training, 
as opposed to the Voting Ensemble. We probed that our 
Stacking Ensemble has a slightly better performance with 
a 99% accuracy misclassifying 40 images of 2989 of the 
test images. The Voting Ensemble reaches an accuracy of 
98 % (68 test images misclassified)

The Voting Ensemble shows slightly better perfor-
mance than the Learning Ensemble, this is noticeable 

Fig. 12 Precision‑recall curve for stacking ensemble (a) and voting ensemble (b) (classes: 0‑COVID‑19, 1‑Healthy, 2‑Pneumonia, and 3‑Tuberculosis)

Table 6 Comparative study of previous ensembles for pulmonary diseases detection using Chest X‑Ray images

References Model Clases ACC (%)

[42] Ensemble‑CNNs (ResneXt50, DenseNet161, and InceptionV3) 3, 5 81, 88

[43] Ensemble1‑CNNs( VGG16 and DenseNet201), Ensemble2‑CNNs (VGG16 and ResNet152V2) 3, 2 99, 96

[44] Ensemble‑CNNs (Resnet50V2, DenseNet201, and InceptionV3) 2 91

[7] Decision‑Tree‑ensemble (ResNet18) 4 92

[45] Ensemble‑CNNs (InceptionResnet‑V2, DenseNet121, and InceptionV3) 2 94

Our stacking ensemble Ensemble‑CNNs (VGG19, VGG16, ResNet101V2, DenseNet121, CheXnet, and InceptionV3) 4 99

Our voting ensemble 98

Table 7 Execution time of the ensembles and the aggregate 
heatmaps generation (in seconds)

Height Voting ensemble Stacking 
ensemble

Aggregate 
heat‑map

Single image 0.156 0.209 3.289

Validation dataset 310.156 310.267 –
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especially when it comes to evaluate a single image 
(Fig. 7). However, the performance on large image sets 
is comparable. This is because the burden of process-
ing falls on the CNNs that have to evaluate the images. 
To increase the overall system performance for large 
image sets, different types of parallelization can be con-
sidered. System performance can be improved by pack-
aging images in batches (batch sizes). Note that a very 
large batch size can lead to a more complex calcula-
tion. An even more effective way to increase the system 
acceleration is by running each of the CNN models in 
parallel, for this it would be necessary to increase the 
number of available GPUs, to perform a parallelization 
of all the prediction processes.

We analyzed the heatmaps of the ensembles (see 
Fig.  6), adapting the Grad-CAM tool with the aim of 
creating a mixed heatmap with all the base CNNs. This 
analysis showed that our system detects radiological find-
ings into the CRXs. It also demonstrated that the case of 
asymptomatic patients is the one giving more misclassifi-
cations. Thus, we would need to involve experts to inter-
pret the Chest X-Ray and to make more focused training 
in those cases.

Conclusion
Computer-aided diagnosis systems are widely 
employed to assist radiologists and doctors, aiming at 
the different medical systems around the world, which 
are under a big volume of work due to the aging of the 
population and the increase in chronic diseases. In this 
work, we have achieved the successful diagnosis with 
very high accuracy of COVID-19, viral pneumonia, 
and tuberculosis by using CRX. Moreover, the analysis 
of the adapting Grad-CAM maps depicts that our sys-
tem detects radiological findings in the CRXs. The work 
presented in this paper significantly reduces the cost 
of the CRX analysis in two ways. First, by reducing the 
required execution time in diagnosis. Second, profes-
sionals can be supported by assisted analysis, reducing 
the required study time per subject. As a continuation 
of this work, we are increasing the dataset with other 
lung diseases CRX, such as lung cancer and more types 
of pneumonia . Moreover, we want to develop a com-
plete computer-aided remote and accessible diagnosis 
service using chest X-Ray.
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