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Abstract 

Background:  To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the 
overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated 
radiotherapy (IMRT).

Methods:  A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training 
cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were 
obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to 
select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS 
were constructed. The models’ performances were evaluated using Harrell’s concordance index (C-index), calibration 
curve, and decision curve analysis.

Results:  The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 
(95% CI 0.724–0.852) versus 0.672 (95% CI 0.599–0.745) in the training cohort and 0.753 (95% CI 0.604–0.902) ver-
sus 0.634 (95% CI 0.593–0.675) in the validation cohort. Calibration curves showed good agreement between the 
radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and 
validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the 
clinical model. The discrimination of the combined model improved significantly in the training cohort (P < 0.01) but 
not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients 
into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts.

Conclusions:  Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local 
residual tumors after IMRT and may assist in clinical decision-making.
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Introduction
Nasopharyngeal carcinoma (NPC) is a carcinoma 
originating from the epithelium of the nasopharyn-
geal mucosa with unique clinical features. The inci-
dence of nasopharyngeal  cancer differs by geographical 
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distribution and across racial populations and is particu-
larly prevalent in some East and Southeast Asian coun-
tries and regions. According to GLOBOCAN (2020), 
there were about 133,354 new cases of nasopharyngeal 
cancer worldwide and about 80,008 new deaths from 
nasopharyngeal cancer in 2020 [1]. With the progress 
of diagnostic imaging techniques for NPC, the develop-
ment of comprehensive treatment strategies, especially 
the widespread use of intensity-modulated radiotherapy 
(IMRT), and the change in people’s lifestyles [2], the 
mortality of NPC has shown a downward trend in most 
countries and regions all over the world [3, 4]. As the pri-
mary treatment modality for NPC, IMRT increases the 
conformity of tumor coverage while reducing radiation 
damage to surrounding tissues [5]. Nevertheless, there 
are still a considerable number of patients with local 
residual tumors after radiation therapy [6]. Ping-Yan Liao 
et al. reported that approximately 27.3% of patients (147 
out of 538) with nonmetastatic NPC had local tumor 
residuals within 6 months after radiotherapy [7]. Patients 
with NPC who have residual tumors after radiotherapy 
are more likely to have a worse prognosis [8]. The lat-
est CSCO and ASCO joint guideline on definitive-intent 
chemoradiotherapy for patients with stage II-IVA NPC 
recommends an additional 2–4  Gy boost as one of the 
management modalities for patients with MRI-detected 
residual tumors after IMRT [8]. However, the toxic bur-
den is also an issue that needs attention. Identifying those 
with poor prognosis among patients with residual tumors 
after IMRT may facilitate subsequent more personalized 
treatment measures to improve their prognosis.

In terms of the detection of residual NPC after radio-
therapy, the majority of residual tumors are located out-
side the nasopharyngeal cavity [6], making pathological 
confirmation via biopsy challenging to obtain.  Further-
more, 26.4% of residual lesions in the nasopharynx are 
missing from single biopsies [9]. Research by Maur-
izio Comoretto et  al. has demonstrated that MR imag-
ing tends to have higher accuracy than FDG-PET-CT in 
detecting residual and/or recurrent NPC at the primary 
site after radiotherapy (92.1% vs. 85.7%) [10]. The study 
by Shu-Hang Ng et  al. has revealed that the diagnos-
tic performance of MRI for residual/recurrent NPC was 
similar to that of FDG-PET-CT [11]. Considering the 
high cost and radiation exposure of FDG-PET-CT, MRI is 
the optimal modality for the assessment of residual NPC 
after treatment and is also consistent with the guideline 
described above [8].

Radiomics involves the high-throughput extraction 
of a large number of features from radiographic images 
[12], converting radiographic images into data that can 
be mined by bioinformatics tools to develop diagnostic, 
predictive, and prognostic models [13]. Several recent 

studies have explored the potential value of pretreatment 
MRI-based radiomics in response to induction chemo-
therapy, progression-free survival for NPC. Wang et  al. 
used the radiomics signature established from 15 fea-
tures extracted from pretreatment T1WI, T2WI, T2WI 
with fat suppression, and CE T1WI sequences to pre-
dict the response of induction chemotherapy in NPC 
patients with an AUC of 0.822 [14]. Shen and colleagues 
investigated the role of MRI-based radiomics in predict-
ing PFS in non-metastatic NPC patients and found that 
the radiomic model performed better than the clinical 
data model, with the C-index of 0.749 versus 0.563 in 
the training group and 0.836 versus 0.456 in the valida-
tion groups [15]. Zhang et  al. have investigated the role 
of radiomic features of multiparametric MRI in predict-
ing PFS in advanced NPC, and the C-index of the radi-
omic signature from joint contrast-enhanced T1WI 
(CE-T1WI) and T2WI images was 0.758 and 0.737 in the 
training and validation cohorts, respectively [16]. How-
ever, the role of MRI-based radiomics in predicting the 
overall survival (OS) of NPC patients with local residual 
tumors following IMRT has not been studied.

In the current study, we developed and validated an 
MRI-based radiomic model to predict OS in nonmeta-
static NPC patients with local residual tumors after 
IMRT and stratify patients into different risk groups 
using the radiomic model. The tumor volumes are often 
retracted to varying degrees after IMRT, which may affect 
the robustness of the radiomic features [17]. In addition, 
a variety of changes occurred after radiotherapy, mak-
ing the composition of the residual tumor more complex 
than before treatment. We chose to extract radiomic fea-
tures from pre-treatment MRI to build the model.

Patients and methods
Study population
The Medical Ethics Committee of First Affiliated Hos-
pital of Guangxi Medical University approved the study 
(NO. 2022-KY-E-249), and the informed consent of the 
patients was waived for the nature of the retrospective 
study.

The study cohort was from an endemic region where 
nonkeratinizing pathological subtype accounts for more 
than 95% of the cases [18]. We retrospectively reviewed 
925 nonmetastatic patients with NPC who received 
IMRT in our hospital from May 2015 to December 2017. 
Participants were selected according to the inclusion 
and exclusion criteria below. Inclusion criteria included 
the following: (1) NPC was pathologically confirmed; (2) 
the initial MRI scans were completed prior to treatment, 
and there was no more than 1 week between receiving 
treatment and the initial MRI scans; (3) local residual 
tumors were diagnosed immediately after the completion 
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of IMRT. The exclusion criteria were as follows: (1) the 
patients had been treated in other hospitals prior to their 
admission to our hospital; (2) those who were unable to 
complete the radiotherapy course; (3) those whose MRI 
images were marred by artifacts caused by patient move-
ment, oral metal materials, or other factors; (4) patients 
with other malignant tumors or NPC with distant metas-
tasis; and (5) those lost to follow-up (with a loss to fol-
low-up rate of 4.4%). Finally, 218 eligible NPC patients 
with local residual disease after IMRT were enrolled in 
this study, and the patients were randomly divided into 
training and validation cohorts according to the ratio of 
8:2. Demographic characteristics of the study popula-
tion, the American Joint Committee on Cancer (AJCC) 
staging of NPC, pretreatment hemoglobin level, neutro-
phil to lymphocyte ratio (NLR), albumin level, as well as 
chemotherapy strategies (induction chemotherapy, con-
current chemotherapy, adjuvant chemotherapy) were col-
lected. The tumors were restaged in accordance with the 
eighth edition of the AJCC staging manual.

Treatment strategy and follow‑up
The treatment of NPC is carried out under the relevant 
guidelines: definitive radiotherapy was applied to patients 
with T1N0M0; concurrent chemoradiotherapy followed 
or not followed by adjuvant chemotherapy or induc-
tion chemotherapy followed by chemoradiotherapy for 
patients with T1, N1-3, M0, and T2–T4, any N, M0 [19, 
20]. All patients completed the course of IMRT. Details 
on the radiotherapy protocol are included in Additional 
file  1. Platinum-based regimens were used for chemo-
therapy. During the first 3 years following IMRT, patients 
were followed-up every 3 months, every 6 months during 
the fourth and fifth years, and once a year after the fifth 
year. OS, the endpoint of our study, was defined as the 
time from the completion of IMRT to the date of death 
or last follow-up. The patient’s survival status was ascer-
tained through telephone consultation with the patient 
or his family. Living patients were censored between July 
and August 2021.

MR Imaging Protocol
All MRI scanning of the patients was performed on a GE 
Signa EXCITE 1.5 T MRI Scanner (GE Medical Systems, 
USA). Scanning sequences included axial fast relaxation 
fast spin echo (FRFSE) T2 weighted imaging (T2WI) 
sequence, axial/sagittal/coronal unenhanced T1WI Flair 
sequences, and axial/sagittal/coronal CE-T1WI Flair 
sequences with fat suppression. Gadopentetate Dime-
glumine Injection (Bayer Healthcare Pharmaceuticals 
Inc.) was used as the contrast agent at a dose of 0.2 ml/kg 
body weight (up to 10 ml) and an injection rate of 2 ml/s. 
Radiomic features were extracted from pretreatment 

axial T2WI and CE-T1WI sequences. The main acqui-
sition parameters of axial FRFSE T2WI sequence 
included: repetition time (TR) = 2620  ms, echo time 
(TE) = 101 ms, field of view (FOV) = 220 mm × 220 mm, 
matrix = 320 × 160, flip angle = 90°, slice thick-
ness = 6 mm, intersection gap = 1 mm. The main acqui-
sition parameters of axial CE-T1WI sequence included: 
TR = 2162  ms, TE = 10  ms, FOV = 220  mm × 220  mm, 
matrix = 320 × 160, flip angle = 90°, slice thick-
ness = 6 mm, intersection gap = 1 mm.

Diagnostic criteria of local residual tumors
Post-treatment MRI scanning was performed immedi-
ately after the completion of the course of IMRT to assess 
tumor regression. Blind to the clinical outcomes of the 
patients, a head and neck oncology radiologist (Investiga-
tor A) with 9-year experience and a head and neck radia-
tion oncologist with 14-year experience (Investigator B) 
evaluated the MR images, respectively. The divergence 
between the two investigators regarding the evaluation 
of the MR images will be adjudicated through a third 
head and neck oncology radiologist (Investigator C) with 
30-year experience to achieve agreement. The  diagnos-
tic criteria of local residual tumors on MRI were as  fol-
lows:  (1) residual tumors in the nasopharynx, 
parapharyngeal soft tissues, or intracranial spaces exhibit 
low signal intensity on T1WI, intermediate signal inten-
sity over muscle on T2WI, and moderate signal enhance-
ment on CE-T1WI [21]; (2) lesions of the skull base were 
thought to be tumor residuals if the bone of the skull 
base was destroyed by soft tissues and the degree, and/
or extent of bone strengthening was not diminished or 
increased compared with pretreatment images [11, 22]. 
Figure 1 shows MRI images of the local residual tumor in 
a patient following IMRT.

Lesions segmentation and radiomic features extraction
The  workflow of radiomics analysis is shown in Fig.  2. 
The delineation of the regions of interest (ROI) and fea-
tures extraction were carried out on the RadCloud Radi-
omics Cloud Platform (Huiying Medical Technology Co., 
Ltd) using pretreatment T2WI and CE-T1WI sequences 
of the nasopharynx. Radiomic features extraction was 
based on pyradiomics 2.2.0.

We randomly selected 30 patients from the study 
population to assess the inter-and intra-class correlation 
coefficients (ICCs). Firstly, each of the 218 patients was 
assigned a number between 1 and 218; after that, 30 of 
those numbers were chosen at random. Blind to the clini-
cal outcomes of the patients, Investigator A and Inves-
tigator B delineated the ROI of the entire tumor layer 
by layer in the patient’s nasopharyngeal T2WI and CE-
T1WI images independently. Investigator A repeated the 
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Fig. 1  Pre-and post-treatment MRI of a 42-year-old female nasopharyngeal carcinoma patient with local residual disease after intensity-modulated 
radiation therapy. Pre-treatment MRI is shown in A–C; post-treatment MRI is shown in D–F. Post-treatment MRI indicated a local residual tumor in 
the nasopharynx, skull base, and intracranial space

Fig. 2  The workflow of radiomics analysis
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process 2 weeks later. Before feature extraction, images 
were resampled using the B-spline interpolator to a pixel 
spacing of 1.0 mm × 1.0 mm × 1.0 mm and normalized 
based on the mean and standard deviation of gray values.

1409 features for each patient and each sequence were 
extracted from the original images (107 features) and 
derived images using filters including logarithm (93 fea-
tures), exponential (93 features), gradient (93 features), 
square (93 features), squareroot (93 features), localBi-
naryPattern2D (lbp-2D, 93 features), and wavelet (744 
features). These 1409 features included first order sta-
tistics (270 features), Shape-based (14 features), Neigh-
bouring Gray Tone Difference Matrix (NGTDM, 75 
features), Gray Level Co-occurrence Matrix (GLCM, 360 
features), Gray Level Dependence Matrix (GLDM, 210 
features), Gray Level Run Length Matrix (GLRLM, 240 
features), and Gray Level Size Zone Matrix (GLSZM, 240 
features). A total of 2818 features were extracted from 
each patient’s images. Most of the features extracted 
conform to IBSI definitions of features. The pyradiomics 
documentation provides explanations of these radiomic 
features (https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​
index.​html). Z-score normalization of the features was 
performed to eliminate the effect of extreme values and 
facilitate the comparison of features of different magni-
tudes. Features with ICCs > 0.75 reveal good reproduc-
ibility and will be used for further analysis. Subsequently, 
Investigator A conducted lesion segmentation and fea-
ture extraction on the remaining samples.

Selection of radiomic features and establishment 
of radiomic signature
Firstly, the features with ICCs > 0.75 were tested for the 
proportional hazards assumption in the training cohort, 
and then the features that met the proportional hazards 
assumption were included in the univariate Cox regres-
sion analysis. The least absolute shrinkage and selection 
operator (LASSO)-Cox regression [23] based on statis-
tically significant features with a p-value < 0.05 of the 
univariate Cox regression analysis was conducted. The 
optimal lambda was selected based on tenfold cross-vali-
dation. Features with non-zero coefficients were selected 
to establish the radiomic signature. Radscore is calcu-
lated based on the value of the features and their coeffi-
cients multiplied together.

Statistical analysis and modelling
Continuous variables are expressed as the means and 
standard deviations if they are normally distributed; oth-
erwise, they are expressed as the medians and interquar-
tile ranges. Categorical data are expressed as frequencies 
and percentages. Independent sample t-tests or Mann–
Whitney U tests were used to compare continuous 

variables between the training and validation cohorts. 
χ2 or Fisher exact tests were used for the comparison of 
categorical variables between the two groups. The clini-
cal model for predicting OS was established using the 
independent clinical predictors identified by multivari-
ate Cox regression in the training cohort. The radiomic 
model was established using radscore-based univariate 
Cox regression. The combined model, which integrated 
significant clinical factors and radscore, was constructed 
using stepwise back multivariate Cox regressions based 
on Akaike’s Information Criterion (AIC). The Harrell’s 
concordance index (C-index) and  2-year, 3-year, and 
5-year receiver operating characteristics (tROC) curves 
were used to evaluate the models’ discrimination. To pre-
vent the influence of a single random training-validation 
set split leading to unreliable results, the discrimination 
of the different models was determined by fivefold cross-
validation with 200 repetitions. The agreement between 
the model-predicted OS probability and actual observed 
survival rate was evaluated using calibration curves, 
and the clinical usefulness was evaluated based on deci-
sion curve analyses. Likelihood ratio tests for comparing 
nested models or the AIC were used to determine which 
model fit the data better in the training and validation 
cohorts. Kaplan–Meier method with log-rank tests was 
used to compare the difference in survival between high-
risk and low-risk groups. All statistical analysis were con-
ducted using SPSS 22.0 (SPSS Inc., Chicago, IL) or R 4.1 
(R Project for Statistical Computing). Two-tailed p < 0.05 
is considered statistically significant.

Results
Clinical data
The clinical characteristics of the patients are shown in 
Table 1. A total of 218 eligible patients were included in 
this study, including 164 males (75.2%) and 54 females 
(24.8%), aged 46.1 ± 11.4  years (range 16.0–81.0  years). 
The median follow-up time in this study was 50.4 months 
(range of 4.0–72.0 months). Fifty-two patients died dur-
ing follow-up of the entire cohort, including 41 deaths 
in the training cohort and 11 deaths in the validation 
cohort. The 2-year, 3-year, and 5-year OS rates were 
approximately 91.3%, 83.5%, and 74.0%.

There was no significant difference in age, gender, T 
category, N category, stage, NLR, albumin level, hemo-
globin level, with or without induction chemotherapy/
concurrent chemotherapy/adjuvant chemotherapy 
between the training and the validation groups (P > 0.05).

The clinical model for predicting OS
Age, gender, and albumin level were independent pre-
dictors of OS in the training cohort (Table  2). The 
clinical nomogram was constructed using these three 

https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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independent predictors. The C-index of the clinical nom-
ogram predicting OS was 0.672 (95% CI 0.599–0.745) in 
the training group. Cumulative/dynamic time-dependent 
ROC (tROC) revealed that the area under curve (tAUC) 
of the clinical model predicting 2-year, 3-year, and 5-year 
OS in the training group was 0.659 (95% CI 0.528–0.790), 
0.667 (95% CI 0.572–0.763), and 0.685 (95% CI 0.572–
0.798), respectively.

The C-index of the clinical nomogram predicting OS 
was 0.634 (95% CI 0.593–0.675) in the validation group. 
The tAUCs of the clinical model predicting 2-year, 3-year, 

and 5-year OS in the validation group were 0.690 (95% 
CI 0.491–0.890), 0.646 (95% CI 0.488–0.804), and 0.620 
(95% CI 0.398–0.841), respectively. The 2-, 3-, and 5-year 
mean tAUCs of the clinical model determined by fivefold 
cross-validation with 200 repetitions were 0.657 ± 0.126, 
0.642 ± 0.094, and 0.647 ± 0.115, respectively (Fig. 3A).

Selection of radiomic features and establishment 
of the radiomic signature
Of the 2818 features extracted from T2WI and CE-
T1WI sequences, 2150 features with ICCs > 0.75 were 

Table 1  Clinical characteristics of the patients

NLR, neutrophil to lymphocyte ratio
a P values calculated by the independent-samples t-test
b P values calculated by the χ2-test
c P values calculated by the Mann–Whitney U-test
d P values calculated by Fisher exact test

Characteristics Entire cohort
(n = 218)

Training cohort
(n = 173)

Validation cohort
(n = 45)

P value

Age (years) 46.1 ± 11.4 45.9 ± 11.6 46.9 ± 10.9 0.605a

Gender 0.223b

Male 164 (75.2%) 127 (73.4%) 37 (82.2%)

Female 54 (24.8%) 46 (26.6%) 8 (17.8%)

Albumin (g/L) 43.6 ± 3.5 43.8 ± 3.5 43.1 ± 3.5 0.282a

Hemoglobin (g/L) 135.3 ± 15.3 135.1 ± 15.2 136.2 ± 15.6 0.661a

NLR 2.6 (1.9–3.4) 2.5 (1.9–3.4) 2.7 (2.0–3.5) 0.356c

T category 0.575d

T1 8 (3.7%) 5 (2.9%) 3 (6.7%)

T2 11 (5.0%) 10 (5.8%) 1 (2.2%)

T3 83 (38.1%) 66 (38.2%) 17 (37.8%)

T4 116 (53.2%) 92 (53.2%) 24 (53.3%)

N category 0.643b

N0 17 (7.8%) 15 (8.7%) 2 (4.4%)

N1 91 (41.7%) 71 (41.0%) 20 (44.4%)

N2 84 (38.5%) 68 (39.3%) 16 (35.6%)

N3 26 (11.9%) 19 (11.0%) 7 (15.6%)

Stage  > 0.999d

I 1 (0.5%) 1 (0.6%) 0 (0%)

II 12 (5.5%) 10 (5.8%) 2 (4.4%)

III 78 (35.8%) 62 (35.8%) 16 (35.6%)

IV 127 (58.3%) 100 (57.8%) 27 (60.0%)

Induction chemotherapy 0.902b

Yes 71 (32.6%) 56 (32.4%) 15 (33.3%)

No 147 (67.4%) 117(67.6%) 30 (66.7%)

Concurrent chemotherapy 0.159b

Yes 202 (92.7%) 163 (94.2%) 39 (86.7%)

No 16 (7.3%) 10 (5.8%) 6 (13.3%)

Adjuvant chemotherapy 0.751b

Yes 116 (53.2%) 93 (53.8%) 23 (51.1%)

No 102 (46.8%) 80 (46.2%) 22 (48.9%)
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tested for the proportional hazards assumption in the 
training cohort. Of the features eligible for the propor-
tional hazards assumption tests, 195 features were sig-
nificant in univariate Cox regression analysis. The 195 

features were then included in the LASSO-Cox regres-
sion analysis, and an optimal Lambda (λ) = 0.084 with 
Log (λ) = −  2.47 was selected using tenfold cross-val-
idation via one standard error rule (Fig.  4A, B). Finally, 

Table 2  Clinical factors predicting OS in patients with residual nasopharyngeal carcinoma after IMRT in the training cohort

NLR neutrophil to lymphocyte ratio

The cutoffs for NLR, hemoglobin, and albumin were determined based on maximally selected test statistics
a P values tested with the univariate Cox model
b P values tested with the multivariate Cox model

Characteristics Value Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age (years) 45.9 ± 11.6 1.042 (1.014– 1.071) 0.003a

 ≥ 60 20 (11.6%) 3.480 (1.738–6.966)  < 0.001a 2.829 (1.394–5.741) 0.004b

 < 60 153 (88.4%) Reference Reference

Gender

Male 127 (73.4%) 2.884 (1.132–7.352) 0.027a 2.586 (1.005–6.654) 0.049b

Female 46 (26.6%) Reference Reference

T category

T1 5 (2.9%)  < 0.001 (< 0.001–NA) 0.972a

T2 10 (5.8%) 1.217 (0.366–4.049) 0.749a

T3 66 (38.2%) 0.788 (0.408–1.524) 0.480a

T4 92 (53.2%) Reference

N category

N0 15 (8.7%) Reference

N1 71 (41.0%) 5.580 (0.749–41.555) 0.093a

N2 68 (39.3%) 3.519 (0.459–26.997) 0.226a

N3 19 (11.0%) 6.295 (0.756–52.422) 0.089a

Stage 0.202a

I 1 (0.6%)  < 0.001 (< 0.001–NA) 0.980a

II 10 (5.8%) 1.162 (0.352–3.836) 0.806a

III 62 (35.8%) 0.611 (0.303–1.233) 0.169a

IV 100 (57.8%) Reference

NLR 2.5 (1.9–3.4) 1.114 (0.918–1.352) 0.275a

 ≤ 2.9 107 (61.8%) 1.290 (0.668–2.491) 0.445a

 > 2.9 66 (38.2%) Reference

Hemoglobin (g/L) 135.1 ± 15.2 1.009 (0.987–1.031) 0.434a

 ≤ 132.4 68 (39.3%) Reference 0.220a

 > 132.4 105 (60.7%) 1.510 (0.781–2.918)

Albumin (g/L) 43.8 ± 3.5 0.993 (0.906–1.089) 0.886a

 ≤ 40.5 35 (20.2%) 2.244 (1.175–4.285) 0.012a Reference

 > 40.5 138 (79.8%) Reference 0.477 (0.248–0.917) 0.026b

Induction chemotherapy

Yes 56 (32.4%) 1.176 (0.623–2.221) 0.617a

No 117 (67.6%) Reference

Concurrent chemotherapy

Yes 163 (94.2%) 0.607 (0.216–1.704) 0.343a

No 10 (5.8%) Reference

Adjuvant chemotherapy

Yes 93 (53.8%) 1.015 (0.549–1.876) 0.962a

No 80 (46.2%) Reference
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five features with non-zero coefficients were selected. 
The selected features and their coefficients are shown in 
Table 3. The equation to calculate the radscore for each 
patient was as follows: Radscore = 0.081381 × T2WI_
wavelet.LLL_Glrlm_ShortRunHighGrayLevelEmpha-
sis + 0.061505 × CE-T1WI_original_Gldm_Depend-
enceVariance +  0 .142812 ×  CE-T1WI_orig inal_ 
Ngtdm_Busyness + 0.016691 × CE-T1WI_squareroot_
Firstorder_Variance—0.423306 × CE-T1WI_wavelet.

LLH_Gldm_LargeDependenceLowGrayLevelEmphasis. 
The radscore for each patient is shown in Fig. 4C, D, and 
Additional file 2. The radscore of the training and valida-
tion cohorts was not significantly different (P = 0.903).

Predictive performance evaluation of the radiomic model
The C-index of the radiomic model (Fig.  5) predicting 
OS was 0.788 (95% CI 0.724–0.852) and 0.753 (95% CI 
0.604–0.902) in the training and validation cohorts, 

Fig. 3  Scattered boxplots of the 2-, 3-, and 5-year mean tAUCs of the clinical model (A), radiomic model (B), and combined model (C) determined 
by fivefold cross-validation with 200 repetitions

Fig. 4  LASSO regression analysis (A, B) and radscore for patients in the training cohort (C) and validation cohort (D). C, D Each bar on the horizontal 
axis represents a patient. Radscore values are displayed on the vertical axis. The red bar represents the outcome of death, and the blue bar 
represents alive patients
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respectively. The tAUCs of the radiomic model predict-
ing 2-year, 3-year, and 5-year OS in the training group 
were 0.826 (95% CI 0.727–0.925), 0.848 (95% CI 0.772–
0.924), and 0.746 (95% CI 0.628–0.863), respectively, 
and the corresponding tAUCs in the validation group 
were 0.774 (95% CI 0.540–1.000), 0.781 (95% CI 0.617–
0.944), and 0.719 (95% CI 0.495–0.944). The 2-, 3-, and 
5-year mean tAUCs of the radiomic model determined 
by fivefold cross-validation with 200 repetitions were 
0.802 ± 0.120, 0.817 ± 0.083, and 0.743 ± 0.113, respec-
tively (Fig. 3B).

Calibration curves showed good agreement between 
the radiomic model-predicted probability of 2- and 
3-year OS and the actual observed probability in the 
training and validation groups (Fig.  5C, E). Decision 
curve analysis showed that the radiomic model had 
higher clinical usefulness than the clinical model (Fig. 6).

The combined model for predicting OS
Age, gender, albumin level, and radscore were  ulti-
mately  included in the combined model (Additional 
file  3). The C-index of the combined model predict-
ing OS was 0.834 (95% CI 0.777–0.891) and 0.734 (95% 
CI 0.688–0.780) in the training and validation groups, 
respectively. In the training group, tAUCs for predicting 
2-year, 3-year, and 5-year OS were 0.848 (95% CI 0.745–
0.951), 0.869 (95% CI 0.794–0.943), and 0.815 (95% CI 
0.712–0.919), respectively, and the corresponding tAUCs 
in the validation group were 0.756 (95% CI 0.516–0.997), 
0.759 (95% CI 0.589–0.930), and 0.661 (95% CI 0.430–
0.892). The 2-, 3-, and 5-year mean tAUCs of the com-
bined model determined by fivefold cross-validation with 
200 repetitions were 0.813 ± 0.123, 0.821 ± 0.085, and 
0.770 ± 0.107, respectively (Fig. 3C).

The likelihood-ratio test demonstrated that the com-
bined model had better goodness of fit than the clinical 
and radiomic models in the training cohort but not in 
the validation cohort (Table 4). The AIC revealed better 
goodness of fit of the radiomic models than the clinical 
models in the training and validation cohorts, with an 
AIC of 356.65 versus 385.53 and an AIC of 76.34 versus 
79.24, respectively.

Risk stratification of patients’ OS using the radiomic model
Patients were divided into high- and low-risk groups 
according to the radscore cutoff (0.062261) obtained 
from the training cohort with maximally selected test sta-
tistics. Patients in the high-risk group had a significantly 
lower OS rate than those in the low-risk group in the 
training and validation cohorts (p < 0.01) (Fig. 7).

Discussion
In this study, we developed and validated a radiomic sig-
nature model based on pretreatment MRI for predict-
ing OS for patients with local residual NPC after IMRT. 
The radiomic model demonstrated better discrimination 
and clinical usefulness compared with the clinical model. 
Additionally, the radiomic model enabled effective risk 
stratification of patients with local residual disease. 
The radiomic model may be a low-cost, non-invasive 
prognostic tool for patients with local residual NPC 
after IMRT and help select candidates for subsequent 
treatment.

In our study, the T category, N category and stage were 
not independent predictors of OS in patients with local 
residual NPC. It may be related to the fact that patients 
with local residual tumors after IMRT are mainly char-
acterized by advanced T category and advanced clinical 
stage. In our cohort, 91.3% of patients had T3 and T4 cat-
egories, and 94.0% were locally advanced (stage III and 
IVa).

In this study, higher age was an adverse prognostic fac-
tor in patients with residual NPC after IMRT. For the 
entire cohort, the 3-year OS of the age < 60 group was 
about 85.9%, and the 5-year OS was about 78.3%; the cor-
responding OS of the age ≥ 60 group was about 66.7% 
and 45.5%, respectively. Previous studies have shown that 
age is an independent predictor of survival in patients 
with NPC [24]. Treatment of elderly  NPC patients is 
often more challenging than for younger patients. One 
of the most significant reasons is that elderly individu-
als are less likely to tolerate chemotherapy for NPC than 
younger individuals. In addition, elderly patients are 
more likely to suffer from comorbid conditions, undoubt-
edly affecting their survival [25].

Table 3  The features selected in the radiomic model

MRI images Feature class Feature name Coefficients

T2WI_wavelet.LLL Glrlm ShortRunHighGrayLevelEmphasis 0.081381

CE-T1WI_original Gldm DependenceVariance 0.061505

CE-T1WI_original Ngtdm Busyness 0.142812

CE-T1WI_squareroot Firstorder Variance 0.016691

CE-T1WI_wavelet.LLH Gldm LargeDependenceLowGrayLevelEmphasis -0.423306
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Fig. 5  A The radiomic model for predicting overall survival in patients with residual nasopharyngeal carcinoma. ROC and calibration curve for 
predicting 2-year and 3-year OS in the training cohort (B, C) and the validation cohort (D, E)
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This study has also shown that male patients with 
residual disease after IMRT were associated with 
poor prognosis. The reasons for male gender as an 

adverse prognostic factor in patients with residual dis-
ease after IMRT may be multifactorial. Male patients 
are more likely to smoke, and previous studies have 

Fig. 6  Decision curve analysis of the clinical, radiomic, and combined models for predicting 3-year overall survival in the training cohort (A) and 
validation cohort (B)

Table 4  C-index of the models

a P values calculated by the likelihood ratio-test

Models C-index (95% CI)
Training cohort

P value C-index (95% CI)
Validation cohort

P value

Clinical model 0.672 (0.599–0.745) 5.422 × 10–10a 0.634 (0.593–0.675) 0.085a

Radiomics model 0.788 (0.724–0.852) 2.383 × 10–4a 0.753 (0.604–0.902) 0.700a

Combined model 0.834 (0.777–0.891) Reference 0.734 (0.688–0.780) Reference

Fig. 7  Kaplan–Meier curves of overall survival for stratified analysis of the training cohort (A) and validation cohort (B). In both training and 
validation cohorts, patients in the high-risk group had a significantly lower overall survival rate than those in the low-risk group (p < 0.01; log-rank 
test)
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demonstrated that smoking has a negative impact on 
the prognosis of men with NPC [26]. Ouyang et al. used 
the propensity score matching analysis to investigate 
the effect of female gender on the prognosis of NPC. 
After excluding the effects of smoking, tobacco, alco-
hol, and BMI, female patients still had a better progno-
sis than male patients. They suggested that the estrogen 
receptor hypothesis might be one of the reasons for the 
prognostic difference between female and male patients 
[27].

In this study, pretreatment albumin level was an inde-
pendent predictor of OS. A previous study by Shin et al. 
has demonstrated that baseline albumin levels are a 
strong prognostic factor in patients with advanced head 
and neck cancer receiving concurrent chemoradiother-
apy [28]. The higher pretreatment albumin levels may be 
related to better nutritional status and organ function for 
the patients.

Five radiomic features were included in the radi-
omic model in our study, with the wavelet filter and the 
original without filter supplying the most information 
(n = 2 each), followed by squareroot (n = 1). The fea-
tures extracted from the wavelet filter may reflect more 
prognostic information in our study, similar to a previ-
ous MRI-based radiomics study [29]. The wavelet fea-
tures provide the multi-frequency information about 
the tumor in its multiple dimensions. Original features 
reflects the information of the tumor on the original 
image. Squareroot features reflects the square root of the 
absolute image intensities. Two features belong to the 
GLDM class in our study.  GLDM quantifies gray level 
dependencies in an image, which is defined as the num-
ber of connected voxels within a  specified  distance that 
are dependent on the center voxel.

The radiomic signature showed better predictive 
performance than the clinical model. It may be that 
radiomics can provide better insight into the hetero-
geneity of tumors. The heterogeneity of tumors poses 
a significant challenge in tumor treatment and prog-
nosis. This phenomenon exists between cancers in dif-
ferent patients (intertumoural heterogeneity) as well 
as within a single tumor (intratumoural heterogeneity) 
[30]. Intratumoral heterogeneity is characterized by 
temporal and spatial heterogeneity [31]. The deline-
ation of ROIs in our study was based on the entire 
tumor, and radiomics, which converts medical images 
into data that can be mined, may provide more infor-
mation about the heterogeneity of the whole tumor 
[32]. Although the C-index of the combined model did 
not significantly improve over the clinical model in the 
validation cohort, the decision curve analysis showed 
better usefulness of the combined model at specific 
threshold probability. To the best of our knowledge, 

this is the first study to evaluate the role of MRI-based 
radiomics in predicting the OS of NPC patients with 
local residual disease after IMRT.

This study has several limitations: Firstly, although 
the robustness and avoidance of overfitting of the mod-
els were verified in the internal validation cohort, the 
results should be further validated with multi-center 
data. Secondly, the follow-up period of the subjects in 
this study was not long enough, which may impact the 
assessment of the 5-year prognosis. Thirdly, EBV-DNA 
copies at diagnosis and the end of chemoradiotherapy 
have been shown to be a strong prognosis predictor 
of NPC patients [33]. However, the data of EBV-DNA 
copies were unavailable during the hospitalization of 
this series of cases in our hospital, which may affect 
the models’ performance. Fourthly, the diagnosis of 
local residual tumor was based on MRI findings. False-
positive cases may not be completely avoided. For sus-
pected residual lesions without biopsy, the combination 
of MRI findings, a multidisciplinary setting, endoscopic 
findings, and Epstein–Barr virus viral load may improve 
confidence in the diagnosis of residual disease [34].

In conclusion, our study demonstrated that the pre-
treatment MRI-based radiomic signature model revealed 
superior performance in predicting the OS of NPC 
patients with residual disease after IMRT than the clini-
cal model. The radiomic model could be used to strat-
ify patients into high- and low-risk groups, potentially 
providing additional prognostic information for NPC 
patients with residual disease after IMRT and potentially 
helping clinicians personalize medical interventions for 
patients, thereby improving patient prognosis.
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