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Abstract 

Background:  Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has 
been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic ani‑
mals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes 
under isoflurane anesthesia.

Methods:  The first group of rats (n = 5) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) 
to cause the development of diabetes. The second group of rats (n = 7) received a single intraperitoneal injection of 
the same volume of solvent. Resting-state functional magnetic resonance imaging was used to assess brain activity at 
4 weeks after STZ or solvent administration.

Results:  Compared to the healthy control animals, rats with diabetes showed significantly decreased fALFF in various 
brain regions, including the cingulate cortex, somatosensory cortex, insula, and striatum (all P < 0.05). The decreased 
fALFF suggests the aberrant neural activities in the diabetic rats. No regions were detected in which the control group 
had a lower fALFF than that in the diabetes group.

Conclusions:  The results of this study demonstrated that the fALFF could be used to differentiate healthy controls 
from diabetic animals, providing meaningful information regarding the neurological pathophysiology of diabetes in 
animal models.
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Introduction
Diabetes is a chronic metabolic disease characterized by a 
relative or absolute lack of insulin, resulting in hypergly-
cemia. An estimated 463 million people worldwide have 
diabetes, with rates continuing to rise [1]. Although dia-
betes is not immediately fatal, it deteriorates the patient 

quality of life. Over time, diabetes can negatively affect 
the heart, blood vessels, eyes, kidneys, and nerves. Fur-
thermore, as diabetes is a systemic disease affecting sev-
eral organs, including the brain, recent research has also 
focused on diabetes-related brain complications [2, 3]. 
Diabetes also increases the risk of stroke [4] and Alzhei-
mer’s disease [5]. Therefore, improving our understand-
ing of the physiological characteristics of brain function 
in individuals with diabetes may shed light on the patho-
physiological aspects underlying diabetes-related brain 
injuries.
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Resting-state functional magnetic resonance imaging 
(rs-fMRI) is a useful tool for assessing spontaneous neu-
ral activity. The fractional amplitude of low-frequency 
fluctuation (fALFF) of the blood oxygen level- depend-
ent (BOLD) signals, as an rs-fMRI analysis algorithm, 
is a powerful index for globally reflecting spontaneous 
neuronal activity and physiological states [6]. Unlike 
functional connectivity analyses, which focus on the 
relationships among different regions, fALFF measures 
the intensity of neural activity at the single-region level. 
Due to this unique characteristic, fALFF has been used 
as an effective method in assessing the spontaneous neu-
ronal activity of diseases, and Zhang et al. also reported 
aberrant fALFF in many brain regions in patients with 
diabetes, the findings of which are suggestive of diabetes-
related brain dysfunction [7]. However, one overlooked 
aspect in the aforementioned study [7], and even in other 
diabetes rs-fMRI studies [8, 9], is that they have covered 
life stages from middle to old age. However, fALFF vari-
ations across older individuals may be related to other 
variations in physiology, such as hypertension [10] and 
obesity [11]. Factoring out such confounders can extract 
the key brain regions which are associated with diabetes, 
rather than its clinical comorbidities.

By intraperitoneal injection of a single high-dose or 
multiple low-doses of streptozotocin (STZ), experimen-
tal diabetic rats can develop cerebral dysfunctions similar 
to those observed in patients with diabetes [12] with low 
cost. Moreover, animal experiments offer an advantage 
in that we can ignore other disease-related pathologies, 
such as hypertension and obesity, thereby reflecting the 
diabetes-related brain alterations alone. Therefore, there 
are growing applications for animal models in diabetes 
research, and they are helpful for understanding diabe-
tes pathogenesis and developing new treatments [13, 14]. 
fALFF is not a new approach in the animal studies, and 
it is a useful tool to evaluate significant brain changes 
related to ischemic stroke in the rats [15]. However, no 
information is currently available regarding the applica-
tion of fALFF in a rat model of diabetes.

The objective of this study was to elucidate the changes 
in fALFF [6] in a rat model of diabetes under isoflu-
rane anesthesia for the first time. We hypothesized that 
the fALFF method is sufficiently sensitive to differenti-
ate healthy controls from diabetic animals, even under 
anesthesia.

Methods and materials
Animal preparation
This study used a total of 13 male Sprague–Dawley rats 
(7  weeks old, 245–295  g), and seven and six of which 
were used for the control and diabetes groups, respec-
tively. The animals were kept under standard conditions 

(lights on from 6 AM to 6 PM) and provide a standard 
rodent diet and water ad libitum. All animal experiments 
were approved by the Institutional Animal Care and Use 
Committee of the China Medical University (CMUIA-
CUC-2018-073) and were carried out in accordance with 
the approved guidelines.

Diabetes was induced in rats in the diabetes group at 
8  weeks of age by a single intraperitoneal injection of 
70  mg/kg of streptozotocin (STZ, Sigma Chemical Co., 
St. Louis, MO) dissolved in 0.1 M sodium citrate buffer, 
which caused specific necrosis of the pancreatic β–cells 
and resembles pathological manifestations of human type 
I diabetes [16]. Animals in the control group received 
a single intraperitoneal injection of the same volume 
of solvent. After STZ or citrate buffer administration, 
the animals were monitored weekly by measuring body 
weight and non-fasting plasma glucose concentration. 
The plasma glucose concentration was determined using 
a glucometer (Accu-Chek, Basel, Switzerland). Animals 
with non-fast plasma glucose concentrations > 250  mg/
dL were considered diabetic and used for the following 
study. One animal died 2  weeks after STZ administra-
tion, leaving five rats in the diabetes group. All animals 
underwent MRI scans 4  weeks after STZ or solvent 
administration.

MRI experiments
All MRI experiments were conducted using a 7 T animal 
MRI scanner (Bruker ClinScan 70/30, Germany) with a 
gradient strength of 630  mT/m. During the MRI scans, 
the animals were anesthetized using medical air (1.0 L/
min) with isoflurane (1.0–1.5%). Their body temperatures 
were maintained using a warm water circulation system 
and measured using a rectal probe. Physiological param-
eters, including heart rate and breath rate, were recorded 
during the experiments (SA instruments Inc., NY, USA). 
Scout images along three orientations were acquired by 
using the T1-weighted sequence. For BOLD rs-fMRI 
images, 300 consecutive volumes with 11 coronal slices 
were acquired with the following parameters: field of 
view (FOV) = 30 × 30  mm2, matrix size = 64 × 64, nine 
axial slices, thickness = 1  mm, no gap, repetition time 
(TR)/echo time (TE) = 1000  ms/20  ms, flip angle = 90°, 
and single-shot gradient-echo echo-planar imaging (EPI). 
Anatomical images were obtained by turbo spin-echo 
with scanning parameters of TR = 2560 ms, TE = 38 ms, 
echo train length = 7, number of excitations = 1, 
FOV = 30 × 30  mm2, matrix size = 320 × 320, and slice 
thickness = 1 mm.

Data analysis
The fMRI imaging data were first preprocessed using 
analysis of functional neuroimaging (AFNI) toolbox 
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(http://​afni.​nimh.​nih.​gov). Data acquired in the first 10 
volumes were discarded as the MRI signal has not yet 
reached a steady state. The brain EPI image of one con-
trol rat was selected as the template, the spatial dimen-
sion of which was used to normalize the brain images of 
all animals to reduce variations in brain size. Additional 
data preprocessing including despike, slice timing, head 
motion correction, linear detrend, and in-plane spatial 
smooth with a full width-half maximum (FWHM) ker-
nel at 0.9375  mm were performed. As the raw spatial 
resolution of the EPI data was 0.46875 mm, the FWHM 
of the spatial filter was determined to be the doubled 
pixel size [17]. Although regression analyses for white 
matter (WM) and cerebrospinal fluid (CSF) are usually 
employed when processing human rs-fMRI data, WM/
CSF regressions did not improve the detection specific-
ity of neural activity in rodent rs-fMRI studies due to the 
very different anatomy between rats and human [18]. As 
a result, nuisance removal, such as regressing WM/CSF-
derived signals, was not applied in this study. After pre-
processing, pixel-by-pixel fALFF map were calculated by 
using AFNI toolbox. The fALFF was defined as the sum of 
amplitude across 0.01–0.1 Hz divided by that across the 
entire frequency range [6]. The regions-of-interest (ROIs) 
of the cingulate cortex [19], hippocampus [20], insula 
[21], somatosensory [22], striatum [22, 23], thalamus 
[24], and whole brain were manually delineated based on 
the rat brain stereotactic atlas [25]. These regions were 
the key regions involved in diabetes-related abnormali-
ties, based on previous clinical and animal studies.

Statistical analysis
All statistical analyses were performed using MATLAB 
(Version: R2020a) and visualized using Excel. The meas-
urements were summarized as mean and standard devia-
tion. One-way analysis of variance tests with repeated 

measures were performed on the weight and plasma 
glucose concentration data in each group to compare the 
differences across different time points. To assess region-
specific differences between the groups, Student’s t-tests 
were applied to pairs of animal groups of the fALFF val-
ues. Statistical significance was set at P < 0.05.

Results
The weights and plasma glucose concentrations in the 
animals are shown in Fig.  1a, b, respectively. Rats in 
the control group showed increased body weight over 
time following solvent administration (P < 0.05). Rats in 
the diabetes group showed early weight loss after STZ 
administration, followed by a slight increase in weight. 
No changes in plasma glucose concentration over time 
were present in the control group (P = 0.73). In contrast, 
the plasma glucose level significantly increased in the dia-
betes group at 1 week after STZ administration (P < 0.05), 
suggesting the development of diabetes in these animals. 
The hyperglycemia persisted until 4  weeks after STZ 
administration.

Power spectral density (PSD) in different brain regions 
between control and diabetes groups are shown in Fig. 2. 
Notably, compared to the control rats, the diabetic rats 
expressed lower PSD, primarily within the low-frequency 
region, in various brain regions. Quantitative fALFF 
maps stratified by group are shown in Fig.  3. The cor-
tex demonstrated a relatively high fALFF than the other 
brain areas, suggesting high neural activity in the cortex. 
Visual inspection suggested that group-related differ-
ences in fALFF were homogeneous across brain regions, 
as rats with diabetes had lower fALFF compared to their 
control counterparts, in accordance with the results of 
power spectrums.

Figure  4 plots the results of the ROI analysis of the 
spatial distribution of the fALFF at the group level. 

Fig. 1  Weekly a weight and b plasma glucose level measurements for animals in the control and diabetes groups. *The difference between the 
two groups is statistically significant

http://afni.nimh.nih.gov
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The whole-brain fALFF was significantly lower in rats 
in the diabetes group compared to that in the control 
group (P < 0.05). In terms of regional analyses, a two-
sample t-test showed significant differences between 
the two groups in brain regions including the cingulate 

cortex, somatosensory cortex, insula, and striatum 
(all P < 0.05), with the diabetes group showing the sig-
nificantly lower fALFF values than those in the control 
group. None of the regions showed the opposite result, 
i.e., lower fALFF in the control group compared to the 
diabetes group.

Fig. 2  Power spectral density (PSD) in different brain regions between control and diabetes groups. The shaded regions indicate the frequency 
range (0.01–0.1 Hz) for calculating fractional amplitude of low-frequency fluctuation. SD, standard deviation within each group; a.u., arbitrary unit

Fig. 3  Fractional amplitude of low-frequency fluctuation (fALFF) maps in the control and diabetes subgroups. The data of animals from each group 
were averaged for display, and six representative brain sections are shown. EPI, echo-planar imaging
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Discussion
The results of this study demonstrated for the first time 
decreased neural activity in specific brain regions, as 
assessed by the fALFF index, in diabetic animals com-
pared to those in the control group even under anesthetic 
conditions. Aberrant neural activities were primarily 
observed in the cingulate cortex, somatosensory cortex, 
insula, and striatum. These findings provide new infor-
mation on tracking neural abnormalities in diabetic ani-
mals using rs-fMRI techniques.

Although the pathogenesis of brain dysfunction in dia-
betes is not fully understood, research has showed that 
hyperglycemia leads to both metabolic and vascular dis-
turbances in widespread brain regions, resulting in com-
promised brain function [26, 27]. Among these regions, 
striatum is gaining increased attention [23]. Previous 
studies have suggested that the striatum play a signifi-
cant role in mood symptoms, and abnormalities in the 
striatum are correlated with depression disorder [28, 29]. 
From an epidemic perspective, diabetes has been asso-
ciated with an increased prevalence of depression [30]. 
Consistent with previous study findings, the pathophysi-
ological changes in the striatum found in the present 
study tentatively suggest that fALFF analyzed using rs-
fMRI techniques could serve as an imaging biomarker to 
measure the aberrant neural activity in an animal model 
of diabetes. To some extent, the fALFF strategy may 
have the potential to further understand diabetes-related 
depression in an animal model. Additional research is 
necessary to explore this possibility.

Another key region involved in diabetes-related abnor-
malities is the cingulate cortex, which exhibited increased 
neural activity in patients with diabetes compared to 

control subjects [19]. However, this is in contrast with 
the finding of decreased fALFF in our diabetic animals. 
A clear explanation for this discrepancy is lacking, but 
may be related to the fact that human patients often have 
various comorbidities such as hypertension and obesity, 
which have also been shown to alter brain function [31, 
32]. Using the diffusion tensor imaging (DTI) technique, 
Frokjaer et  al. demonstrated diabetes-induced micro-
structural damage in the cingulate regions as evidence 
by the reduction in fractional anisotropy (FA) in patients 
with diabetes [33]. FA indicates the organization of fibers, 
such that a lower FA value is associated with decreased 
neural activity [34]. Consistent with the above study 
findings, the decreased fALFF in the cingulate region 
observed in the present study may reflect the actual 
effect of diabetes. Collectively, our findings could provide 
directions for future studies in this field.

Brain damage in a rat model of STZ-induced diabetes 
has been assessed using various techniques, which have 
shown that the hippocampus is the region most sensi-
tive to hyperglycemia compared to other brain regions 
[35, 36]. Moreover, STZ injection led to a reduction in 
the number of pyramidal neurons in the rat hippocampus 
[20]. Disappointingly, we did not observe a difference in 
hippocampal neural activity between control and STZ-
induced diabetic rats. This inconsistency may be partially 
attributed to the limitation that we only performed rs-
fMRI at 4 weeks after STZ administration and not later. 
This time span was suggested by other MRI studies [22, 
37], which showed considerable brain alterations 4 weeks 
after STZ administration. The hippocampus is involved 
in learning and memory, and impaired cognitive func-
tion is one of the major complications in patients with 

Fig. 4  Mean fractional amplitude of low-frequency fluctuation (fALFF) of the regions of interest averaged across rats in the control and diabetes 
groups. *P < 0.05; a.u.: arbitrary unit
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diabetes [38]. In STZ-induced animals, cognitive impair-
ment is prominent at 12 weeks after diabetes onset [39]. 
Therefore, cognitive ability may function integrally at 
the early onset of diabetes in rats, resulting in the unal-
tered neural activity in the hippocampus observed in this 
study. However, as cognitive function was not measured 
and was beyond the scope of this study, further studies 
are needed to determine whether changes in cognitive 
function are associated with altered brain activity in the 
hippocampus of STZ-induced diabetic animals.

The use of anesthetics is an essential step in performing 
rodent MRI experiments to reduce motion and prevent 
stress. The commonly used anesthetic in rodent fMRI is 
isoflurane, owing to its advantages of maintaining a stable 
anesthetic plane for a longer time and rapid regaining of 
consciousness after anesthesia discontinuation [40, 41]. 
Although cerebral activity under isoflurane anesthesia is 
significantly suppressed [42], isoflurane acts as a vasodi-
lator, which allows hemodynamic fluctuations linked to 
local neural activity to effectively spread through a larger 
cortical area [43]. Additionally, the spectral power of the 
cortex was enhanced under isoflurane anesthesia [44], 
suggesting the potential beneficial effect of isoflurane on 
boosting fALFF contrast. While this network structure 
is significantly distinct from the awake status, this phe-
nomenon may be considered as a unique characteristic in 
isoflurane anesthesia for rodent rs-fMRI studies. Other 
potential anesthetics for rodent rs-fMRI studies include 
propofol and urethane, the induced neural activity pat-
terns have many similarities to that in the awake condi-
tion [44]. As the effect of anesthetics on neural activity 
patterns is not always known and different pharmaco-
logical actions of different anesthetic regimes may induce 
varied brain responses, further diabetic animal rs-fMRI 
studies under different anesthetics may improve the data 
quality, comparability, and interpretation.

The results of this study must be interpreted with 
caution due to its limitations. First, as we only used 
one strain (Sprague–Dawley) of male rats, the results 
presented here may not be generalizable to other ani-
mals. Different strains of animals reportedly show dif-
ferent patterns of neural circuits [45]. Thus, additional, 
similar studies using different strains are needed 
to evaluate strain-dependent responses. Second, 
although they share the same features of persistent 
hyperglycemia, type 1 and type 2 diabetes have distinct 
pathophysiological effects and therefore exhibit dif-
ferent patterns of cerebral abnormalities [46]. As this 
study included only animals with type 1 diabetes, com-
parisons across different types of diabetes are needed. 
Third, the major disadvantage of rs-fMRI based on the 
EPI sequence is the signal loss due to the susceptibility 

artifacts, particularly in the brain region of the amyg-
dala [47]. The amygdala is the key node for integrating 
information on stress and emotion regulation, and the 
disruption of these functions has been associated with 
neurocognitive deficits in diabetic patients [48, 49]. As 
each imaging modality has specific strengths and limi-
tations, various techniques can be integrated to allow 
better estimation of the physiological characteristics 
of brain function in diabetes. Fourth, there are also 
many other analysis methods used in rs-fMRI, such 
as functional connectivity and independent compo-
nent analyses, and only the fALFF approach was used 
in this study. To better apply the rs-fMRI to an animal 
model of diabetes, an evaluation of the same dataset 
analyzed with different strategies would be the para-
mount direction. Finally, we determined our sample 
size based on previous studies of animals with diabetes 
[12, 50, 51]. Our sample size was small; therefore, the 
significance was not maintained after multiple com-
parisons. Given the exploratory nature of this study, 
we compared fALFF between groups in terms of ROI 
analysis. The primary advantage of ROI analysis is that 
it controls for Type I errors [52]. Moreover, the fALFF 
in the whole brain was significantly different between 
groups, thereby increasing our confidence that fALFF 
is a powerful index to investigate the diabetes-related 
brain alterations. However, further studies with larger 
sample sizes are suggested for more robust statistical 
analysis, as well as for determining whether the brain 
function in hippocampus and thalamus are altered 
after the onset of diabetes.

In conclusion, this exploratory study is the first to 
investigate the effect of diabetes on neural activity using 
the fALFF approach in anesthetized rats. The results 
demonstrated significant reductions in neural activity 
in various brain regions of diabetic animals. These find-
ings support the ability of the fALFF approach to dif-
ferentiate healthy controls from diseased animals even 
under anesthesia to provide meaningful information 
regarding the neurological pathophysiology of diabetes 
using animal models.
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