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Predicting coronary artery calcified plaques 
using perivascular fat CT radiomics features 
and clinical risk factors
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Abstract 

Objective:  The purpose of this study was to develop a combined radiomics model to predict coronary plaque tex‑
ture using perivascular fat CT radiomics features combined with clinical risk factors.

Methods:  The data of 200 patients with coronary plaques were retrospectively analyzed and randomly divided into 
a training group and a validation group at a ratio of 7:3. In the training group, The best feature set was selected by 
using the maximum correlation minimum redundancy method and the least absolute shrinkage and selection opera‑
tor. Radiomics models were built based on different machine learning algorithms. The clinical risk factors were then 
screened using univariate logistic regression analysis. and finally a combined radiomics model was developed using 
multivariate logistic regression analysis to combine the best performing radiomics model with clinical risk factors and 
validated in the validation group. The efficacy of the model was assessed by a receiver operating characteristic curve, 
the consistency of the nomogram was assessed using calibration curves, and the clinical usefulness of the nomogram 
was assessed using decision curve analysis.

Results:  Twelve radiomics features were used by different machine learning algorithms to construct the radiomics 
model. Finally, the random forest algorithm built the best radiomics model in terms of efficacy, and this was com‑
bined with age to construct a combined radiomics model. The area under curve for the training and validation group 
were 0.98 (95% confidence interval, 0.95–1.00) and 0.97 (95% confidence interval, 0.92–1.00) with sensitivities of 0.92 
and 0.86 and specificities of 0.99 and 1, respectively. The calibration curve demonstrated that the nomogram had 
good consistency, and the decision curve analysis demonstrated that the nomogram had high clinical utility.

Conclusions:  The combined radiomics model established based on CT radiomics features and clinical risk factors has 
high value in predicting coronary artery calcified plaque and can provide a reference for clinical decision-making.
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Background
Coronary artery disease is a common cardiovascular dis-
ease that seriously endangers human health, and the most 
important pathological basis for the occurrence of this 
disease is atherosclerosis. Research has shown that the 
coronary atherosclerotic plaque composition is closely 
associated with obstructive coronary stenosis and acute 
coronary syndromes [1, 2]. Calcified plaques contain 
mainly fibrous tissue hyperplasia and calcified material 
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with a hard texture and are relatively stable. In contrast, 
non-calcified plaques contain mainly lipid, old hemor-
rhage, and inflammatory cells that rupture, dislodge, or 
induce thrombosis because of instability, leading to the 
development of coronary artery disease [3]. Petretta 
et al. [4] demonstrated that the number of non-calcified 
plaques was an independent risk factor for the devel-
opment of cardiovascular disease. Therefore, effective 
detection of plaque composition is of great significance 
for the clinical management and prognosis of patients. 
Coronary CT angiography (CCTA) has high-density res-
olution and is effective in detecting coronary plaques and 
facilitating judgments about the constituent components 
of plaques, but with limited accuracy [5, 6]. In recent 
years, perivascular fat has received increased attention 
from researchers. Perivascular adipose tissue (PVAT) is 
the adipose tissue that surrounds the outer membrane 
of blood vessels and is closely associated with the devel-
opment of atherosclerosis, the degree of coronary ste-
nosis, plaque stability, and prognosis [7–13]. Radiomics, 
an emerging post-processing method, can be used for 
disease prediction and early diagnosis by extracting and 
quantifying useful features in medical imaging data [14, 
15]. In this study, we analyzed and modeled the CT radi-
omics features of perivascular fat and the clinical risk fac-
tors of patients to investigate the value of the model in 
predicting the nature of coronary plaque.

Methods
Patients’ information
We retrospectively analyzed images of 200 patients who 
underwent CCTA at our hospital from June 2019 to May 
2020 and were diagnosed with calcified or non-calcified 
plaques. Of these patients, 105 had calcified plaques (cal-
cified volume of > 70%) and 95 had non-calcified plaques 
(calcified volume of < 30%).When a patient’s image had 
multiple plaque lesions, the lesion with the clearest imag-
ing features was selected for analysis. The inclusion cri-
teria of this study were (1) the acquisition of complete 
CT-enhanced images strictly according to a fixed scan, 
(2) no history of coronary artery disease (no previous 

myocardial infarction or intervention), and (3) a > 50-mm 
length of coronary artery where the plaque was located. 
The exclusion criteria were (1) significant image noise or 
other quality problems, (2) both non-calcified and calci-
fied plaques in a single coronary artery, and (3) absence 
of clinical symptoms. Data regarding age, sex, diseased 
blood vessels, hypertension, diabetes, and hyperlipidemia 
were collected from the medical records.

Image acquisition
Each patient underwent cardiac coronary plain and 
enhanced CT scans (Discovery CT750 or GE Optima 
CT680; GE Healthcare, Chicago, IL, USA). A total dose 
of 84 mL of iohexol contrast agent with 60 mL of saline 
was injected into the elbow vein through a high-pressure 
syringe at an injection rate of 4.5 mL/s. The acquisition 
parameters were as follows: tube voltage, 120 KVp; tube 
current, 450–480  mA; layer thickness, 0.625  mm; and 
layer spacing, 0.625 mm. Images were acquired in Digital 
Imaging and Communications in Medicine format from 
the workstation.

Medical image segmentation and feature extraction
The perivascular fat was outlined by ITK-SNAP (www.​
itksn​ap.​org) at 10–50  mm proximal to the coronary 
artery, and the voxels with CT values between − 190 and 
− 30 HU over the same radial distance as the vessel diam-
eter were defined as PVAT [7, 16]. Feature extraction 
was further performed by Z-score normalization of the 
original image as well as determination of the region of 
interest by Artificial Intelligence Kit software (A.K. Soft-
ware, version 3.3.0.R; GE Healthcare). The feature types 
included the first order, shape, gray-level co-occurrence 
matrix (GLCM), gray-level size zone matrix (GLSZM), 
and gray-level run-length matrix (GLRLM), as well as log 
and wavelet transformed features. The extracted features 
comprised 198 first order features, 14 shape features, 264 
GLCM features, 176 GLSZM features, and 176 GLRLM 
features. The specific feature classification is shown in 
Table 1.

Table 1  All extracted features and classifications

Original Log-sigma Wavelet

2.0 3.0 HHH HHL HLH HLL LHH LHL LLH LLL

Shape 14  0  0  0  0  0  0  0  0  0  0

First Order 18 18 18 18 18 18 18 18 18 18 18

GLCM 24 24 24 24 24 24 24 24 24 24 24

GLSZM 16 16 16 16 16 16 16 16 16 16 16

GLRLM 16 16 16 16 16 16 16 16 16 16 16

http://www.itksnap.org
http://www.itksnap.org
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Feature selection and model building
The data were divided into a training group and valida-
tion group at a ratio of 7:3. Considering the imbalance 
of the data, Synthetic Minority Oversampling Tech-
nique (SMOTE) was used to oversample the minority 
class to get a balanced data distribution in the training 
set, then the features were first screened in the training 
group using the maximum correlation minimum redun-
dancy (mRMR) method. They were then further screened 
using the least absolute shrinkage and selection opera-
tor (LASSO) tenfold cross-validation method to find the 
lambda value when the minimum binomial deviation was 
0, and the features with coefficients that were not 0 at this 
point were retained  (Fig.  1). The final retained features 
were analyzed using different machine learning algo-
rithms (glm, K-nearest neighbor, support vector machine 
with radial basis function kernel [svmRadial], random 
forest, and neural network) to build the radiomics model. 
The stability and predictive performance of each model 
over tenfold cross-validations repeated with 10 times 
were analyzed using relative standard deviations (RSD%) 
which is defined as:

where σ AUC is the standard deviation of the 100 AUC 
values and µ AUC is the mean of the 100 AUC values, 
then the models were validated in the validation group, 
and the best performing radiomics model was finally 
combined with clinical risk factors using multivari-
ate logistic regression analysis to construct a combined 

RSD% = σ AUC/µ AUC× 100%,

radiomics model. The utility of the models was analyzed 
using decision curves with the Hosmer–Lemeshow test 
[17, 18] to create calibration curves to identify agreement 
between the probabilities predicted by column line plots 
and the actual rates of calcified plaque in the training and 
validation group.

Statistical analysis
All statistical analyses were performed using R soft-
ware version 3.5.0 (http://​www.r-​proje​ct.​org), and p 
values of < 0.05 were considered statistically significant. 
For continuous variables such as age, the Kolmogorov–
Smirnov method was used to test whether the measures 
conformed to a normal distribution, using the inde-
pendent-samples t-test for a normal distribution and 
the Mann–Whitney U test for non-normality. For cate-
gorical variables, the chi-square test or Fisher’s exact test 
was used. Univariate and multivariate logistic regression 
analysis was used to select the most discriminating risk 
factors and build the combined radiomics models. The 
efficacy of the model was assessed using an ROC curve, 
the consistency of the model was assessed using calibra-
tion curves, and the usefulness of the model was assessed 
using clinical decision analysis.

Results
Clinical characteristics
In total, 200 patients were included in this study; 105 
(52.5%) had calcified plaques, and 95 (47.5%) had non-
calcified plaques. The patients’ basic clinicopathological 

Fig. 1  Workflow of the radiomics analysis

http://www.r-project.org
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characteristics were compared between the calcified and 
non-calcified plaque groups in the training and validation 
group are shown in Table 2. Only age was statistically dif-
ferent in the training group (p < 0.05), all other clinical 
factors were not statistically different (p > 0.05).

Feature extraction
After extracting the features, two feature selection meth-
ods (mRMR and LASSO) were used to select features. 
First, mRMR was performed to eliminate redundant and 
irrelevant features, and 30 features were retained. Next, 
LASSO was performed to select an optimized subset of 
features to construct the final model, taking into account 
the imbalance of the data. Considering the imbalance of 
the data, a small number of features was oversampled, 
and 12 features were finally retained (Fig. 2).

Development and validation of model
The 12 radiomics features were used to construct the 
radiomics model by different machine learning meth-
ods. The stability and prediction performance are shown 
in Figs. 3 and 4. The radiomics model constructed based 
on the random forest method had the best performance 

after tenfold cross validation repeated with 10 time, with 
an AUC of 0.97 (95%CI 0.95–1.00) in the training group 
and 0.97 (0.92–1.00) in the validation group. In the train-
ing group, univariate logistic regression analysis showed 
that only age (OR 0.953; 95% CI 0.917–0.988; p < 0.01) 
was considered to be an independent predictor (Table 3). 
The age yielded an AUC of 0.63 (95%CI 0.54–0.72) in the 
training group and 0.60 (95%CI 0.45–0.74) in the valida-
tion group. Finally, multivariate logistic regression anal-
ysis was performed to include rad-score and age in the 
development of a combined radiomics models (Table 3), 
where rad-score was an independent predictor of calci-
fied plaque (p < 0.05).The predictive performance and 
ROC curves of the model are shown in Table 4 and Fig. 5. 
The AUC of the combined model were 0.98(95%CI 0.95–
1.00), 0.97(95%CI 0.92–1.00), delong test showed that 
there was no significant difference between the combined 
model and the radiomics model While the accuracy and 
specificity were slightly improved (Table 4).

The calibration curve was used to evaluate the consist-
ency between the predicted probability and the actual 
observed value. The Hosmer–Lemeshow test was used 
to test the difference between these values. The training 

Table 2  Comparison of patient and clinical risk factors in training and validation group

LM left main artery, LAD left anterior descending artery, D diagonals, LCx left circumflex artery, RCA​ right coronary artery, PDA posterior descending artery

Qualitative variables are expressed as n (%) and were analyzed using the chi-square test or Fisher’s exact test, and quantitative variables are expressed as 
mean ± standard deviation and were analyzed using the t-test. A p value of < 0.05 was considered statistically significant

Training group (n = 141) Validation group (n = 59)

Calcified plaque 
group (n = 74)

Non-calcified plaque 
group (n = 67)

p Calcified plaque 
group (n = 31)

Non-calcified plaque 
group (n = 28)

p

Age (years) 61.95 ± 10.15 57.76 ± 10.04 0.007 63.58 ± 9.02 59.93 ± 9.92 0.212

Gender 0.234 0.470

 Male 38 (51.4%) 46 (68.7%) 18 (58.1%) 14 (50.0%)

 Female 36 (48.6%) 21 (31.3%) 13 (41.9%) 14 (50.0%)

Hypertension 0.538 0.090

 Yes 32 (43.2%) 37 (55.2%) 18 (58.1%) 18 (64.3%)

 No 42 (56.8%) 30 (44.8%) 13 (41.9%) 10 (35.7%)

Diabetes 0.229 0.597

 Yes 10 (13.5%) 6(9.0%) 6 (19.4%) 5 (17.9%)

 No 64 (84.5%) 61(91.0%) 25(80.6%) 23 (82.1%)

Hyperlipidemia 0.248 0.066

 Yes 5 (6.8%) 6 (9.0%) 5 (16.1%) 2 (7.1%)

 No 69 (93.2%) 61 (91.0%) 26 (83.9%) 26 (92.9%)

Diseased blood vessel 0.808 0.226

 LM 4 (5.4%) 4 (6.0%) 3 (9.7%) 1 (3.5%)

 LAD 43 (58.1%) 40 (59.7%) 18 (58.1%) 16 (57.1%)

 D 1 (1.4%) 3 (4.5%) 0 (0) 2 (7.1%)

 LCx 10 (13.5%) 4 (6.0%) 3 (9.7%) 1 (3.6%)

 RCA​ 14 (18.9%) 15 (22.3%) 7 (22.5%) 8 (28.6%)

 PDA 2 (2.7%) 1 (1.5%) 0 (0) 0 (0)
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Fig. 2  Twelve features obtained after screening and their regression coefficients

Fig. 3  Stability of different models. The ordinate is the average of 100 cross-validations of the AUC and accuracy for each classifier, and the abscissa 
is the RSD. AUC, area under the curve; RSD, relative standard deviation
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group p = 0.535, the validation group p = 0.383, and 
p > 0.05 indicated good agreement between the pre-
dicted probability and the actual observed value (Fig. 6). 
Using the decision analysis curve indicates that the 
combined model has a high clinical utility. These results 
indicate that the combination of radiomics features and 

clinical risk factors provides more effective information 
for assessing whether a plaque is calcified and therefore 
has higher clinical application value (Fig. 7).

Discussion
Research has shown that the progression of coronary ath-
erosclerotic plaques is related to the calcification compo-
nent. This starts with intimal microcalcifications in the 
early stages of atherosclerotic plaque formation and pro-
gresses to fibrous atherosclerotic punctate and fragment 
calcifications, which are relatively unstable and lead to a 
greater risk of plaque rupture. On CT, they tend to show 
low-attenuation non-calcified plaque, the napkin ring 
sign, positive remodeling, and spotty calcification. In later 
stages, plaque calcification gradually turns into lamellar 
calcification and calcified nodules, which are relatively 

Fig. 4  Predictive performance of different models. a One hundred cross-validations of the ACC, AUC, NPV, PPV, sensitivity, and specificity of different 
models. b The validation group was used to verify the performance of each model. ACC, accuracy; AUC, area under the curve; NPV, negative 
predictive value; PPV, positive predictive value

Table 3  Univariate and multivariate logistic regression analysis 
of coronary artery calcified plaques

OR odd ratio, CI confidence interval

Variables Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Age 0.953 (0.916–0.988) 0.011 1.063 (0.983–1.161) 0.148

Rad-score – – 5.627 (3.071–13.463) 0.000

Table 4  Results of radiomics model, age, and combined radiomics model

Accuracy AccuracyLower AccuracyUpper Sensitivity Specificity Pos.Pred.Value Neg.Pred.Value

Radiomics

 Train 0.929 0.873 0.965 1.000 0.865 0.870 1.000

 Test 0.898 0.792 0.962 0.857 0.935 0.923 0.879

Age

 Train 0.603 0.517 0.684 0.634 0.590 0.388 0.797

 Test 0.627 0.491 0.750 0.650 0.615 0.464 0.774

Combined

 Train 0.950 0.900 0.980 0.917 0.986 0.985 0.919

 Test 0.932 0.835 0.981 0.875 1.000 1.000 0.871
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stable deposits of calcium ions in tissue cells after the 
arterial injury has recovered. They appear as patchy 
dense shadows with a higher density than the lumen on 
CCTA, with CT values of > 1000 HU [19, 20]. Boussel 
et al. [21] demonstrated that quantitative energy-spectral 
CT parameters were effective in identifying calcified and 
lipid-rich plaques in coronary arteries by analyzing dif-
ferences in single-energy CT values. However, the limita-
tions of their study were the small sample size of 23 cases 
and the ex  vivo experimental design. In recent years, 
research has shown that adipose tissue is a key regula-
tor of healthy cardiac metabolism and that PVAT plays a 
key role in vascular system homeostasis and atherogen-
esis by regulating the local microenvironment through 
the release of bioactive adipokines, gases, and other lipid 
messengers outside the vasculature [22–24].

In this study, we proposed a model that combines clini-
cal risk factors and radiomics features of PVAT to predict 
plaque calcification. First, PVAT radiomics analysis can 
significantly distinguish between non-calcified and cal-
cified plaques. The AUC in the training group was 0.97, 
and that in the validation group was 0.97. Second, uni-
variate logistic regression showed that the clinical factor 
closely associated with differentiating calcified plaque 
was age, suggesting that clinical attention should be paid 
to coronary artery examination in elderly patients to 
keep abreast of lesion plaque progression. However, the 
predictive performance for calcified plaque was limited, 

with a validation group AUC of 0.60. with a validation 
group AUC of 0.60. Therefore, we developed a combined 
model to test whether radiomics features and age are 
complementary. The nomogram based on the integrated 
model exhibited the most ideal performance in the train-
ing and validation group, with an AUC of 0.98 and 0.97, 
respectively.

In clinical factors, only age in the training group was 
relevant in this study. Hypertension, diabetes, and dyslip-
idemia, as clinical factors associated with cardiovascular 
risk, were not relevant for identifying calcified plaques in 
this experiment. The improvement of the combined radi-
omics model by clinical risk factors was not substantially 
great. This may have been caused by the limited sample 
size, and a sufficiently large sample may produce better 
statistics.

This study had several limitations. First, this study 
may have had selection bias because of its retrospec-
tive nature. Prospective, multicenter, and large-sample 
randomized controlled research is therefore necessary. 
Second, only calcified and non-calcified plaques were 
analyzed in this study, and mixed plaques were not 
included for comparison. Third, our results only sup-
port the detection of PVAT characteristics in symp-
tomatic patients; the clinical value of our findings in 
asymptomatic patients remains unclear. Fourth, the 
degree of coronary stenosis is an important indicator 
but is susceptible to calcified plaque X-ray sclerosis 

Fig. 5  Receiver operating characteristic curves. Comparison of receiver operating characteristic curves to predict calcified plaques. The figure 
includes a training and b validation age (green), an radiomics model (blue), and a combined model (red) that combines clinical risk factors and 
radiomics features. AUC, area under the curve
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artifacts, which are difficult to accurately assess and 
were not included in the analysis. Finally, the plaques 
sampled in this study were not pathologically con-
firmed, and it was not possible to accurately group the 
plaques.

Conclusion
We verified that age and radiomics features had good 
predictive ability for calcified plaques. We propose a non-
invasive method that can assist the clinical diagnosis and 
decision-making for patients with plaques.

Fig. 6  Nomogram of combined radiomics model and consistency curve. a Nomogram developed for the main population using a combination of 
radiomics scores and age factors. The calibration curve was plotted for the b training group and c validation group. The y-axis represents the actual 
calcified plaque probability, and the x-axis represents the predicted risk of a calcified plaque. The diagonal line represents the ideal prediction of the 
ideal model. The pink dotted line indicates the performance of the nomogram; better prediction is achieved as it approaches the diagonal
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