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Abstract 

Objectives:  We aimed to investigate the value of performing gadolinium-ethoxybenzyl-diethylenetriamine pen‑
taacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance imaging (MRI) radiomics for preoperative prediction of 
microvascular invasion (MVI) of hepatocellular carcinoma (HCC) based on multiple sequences.

Methods:  We randomly allocated 165 patients with HCC who underwent partial hepatectomy to training and 
validation sets. Stepwise regression and the least absolute shrinkage and selection operator algorithm were used to 
select significant variables. A clinicoradiological model, radiomics model, and combined model were constructed 
using multivariate logistic regression. The performance of the models was evaluated, and a nomogram risk-prediction 
model was built based on the combined model. A concordance index and calibration curve were used to evaluate 
the discrimination and calibration of the nomogram model.

Results:  The tumour margin, peritumoural hypointensity, and seven radiomics features were selected to build the 
combined model. The combined model outperformed the radiomics model and the clinicoradiological model and 
had the highest sensitivity (90.89%) in the validation set. The areas under the receiver operating characteristic curve 
were 0.826, 0.755, and 0.708 for the combined, radiomics, and clinicoradiological models, respectively. The nomogram 
model based on the combined model exhibited good discrimination (concordance index = 0.79) and calibration.

Conclusions:  The combined model based on radiomics features of Gd-EOB-DTPA enhanced MRI, tumour margin, 
and peritumoural hypointensity was valuable for predicting HCC microvascular invasion. The nomogram based on the 
combined model can intuitively show the probabilities of MVI.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
primary cancer of the liver and accounts for approxi-
mately 75–85% of all liver cancers [1]. Although there are 
many effective treatment methods that can help control 
tumour progression and improve prognosis, such as sur-
gery, liver transplantation, radiofrequency ablation, and 
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transarterial chemoembolization, the recurrence rate of 
HCC remains high [2]. Microvascular invasion (MVI) is 
defined as a microscopic tumour thrombus in the vascu-
lar lumen lined by endothelial cells, and it occurs mainly 
in the branches of the peritumoural portal vein [3]. 
MVI is a recognised predictive factor for the survival of 
patients with HCC and recurrence after surgery [4–6]. 
Thus, the ability to preoperatively predict MVI would 
greatly benefit HCC treatment.

Radiologists can directly describe some semantic fea-
tures to evaluate MVI, such as tumour size, non-smooth 
tumour margin, internal arteries, a hypodense halo, and 
tumour–liver differences [7–9]. However, evaluating 
these features is highly subjective, variable, and lacks 
robustness [10]. Radiomics has recently emerged and 
may be able to compensate for these shortcomings [11]. 
Radiomics can extract a large number of quantitative fea-
tures from computed tomography (CT), magnetic reso-
nance imaging (MRI), and ultrasound images that can be 
used to quantify the morphology or “imaging phenotype” 
of a tumour [12, 13]. The relationship between features 
found through tumour imaging and the underlying biol-
ogy is indirect and complex [14]. Although the radiomics 
cannot quantify all relevant biological manifestations, the 
imaging phenotype can provide crucial supplementary 
information that can help guide treatment [15, 16].

A meta-analysis previously showed that MRI radiomics 
was better than CT radiomics for sensitivity, specificity, 
and the area under the receiver operating characteristic 
(ROC) curve (AUC) [17]. MRI can also provide better 
soft-tissue resolution, multi-parameters and more-sta-
ble features for assessing tumour heterogeneity [18–20]. 
The liver-specific contrast agent gadolinium-ethoxy-
benzyl-diethylenetriamine pentaacetic acid (Gd-EOB-
DTPA) and the hepatobiliary phase (HBP) may provide 

additional information [21–25]. Therefore, this study 
aimed to build a model for predicting MVI by extracting 
and selecting crucial variables from multiple sequences 
of Gd-EOB-DTPA-enhanced MRI.

Materials and methods
Patient criteria
We enrolled 165 patients who underwent partial hepa-
tectomy for HCC between January 2015 and July 2020 
in our hospital; these included 103 men and 62 women, 
aged 35–83 years, with a median age of 57 years. These 
patients met the following criteria (Fig.  1): (1) Gd-
EOB-DTPA-enhanced MRI examination was performed 
within two weeks before surgery, (2) there was a postop-
erative pathological diagnosis of HCC, and (3) labora-
tory examination data were completed within two weeks 
before surgery. The exclusion criteria were: (1) local 
tumour treatment was received before surgery, including 
ablation therapy, radiotherapy, transarterial chemoem-
bolization, and systemic therapy; (2) invasion or throm-
bosis of the portal vein, hepatic vein, inferior vena cava, 
and their main branches; (3) the presence of extrahepatic 
metastasis; and (4) the presence of artefacts on images. 
This retrospective study obtained ethical approval 
(approval number EK2021017), and the requirement for 
informed consent was waived.

Clinical data
We collected data on age, sex, hepatitis B surface anti-
gen, alpha-fetoprotein (AFP), alanine aminotransferase, 
aspartate aminotransferase (AST), albumin (ALB), 
total bilirubin, direct bilirubin, platelets, prothrombin 
time (PT), and international normalised ratio of each 
patient. Two experienced pathologists evaluated cirrho-
sis of the liver parenchyma and MVI according to the 

Fig. 1  Flowchart of the enrollment of patients
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Standardization for Diagnosis and Treatment of Primary 
Hepatic Carcinoma in China (2019 edition). We divided 
all patients into an MVI-positive or MVI-negative group.

MRI protocols
A Philips 3.0T Achieva MR scanner with a 16-chan-
nel abdominal coil was used to perform the abdominal 
MRI. The MRI plain scan was performed first, including 
T2-weighted imaging (T2WI) with spectral attenuated 
inversion recovery, diffusion-weighted imaging (DWI) 
(b = 0, 800 s/mm2), and in-phase/out-phase T1-weighted 
imaging (T1WI). The contrast agent Gd-EOB-DTPA 
(Germany Bayer, Medical Health Co., Ltd.) was injected 
into the cubital vein at a flow rate of 1.0  ml/s, using 
0.1  ml/kg of bodyweight, and rinsed with 20  ml saline 
after injection. The enhancement scan used the T1 
high-resolution isotropic volume excitation sequence 
(THRIVE). Axial images of the arterial phase (AP), por-
tal venous phase (PP), transitional phase (TP), and HBP 
were collected at 20  s, 1  min, 3  min, and 20  min after 
injection of the contrast agent. The parameters of the 
scan sequences are listed in Table 1.

Image analysis
Two experienced radiologists, with more than eight 
years of experience in abdominal disease diagnosis and 
blinded to the pathology results, evaluated the radio-
logical features and reached a consensus. We recorded 
the multifocality of the lesions, tumour size, signal uni-
formity on T2WI, peritumoural enhancement in the 
AP, tumour capsule in the PP, tumour margin, and peri-
tumoural hypointensity in the HBP. A smooth tumour 
margin presents as a nodular tumour with smooth con-
tour, while a non-smooth tumour margin is character-
ized by a lobulated tumour or irregular protrusions into 
the surrounding normal liver parenchyma. Peritumoural 
hypointensity is defined as an irregular, wedge-shaped, 
flame-like hypointense area of the liver parenchyma 
located outside of the tumour margin. The signal of the 

hypointense area is lower than that of the normal liver 
parenchyma but higher than that of the tumour itself. A 
few HCC lesions in the HBP show isointensity or hyper-
intensity; the signal intensity of the peritumoural hypoin-
tense area is lower than that of the lesion, but were less 
hypointense than the hypointense rim that is usually 
depicted in those HCCs [26]. When there were multi-
ple lesions, the largest lesion was selected. A physician 
who was not involved in the radiological and radiomics 
analyses checked the radiological and pathological find-
ings and marked the largest HCC lesion. These subjec-
tive radiological features and clinical data are collectively 
referred to as the clinicoradiological data.

Drawing the regions of interest
The original images were imported into the Philips Radi-
omics Tool 1.9.2 (Philips Investment Co., Ltd., Shang-
hai, China) software (based on Pyradiomics 3.0.0). The 
grey level normalization was performed before feature 
extraction, and the grey level discretization was under-
taken using a bin width of 2.5. The first radiologist who 
was not involved in the radiological analysis manually 
delineated the region of interest (ROI) by selecting the 
largest tumour section on the T2WI, DWI (b = 800  s/
mm2), T1WI plain scan, AP, PP, TP, and HBP images 
(Fig.  2). When multiple lesions were present, only the 
largest lesion was delineated. Another senior physician 
confirmed the ROI outlined by the first radiologist. Two 
months later, the first radiologist drew the ROI on images 
from 20 randomly selected patients, and these data were 
used to calculate the intraclass correlation coefficients 
(ICCs).

Feature extraction
Feature extraction was performed using Philips Radi-
omics Tool software (based on Pyradiomics 3.0.0). Each 
sequence had 1227 features, included 17 shape features 
presented by statistical values, 19 first-order features that 
indicated the distribution of intensities, 75 texture fea-
tures (included the grey-level size-zone matrix [GLSZM], 
grey-level run-length matrix [GLRLM], grey-level co-
occurrence matrix [GLCM], neighbouring grey-tone dif-
ference matrix [NGTDM], and grey-level dependence 
matrix [GLDM]) that quantified the intratumoural het-
erogeneity, and 1116 first-order features and texture fea-
tures that were obtained using exponential, logarithmic, 
squared, square root, or wavelet filtering.

Feature selection
ICCs were used to evaluate the stability of each radi-
omics feature value. Features with an ICC ≥ 0.75 were 
used for further feature selection. The Z-score was 

Table 1  The parameters of the scan sequences

T2WI T2-weighted imaging, DWI diffusion-weighted imaging, T1WI T1-weighted 
imaging, THRIVE high-resolution isotropic volume excitation sequence

TR (ms) TE (ms) Slice 
thickness 
(mm)

Slice gap 
(mm)

Matrix

T2WI 2000 70.0 5.0 1.0 250 × 230

DWI 3000–5000 55.0 5.0 1.0 128 × 160

In-phase/
out-phase 
T1WI

150 2.3/1.15 7.0 1.0 250 × 230

THRIVE 3 1.5 2.5 0 250 × 230
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used to standardise the features before putting them 
in the model. The overall cohort was divided at a ratio 
of 7:3 into a training set (n = 115) and a validation set 
(n = 50), and there were no significant differences in 
the baseline data between the training and validation 
sets. In the training set, stepwise regression was used to 
select the clinicoradiological variables. The least abso-
lute shrinkage and selection operator (LASSO) algo-
rithm was used to select important radiomics features 
by tenfold cross-validation. The LASSO algorithm was 
also used to determine variables from the combined 
dataset composed of the clinicoradiological data and 
radiomics features with ICC ≥ 0.75. The validation set 
was used to test the accuracy of the model predictions. 
A correlation coefficient heatmap was generated to 

show the correlation between clinicoradiological vari-
ables and radiomics features.

Model construction and evaluation
Based on the selected variables, multivariate logistic regres-
sion was used to construct the clinicoradiological model, 
radiomics model, and combined model. The AUC, sensi-
tivity, and specificity were used to evaluate the diagnostic 
performance of the models. Univariate logistic regression 
analysis was performed between the selected variables and 
the MVI. A nomogram risk-prediction model was con-
structed based on the variables included in the combined 
model. The nomogram model intuitively shows scores 
based on the coefficients of the logistic regression model 
variables and converts them into probabilities of clini-
cal events. The nomogram model was internally validated 
using 1000 random bootstrap resamplings. The discrimina-
tion and calibration of the nomogram model was evaluated 
using the C-index and calibration curve.

Statistical analysis
All statistical analyses were performed using the R software 
(version 3.6.0). The Kolmogorov–Smirnov test and analy-
sis of variance were used to test for distribution normality 
and homogeneity of variance. The t-test or Mann–Whitney 
rank test was used to compare the differences in the quanti-
tative data, and the chi-square test or Fisher’s exact test was 
used to compare the differences in the qualitative data. The 
LASSO algorithm and ROC curve were performed using 
the “glmnet” and “pROC” packages, and the “rms” package 
generated the nomogram and calibration curve. The corre-
lation coefficient heatmap was drawn using the “corrplot” 
package. A P value < 0.05 indicated statistical significance.

Results
Patients
Among the 165 HCC patients, 49 were MVI positive and 
116 were MVI negative. In the clinicoradiological model, 
radiomics model, and combined model, the baseline data 
between the training and validation sets were not statisti-
cally different (P > 0.05). The baseline data of the clinicora-
diological model are shown in Table 2.

Construction of the clinicoradiological model
The tumour capsule, tumour margin, peritumoural 
hypointensity, tumour size, AST, ALB, and PT were 
selected as significant variables related to MVI. Multivar-
iate logistic regression was used to construct the clinico-
radiological model.

The formula of the model was as follows:

Fig. 2  The delineation of ROI on T2WI (a), DWI (b), T1WI (c), AP (d), 
PP (e), TP (f) and HBP (g). The ROI was drawn as close to the margin of 
the tumour as possible but within the margin on the largest section
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Table 2  Comparison of the baseline data of the clinicoradiological data

P*, P value for the test between the training set and the validation set

MVI microvascular invasion, HBsAg hepatitis B surface antigen, T2WI T2-weighted imaging, AFP alpha-fetoprotein, ALT alanine-aminotransferase, AST aspartate-
aminotransferase, ALB albumin, TBIL total bilirubin, DBIL direct bilirubin, PLT platelets, PT prothrombin time, INR international normalised ratio

Training set (n = 115) Validation set (n = 50) P*

MVI-negative (n = 81) MVI-positive (n = 34) P value MVI-negative (n = 35) MVI-positive (n = 15) P value

Sex 1.00 0.30 0.65

 0, Female 32 (39.5) 13 (38.2) 14 (40.0) 3 (20.0)

 1, Male 49 (60.5) 21 (61.8) 21 (60.0) 12 (80.0)

Multifocality 1.00 1.00 0.55

 0, No 69 (85.2) 29 (85.3) 28 (80.0) 12 (80.0)

 1, Yes 12 (14.8) 5 (14.7) 7 (20.0) 3 (20.0)

Cirrhosis

 0, No 5 (6.2) 3 (8.8) 0.92 2 (5.7) 2 (13.3) 0.73 0.47

 1, Yes 76 (93.8) 31 (91.2) 33 (94.3) 13 (86.7)

HBsAg 0.64 0.93 0.96

 0, Negative 14 (17.3) 4 (11.8) 5 (14.3) 3 (20.0)

 1, Positive 67 (82.7) 30 (88.2) 30 (85.7) 12 (80.0)

Tumour signal on T2WI 0.06 1.00 0.67

 0, Homogeneous 15 (18.5) 1 (2.9) 4 (11.4) 1 (6.7)

 1, Heterogeneous 66 (81.5) 33 (97.1) 31 (88.6) 14 (93.3)

Peritumoural enhance‑
ment

0.65 0.05 0.45

 0, No 71 (87.7) 28 (82.4) 31 (88.6) 9 (60.0)

 1, Yes 10 (12.3) 6 (17.6) 4 (11.4) 6 (40.0)

Tumour capsule  < 0.001 0.34 0.17

 0, Absent 25 (30.9) 8 (23.5) 11 (31.4) 3 (20.0)

 1, Incomplete 7 ( 8.6) 15 (44.1) 9 (25.7) 7 (46.7)

 2, Complete 49 (60.5) 11 (32.4) 15 (42.9) 5 (33.3)

Tumour margin  < 0.001 0.10 0.07

 0, Smooth 62 (76.5) 12 (35.3) 20 (57.1) 4 (26.7)

 1, Non-smooth 19 (23.5) 22 (64.7) 15 (42.9) 11 (73.3)

Peritumoural hypoin‑
tensity

 < 0.001 0.01 0.51

 0, No 75 (92.6) 17 (50.0) 30 (85.7) 7 (46.7)

 1, Yes 6 (7.4) 17 (50.0) 5 (14.3) 8 (53.3)

Age 58.00 [52.00, 65.00] 60.00 [51.50, 64.00] 0.95 57.00 [50.00, 63.50] 55.00 [52.50, 63.50] 0.76 0.67

Tumour size 2.18 [1.60, 3.18] 3.68 [2.70, 5.79]  < 0.001 2.68 [1.95, 3.65] 4.20 [3.30, 5.33] 0.01 0.90

AFP 8.19 [3.32, 89.75] 25.98 [3.50, 183.14] 0.24 50.29 [6.24, 225.46] 22.14 [6.17, 82.26] 0.62 0.52

ALT 30.00 [22.00, 46.00] 28.50 [22.25, 46.00] 0.62 30.00 [23.50, 44.00] 30.00 [17.50, 46.50] 0.66 0.78

AST 36.00 [27.00, 50.00] 35.50 [26.50, 45.00] 0.58 38.00 [27.00, 53.50] 32.00 [26.00, 38.00] 0.22 0.88

ALB 42.10 [38.80, 44.30] 42.05 [38.25, 44.85] 0.69 40.60 [37.40, 44.55] 42.50 [39.75, 44.70] 0.44 0.81

TBIL 15.90 [12.70, 21.30] 15.40 [11.88, 18.78] 0.27 15.00 [11.95, 22.75] 16.50 [12.30, 20.95] 0.90 0.68

DBIL 5.30 [4.10, 7.10] 4.55 [4.03, 6.68] 0.26 5.40 [3.85, 7.90] 6.30 [3.40, 7.30] 0.97 0.43

PLT 111.00 [69.00, 144.00] 109.50 [82.75, 146.75] 0.32 107.00 [80.50, 127.00] 145.00 [102.50, 207.00] 0.04 0.34

PT 12.50 [11.60, 13.40] 11.80 [11.20, 12.33] 0.04 12.60 [11.90, 13.40] 11.90 [11.65, 12.40] 0.11 0.13

INR 1.07 [0.99, 1.17] 1.01 [0.96, 1.05] 0.02 1.08 [1.02, 1.15] 1.05 [1.00, 1.08] 0.15 0.45
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where p is the probability of MVI. The univariate logistic 
regression analysis of the variables in the validation set 
showed that peritumoural hypointensity had the highest 
odds ratio (OR) (Table 3).

Construction of the radiomics model
The proportion of radiomics features with an intra-
observer ICC ≥ 0.75, 0.5–0.75, and < 0.5 were 86.35%, 
10.48%, and 3.17%, respectively. The LASSO algorithm 
was used to select features with ICC ≥ 0.75 further. Ulti-
mately, eight radiomics features were selected to con-
struct the radiomics model; four were from the DWI, and 

the other four were from T2WI, PP, TP, and T1WI.
The formula of the model was as follows:

The univariate logistic regression of the variables in 
the validation set showed that SquareRoot.GLSZM_SZN 
from the DWI had the highest OR, followed by Wavelet.
FirstOrder.HLL_Maximum from the T2WI and Wavelet.
GLSZM.HLL_SZN from the DWI (Table 4).

The correlation between clinicoradiological variables 
and the above 8 radiomics features is shown in the cor-
relation coefficient heatmap (Fig. 3).

log(p/(1− p)) = 5.6642− 0.6055× tumour capsule+ 1.4956× tumour margin+ 1.8169

× peritumoural hypointensity+ 0.2511× tumour size

− 0.0233× AST− 0.0998× ALB+ 2.0827× PT

log(p/(1− p)) = −8.6134 − 0.3037× TP_Wavelet.GLDM.LLH_DependenceVariance (DV)

+ 6.7528× PP_GLCM_InverseDifferenceNormalized (IDN)

+ 0.0290× T1WI_Exponential.GLDM_DV

+ 0.0008× DWI_Wavelet.FirstOrder.LLL_Range

− 0.0009× DWI_Wavelet.GLSZM.HLL_SizeZoneNon− uniformity (SZN)

+ 0.1380× DWI_SquareRoot.GLSZM_SZN

+ 0.3040× DWI_Logarithm.GLSZM_SmallAreaHighGrayLevelEmphasis (SAHGLE)

+ 0.0040× T2WI_Wavelet.FirstOrder.HLL_Maximum

Construction of the combined model
The combined data comprised 20 clinicoradiological vari-
ables and radiomics features with ICC ≥ 0.75; the tumour 
margin, peritumoural hypointensity, and seven radiomics 
features were selected by the LASSO algorithm to con-
struct the combined model (Fig.  4). The tumour margin 
and peritumoural hypointensity were significant variables 
in both the clinicoradiological model and the combined 
model. The size zone non-uniformity (SZN) from the DWI, 
small area high grey-level emphasis (SAHGLE), and Maxi-
mum from T2WI were significant variables in both the 
radiomics model and the combined model.

The specific formula of the model was:

The results of the univariate logistic regression in the 
validation set are presented in a forest plot in Fig. 5. Peri-

tumoural hypointensity had the highest OR, followed by 
the tumour margin.

Construction of the nomogram model
A nomogram risk-prediction model was established 
based on the variables in the combined model (Fig.  6). 
The C-index of the nomogram model was 0.79 (95% CI: 
0.68–0.83). The calibration curve showed that the pre-
dicted probability from the nomogram model was close 

log(p/(1− p)) = −8.8963+ 0.7930× tumourmargin+ 2.1700× peritumoural hypointensity

− 11.3837×HBP_logarithm.GLSZM_SmallAreaLowGrayLevelEmphasis (SALGLE)

− 9.3923× PP_wavelet.GLCM.HLL_IDN

+ 17.1969× DWI_wavelet.FirstOrder.HLL_Skewness

+ 0.0400×HBP_shapebased_MeshVolume

+ 0.0804 × DWI_squareRoot.GLSZM_SZN

+ 0.2524 × DWI_logarithm.GLSZM_SAHGLE

+ 0.0017× T2WI_wavelet.Firstorder.HLL_Maximum
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to the actual probability (Fig. 7). The mean absolute error 
between the predicted probability and the actual occur-
rence of MVI was 0.03, which indicated that the nomo-
gram model had good calibration.

Performance of the models
The performances of the three models for predicting 
MVI are shown in Table  5. The AUC of the combined 
model was higher than that of the clinicoradiological 
and radiomics models in the training set (0.841, 0.782, 
and 0.715, respectively). Similar results were observed 
in the validation set, with AUC values of 0.826, 0.755, 
and 0.708, respectively. The AUC of the radiomics 
model was higher than that of the clinicoradiological 

Table 3  The univariate logistic regression analysis of each 
variable with OR in the validation set of the clinicoradiological 
model

OR odds ratio, CI confidence interval, AST aspartate-aminotransferase, ALB 
albumin, PT prothrombin time

OR 95% CI P value

Tumour capsule 0.55 0.30–0.98 0.006

Tumour margin 4.46 1.49–13.35 0.006

Peritumoural hypointensity 6.15 1.64–23.06 0.006

Tumour size 1.29 0.96–1.73 0.082

AST 0.98 0.94–1.01 0.143

ALB 0.90 0.79–1.04 0.095

PT 0.74 0.53–1.01 0.055

Fig. 3  The correlation coefficient heatmap for clinicoradiological variables and radiomics features selected in the radiomics model. The larger the 
value or the darker the color is, the stronger the correlation is



Page 8 of 13Lu et al. BMC Medical Imaging          (2022) 22:157 

model in both the training and validation sets. The 
combined model had the highest sensitivity for pre-
dicting MVI (81.43% in the training set and 90.89% in 
the validation set); the clinicoradiological model had 
the highest specificity (91.67% in the training set and 
92.07% in the validation set).

Discussion
In previous studies, the radiomics features from T2WI, 
T1WI, DWI, apparent diffusion coefficient (ADC) 
map, AP, and PP had specific values for predicting 

MVI [27–30]. However, there are few radiomics stud-
ies based on Gd-EOB-DTPA-enhanced MRI [21–25]. 
Although some studies selected features from the HBP 
and achieved excellent performance [21–23], mod-
els composed of features from multiple sequences of 
Gd-EOB-DTPA-enhanced MRI lacked discusssion. 
This study selected radiomics features from multi-
ple sequences and used logistic regression to establish 
models for predicting MVI in HCC. Contrary to previ-
ous studies [21–23], the combined model of this study 
used the LASSO algorithm to select features from the 

Fig. 4  LASSO algorithm used for the combined model. a The variation of the coefficients of the variables with the penalty coefficient (λ) b Use 
tenfold cross-validation to select λ. When the binomial deviation was the smallest (minimum standard), nine nonzero coefficients were determined

Fig. 5  Forest plot showing the univariate logistic regression analysis of each variable with OR in the validation set of the combined model
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Fig. 6  Construction of the nomogram. The point of each variable was added up to obtain the total points. The total point corresponded to the risk 
probability of predicting MVI. The nomogram can be used to predict the risk probability of MVI for each patient

Fig. 7  Calibration curve of the nomogram model
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combined dataset to avoid the collinearity between the 
clinicoradiological variables and radiomics features. We 
also used a correlation coefficient heatmap to show the 
possible correlation between the clinicoradiological vari-
ables and radiomics features.

The results showed that, among the variables included 
in the clinicoradiological model, only the tumour margin 
and peritumoural hypointensity in the HBP were stable 
in the combined model. In the radiomics model, the SZN 
from DWI, SAHGLE, and Maximum from T2WI were 
important radiomics features in the combined model.

In both the clinicoradiological model and the com-
bined model, the OR for the tumour margin and peritu-
moural hypointensity were significantly higher than that 
of the other variables in the validation set. Several stud-
ies have demonstrated that peritumoural hypointensity 
in the HBP is an independent risk factor for predicting 
MVI [26, 31]. Peritumoural hypointensity may be related 
to peritumoural hemodynamic changes caused by the 

tumour thrombus obstructing the microbranches of the 
portal venous vein [31]. Chou et al. [32] studied 60 HCC 
specimens with histopathological evidence of MVI, and 
40 showed evidence of focal extra-nodular extension. In 
36 of 40 HCC specimens with focal extra-nodular exten-
sion, non-smooth margins on CT images were located in 
the same octant as MVI in the histopathological speci-
mens. This finding is consistent with our research and 
other radiological studies, which reported that the non-
smooth tumour margin is an MVI-related risk factor [33, 
34].

Some studies have shown that tumour size and an 
incomplete tumour capsule are also independent risk 
factors for predicting MVI [35, 36]. These two variables 
were essential in the clinicoradiological model in this 
study, but they were not included in the combined model. 
The high correlation between radiomics features and the 
two radiological variables may explain this finding. The 
correlation coefficient heatmap showed that the tumour 
size and tumour margin are highly correlated with some 
radiomics features.

The OR of the SZN from the DWI was higher than 
that of other radiomics features in both the radiomics 
model and the combined model in the validation set. 
SZN measures the variability of size zone volumes in the 
image. Jiang et al. [37] found that the SZN from the PP of 
enhanced CT is an essential feature for predicting MVI 
in HCC. Ma et al. [38] reported that the Maximum from 
the AP and delayed phase of CT was another important 
MVI-predicting factor. Maximum is the maximum grey 
level intensity within the ROI. Although the above radi-
omics features were obtained from contrast-enhanced 
CT, the SZN and Maximum may be relatively stable for 
predicting MVI. Most of the radiomics features in the 
radiomics model and the combined model are matrix-
based texture features, and texture features can reflect 
the heterogeneity of the tumour; therefore, MVI may be 
related to the heterogeneity of the tumour [31, 39].

Multifocality was not a significant factor affecting MVI 
in this study. Thus, the cases with multiple lesions were 
not excluded in this study. We only selected the largest 
lesion to draw ROI, which may confound the possible 
effects of multiple center carcinogenesis on outcomes. 

Table 4  The univariate logistic regression analysis of each 
variable with OR in the validation set of the radiomics model

DV measures the variance in dependence size in the image; ID normalizes 
the difference between the neighboring intensity values; Range represents 
the range of gray values in the ROI; SZN measures the variability of size zone 
volumes in the image; SAHGLE measures the proportion in the image of the 
joint distribution of smaller size zones with higher gray-level values; Maximum is 
the maximum gray level intensity within the ROI

OR odds ratio, CI confidence interval, TP transitional phase, PP portal venous 
phase, T1WI T1-weighted imaging, DWI,diffusion-weighted imaging, T2WI 
T2-weighted imaging, GLDM grey-level dependence matrix, GLCM grey-level 
co-occurrence matrix, GLSZM grey-level size-zone matrix, DV dependence 
variance, IDN inverse difference normalized, SZN size zone non-uniformity, 
SAHGLE small area high gray level emphasis

Sequence Feature OR 95% CI P value

TP Wavelet.GLDM.LLH_DV 1.39 (1.01–1.91) 0.041

PP GLCM_IDN 1.54 (1.11–2.14) 0.008

T1WI Exponential.GLDM_DV 1.19 (1.01–1.40) 0.028

DWI Wavelet.FirstOrder.LLL_Range 1.09 (0.46–2.58) 0.851

DWI Wavelet.GLSZM.HLL_SZN 2.25 (0.83–6.07) 0.107

DWI SquareRoot.GLSZM_SZN 9.12 (1.82–15.78) 0.004

DWI Logarithm.GLSZM_SAHGLE 1.04 (1.02–1.06) 0.030

T2WI Wavelet.FirstOrder.HLL_Maxi‑
mum

2.70 (1.16–6.28) 0.012

Table 5  The performances of the models in predicting MVI

AUC​ area under the ROC curve, CI confidence interval, Sen sensitivity, Spe specificity

Training set Validation set

AUC​ 95% CI Sen (%) Spe (%) P value AUC​ 95% CI Sen (%) Spe (%) P value

Clinicoradiological model 0.715 0.678–0.745 51.88 91.67 0.003 0.708 0.677–0.719 50.33 92.07 0.041

Radiomics model 0.782 0.734–0.801 63.71 82.80 0.012 0.755 0.721–0.786 84.50 80.78 0.012

Combined model 0.841 0.822–0.867 81.43 72.76 0.007 0.826 0.798–0.838 90.89 69.85 0.026
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The prediction model constructed by Yang et  al. [21], 
which combined AFP, non-smooth tumour margin, peri-
tumoural enhancement, HBP T1WI signature, and HBP 
T1 map signature based on Gd-EOB-DTPA-enhanced 
MRI, reached an AUC of 0.861 in the validation set. The 
AUC of the combined model of this study in the vali-
dation set was 0.826, which was lower than that of the 
above study [21]. This might be explained by the fact that 
our study only extracted features from the largest section 
of the tumour because of the huge workload. Therefore, 
some additional information might have been missed. 
Nevertheless, combining different clinical or radiologi-
cal variables has a significant effect on the outcomes. 
In addition, the combined model in our study included 
variables selected from the combined data, and was 
thus different from other combined models constructed 
by merging the variables included in a clinical model 
or radiomics model. Gitto et  al. [40] found that 3D and 
2D MRI-based radiomics analyses of cartilaginous bone 
tumours provide similar rates of stable features, and the 
2D approach is easier to implement in clinical practice. 
Thus, single segmentation of HCC may provide relatively 
equivalent value for predicting MVI, which may help 
reduce the workload. Although we used one section to 
extract radiomics features, the nomogram risk-predic-
tion model based on the combined model still showed 
good discrimination and value.

This study has some limitations. First, this study used 
a small sample size, and it was a retrospective, single-
centre study without external validation and lacked 
robustness. Second, this study delineated the ROI at the 
maximum cross-section of the tumour other than the 
whole tumour volume, and manual delineation could be 
affected by the subjectivity of radiologists. Third, we only 
assessed the intra-observer agreement, and the failure to 
evaluate inter-observer agreement might affect the stabil-
ity of the results, given that different observers are sub-
jective in delineating the ROI. Fourth, this study selected 
essential features from all the sequences but did not 
compare the value of a single sequence or the combina-
tion of different sequences, as the features selected from 
a single sequence might not always have value in a model 
based on multiple sequences and the features in a multi-
sequence model may not be stable in a single-sequence 
model [29].

Conclusions
In summary, two semantic features, peritumoural 
hypointensity and tumour margin, which are highly 
correlated with MVI combined with multi-sequences 
radiomics features have potential value in predicting 
MVI preoperatively, and the nomogram based on the 

combined variables can intuitively provide the probabil-
ity of MVI and guide clinical decisions.
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