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Abstract 

Objectives: Accurate contouring of the clinical target volume (CTV) is a key element of radiotherapy in cervical 
cancer. We validated a novel deep learning (DL)‑based auto‑segmentation algorithm for CTVs in cervical cancer called 
the three‑channel adaptive auto‑segmentation network (TCAS).

Methods: A total of 107 cases were collected and contoured by senior radiation oncologists (ROs). Each case con‑
sisted of the following: (1) contrast‑enhanced CT scan for positioning, (2) the related CTV, (3) multiple plain CT scans 
during treatment and (4) the related CTV. After registration between (1) and (3) for the same patient, the aligned 
image and CTV were generated. Method 1 is rigid registration, method 2 is deformable registration, and the aligned 
CTV is seen as the result. Method 3 is rigid registration and TCAS, method 4 is deformable registration and TCAS, and 
the result is generated by a DL‑based method.

Results: From the 107 cases, 15 pairs were selected as the test set. The dice similarity coefficient (DSC) of method 1 
was 0.8155 ± 0.0368; the DSC of method 2 was 0.8277 ± 0.0315; the DSCs of method 3 and 4 were 0.8914 ± 0.0294 
and 0.8921 ± 0.0231, respectively. The mean surface distance and Hausdorff distance of methods 3 and 4 were mark‑
edly better than those of method 1 and 2.

Conclusions: The TCAS achieved comparable accuracy to the manual delineation performed by senior ROs and was 
significantly better than direct registration.
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Highlights

• Deep learning has been used for the automatic con-
touring in cervical cancer.

• Adaptive radiotherapy responds to the morphologic 
changes and tumor anatomy.

• CT series acquired during treatment is required for 
creating new radiation plans.

• Automatically-obtained contouring has been compa-
rable to manual delineation.
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• The planning CT and corresponding contour can be 
used on the new CT series.

Background
Cervical cancer is one of the most common cancers in 
worldwide, with incidence and mortality rates that rank 
fourth among all malignant tumors in females. Over 
500,000 cases of cervical cancer are diagnosed each year, 
and most of these cases are in developing countries [1]. 
Because of the common use of cervical cancer screening 
in Western countries, the incidence of cervical cancer in 
these regions is decreasing slowly. However, in China, 
the incidence of cervical cancer continues to increase 
[2]. External beam radiation therapy, as well as brachy-
therapy, is an important component of cervical cancer 
therapy [3]. Radiotherapy can be used as a post-operative 
adjuvant treatment or as radical treatment, involving 
either internal or external irradiation.

Accurate contouring of the clinical target volumes is a 
key element of radiotherapy and is fundamental to maxi-
mizing the therapeutic ratio. However, the late toxicity 
rates associated with pelvic chemoradiation for cervical 
cancer are approximately 6%–23%. Therefore, reduc-
ing toxicity is critical, since some patients are young and 
toxicity may lead to many years of potentially debilitating 
conditions, such as incontinence, fistulae and malabsorp-
tion [4, 5].

The CTVs of cervical cancer are typically manually 
contoured and confirmed by ROs based on gynecological 
examination and surgery reports, as well as CT, magnetic 
resonance imaging (MRI) and other imaging. The defini-
tion of the target area depends on the clinician’s under-
standing and experience [6–8]. The quality, efficiency 
and repeatability of manual contouring vary among dif-
ferent ROs, and the time spent on contouring a patient 
is affected by the proficiency of ROs. In our clinic, tar-
get definition typically takes between 20 and 60  min. 
Automatic segmentation has been demonstrated to be 
an effective method to improve the consistency of con-
touring and to reduce operator effort [9, 10]. Currently, 
atlas-based automatic segmentation algorithms are 
widely used in commercial treatment-planning software. 
However, for organs and tumors that lack clearly defined 
boundaries or those with complex shapes, the results of 
segmentation are often unsatisfactory [11–13].

The DL-based method especially using convolutional 
neural network (CNN) has been proven as a promis-
ing technology for medical image segmentation. These 
DL-based segmentation algorithms have demonstrated 
significant advantages over classical medical image seg-
mentation methods [14, 15]. Several groups have used 
DL to segment tumor targets that are not amenable to 

accurate contouring by traditional automatic methods. 
For example, Lin et al. contoured the gross tumor volume 
(GTV) of primary nasopharyngeal carcinomas based 
on MR images using a three-dimensional CNN. The 
authors reported an agreement between the algorithm 
segmentation result and the manually segmented refer-
ence dataset, in terms of DSC, of 0.79. In comparison, the 
between-manual-operator DSC showed a lower agree-
ment, of 0.74. [16]. Men et al. applied a deep CNN to CT 
datasets of nasopharyngeal carcinoma cases for the seg-
mentation of the primary tumor GTV, metastatic lymph 
node GTV, and the CTV. The DSC values were 0.809, 
0.623 and 0.826, respectively, which compare favorably 
with both manual evaluations and the previously applied 
automatic methods [17]. Trebeschi et al. applied the DL 
method to the segmentation of rectal cancer from mul-
tiparametric MR images, and the DSC was 0.69 [18].

The purpose of this work was to determine the per-
formance of the DL-based method in terms of accuracy, 
consistency and workflow acceleration for the auto-
contouring and assisted manual contouring for adaptive 
radiotherapy in cervical cancer.

Methods
Dataset
Datasets were collected from 66 cervical cancer patients 
who received local radiotherapy at the Radiotherapy 
Department of the ****** from January 2017 to June 2019, 
22 patients received radical radiotherapy and 44 patients 
received post-operative adjuvant radiotherapy. Each 
patient had contrast-enhanced CT scans for positioning 
and planning, and multiple plain CT scans were acquired 
during the treatment.

The datasets for each patient consisted of the follow-
ing: (1) contrast-enhanced CT scan for positioning and 
(2) the related CTV contour, as well as (3) multiple plain 
CT scans during treatment and (4) the related CTV con-
tour. After registration between the contrast-enhanced 
CT and plain CT scan for the same patient, a total of 
107 cases were collected. This group included 30 radical 
radiotherapy cases and 77 post-operative adjuvant radio-
therapy cases. In the 107 pairs of plain CT and contrast-
enhancement CT scans, 92 pairs were randomly selected 
for the training set and the remaining 15 pairs were used 
as the test set. Among the 15 test set cases, 7 cases were 
radical radiotherapy and 8 cases were postoperative adju-
vant radiotherapy.

The distributions of patients and groups are shown in 
Fig. 1.

The CT scans covered the drainage area of pelvic lymph 
nodes, from L3 spine to the middle of the femur. The slice 
thickness of all scans is 3 mm. Based on the planning CT 
and during-treatment CT, the ROs contoured the clinical 
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target area of conformed to the Radiation Therapy Oncol-
ogy group (RTOG) [19] cervical cancer post-operative 
adjuvant radiotherapy target contouring proposal, the 
Japan Clinical Oncology Group (JCOG) [20] cervical 
cancer definitive radiotherapy external radiation target 
contouring standard and the International Federation 
of Gynecology and Obstetrics (FIGO) 2018 guide [21]. 
Definitive external pelvic irradiation included contour of 
the pelvic lymph drainage area dCTV1, as well as the par-
ametrial area dCTV2, the GTV (including the primary 
focus and the pelvic positive lymph nodes), the cervix, 
the uterus, the upper third of the vagina, and the para-
metrial and pelvic lymph drainage area (not including 
the drainage area of inguinal lymph nodes and paraaortic 
lymph nodes). For post-operative auxiliary pelvic external 
irradiation, the pelvic lymph drainage area pCTV1 was 
delineated, including the pelvic lymph drainage area, the 
vaginal wall, and the upper third of the vagina. The utero-
sacral ligament, presacral lymph nodes and other poten-
tially involved lymph nodes, and sufficient vaginal tissues 
(at least 3 cm below the margin) were also included. If no 
enlarged lymph nodes were detected in images, the exter-
nal iliac lymph nodes, the internal iliac lymph nodes, the 

obturator lymph nodes and the presacral lymph nodes 
were included. In cases with a high risk of lymph node 
metastasis (such as in cases with a large tumor volume as 
well as suspected or determined low true pelvis internal 
lymph node metastasis), the total iliac lymph node area 
was also included; if total iliac or paraaortic lymph node 
metastasis was detected, the clinical target was extended, 
including the paraaortic lymph nodes. The upper bound-
ary reaches the level of renal vessels and may need to 
extend further in the cranial direction to include the 
involved lymph nodes. For patients with infiltration of 
the lower third of the vagina, the bilateral inguinal lymph 
nodes were also covered.

We used the CT series obtained during treatment to 
simulate the adaptive radiotherapy process retrospec-
tively; the ROs contoured the clinical target volume on 
the during-treatment CT as well as on the planning CT. 
The contouring results were reviewed by the experts 
and then entered into this study. For simplicity, we did 
not distinguish between definitive cases and post-op 
cases, and the dCTV1 and pCTV1 were both treated as 
CTV1. The three input channels are the plain CT, con-
trast-enhanced CT and corresponding CTV contours. As 

Fig. 1 Details of the CT datasets
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shown in Fig. 2, the contrast-enhanced CT provides more 
details of organs, which can improve the performance of 
the segmentation network. The input CTV contours are 
0 and 1 masks, which can provide initial weights of the 
input CT scans and help the segmentation network to 
locate the CTV.

Four methods for CTV contouring on the during‑treatment 
CT series
To create CTV contour on the during-treatment CT, the 
simplest approach is by directly copying the CTV con-
tours from the planning CT to the during-treatment CT, 
either by a rigid registration (RR) or deformable registra-
tion (DR).

In this manuscript. we proposed a TCAS method that 
uses information of the planning CT and the correspond-
ing CTV contour. In this method, registration between 
the planning CT and the during-treatment CT is applied 
to align the CT series and the corresponding contour. 
The aligned planning CT (i.e. the contrast-enhanced CT) 
and the corresponding CTV contour are then used as 
another two channels of input to the DL network. Finally, 
the output of the network is the estimated CTV contour 
on the during-treatment CT (i.e. plain CT). The method 
that uses RR to align the planning CT and correspond-
ing CTV contour is called TCAS + RR, while the method 
that uses DR for this alignment step is called TCAS + DR. 
The workflows of the four methods are shown in Fig. 3.

The only difference between the TCAS + RR and 
TCAS + DR is the registration algorithm component. For 
TCAS + RR, the algorithm first optimizes a 4 × 4 trans-
formation matrix, which includes the 3 × 1 translation 
part and the 3 × 3 rotation part from the two images. This 
matrix is then applied on the image and the contour of 
the contrast-enhanced CT to create the aligned contrast-
enhanced CT and aligned CTV on the contrast-enhanced 

CT. For TCAS + DR, the registration algorithm generates 
deformation vector fields, which have three components: 
fx, fy and fz. The field is then similarly applied on the 
image and contour of the contrast-enhanced CT.

DL automatic segmentation network
DL-based methods require an initial training stage dur-
ing which the neural network is provided with a large 
number of labeled 3D images. The CTV1 model was 
trained and validated using the 92 datasets in the training 
and validation group.

A three-dimensional VB-Net was used in TCAS + RR 
and TCAS + DR, but each implements a different spatial 
sampling regime. While the traditional V-Net algorithm 
[22] has achieved good results in many automatic seg-
mentation studies, this algorithm often requires train-
ing a large model with a large number of parameters. A 
V-Net model file is generally about 250  MB, which not 
only leads to parameter redundancy, a waste of stor-
age space and a reduction of calculation efficiency, but 
it also hinders the promotion and usage of automatic 
segmentation.

VB-Net, a new type of network structure, is proposed 
as an improvement over V-Net. The structure of VB-
Net is shown in Fig.  4. The residual module in V-Net 
was designed using the concept of model compression. 
The convolution, normalization and activation layers in 
V-Net were replaced by a bottleneck structure in VB-
Net. A bottleneck in a neural network is a layer with 
fewer neurons than its adjacent layers; this bottleneck 
encourages the network to compress feature represen-
tations to best fit in the available vector space. The bot-
tleneck structure consists of three convolutional layers; 
the first and third convolutional layers, which use the 
unit convolution kernel, match the second (bottleneck) 
convolutional layer with the respective dimensions of 

Fig. 2 Difference of plain CT (left) and contrast‑enhanced CT (right)
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the preceding and succeeding layers. The second convo-
lution layer performs spatial convolution on the feature 
image that is reduced in dimension by the first convolu-
tion layer. Since spatial convolution is performed on the 
reduced dimension feature image, the number of model 
parameters may be significantly reduced, and this may 
lead to increased efficiency.

In pre-processing, global normalization was used for 
the plain CT and contrast-enhanced CT. We chose win-
dow level 40 and window width 700. The minimum and 
maximum CT values were − 310 and 390, respectively. 
CT values between these values were linearly normalized 
into the range [− 1, 1]. CT values less than the minimum 
were set to -1 and those greater than the maximum were 
set to + 1. For coarse model training, the images were 
resampled to [5  mm, 5  mm, 5  mm]. During fine model 
training, the images were resampled to [1  mm, 1  mm, 
1  mm]. No data augmentation was applied. During 
post-processing, the maximum connected domain was 

extracted for CTV1. The learning rate is 1e-4, batch size 
is 6, patch size is [96, 96, 96] and the optimizer is Adam. 
The training hardware was Intel Xeon E5-2683 v3 with 
64 GB memory and 4 NVIDIA Titan Xp. We trained 1000 
epochs for 13 h. The predicting time was less than 2 s for 
one case. DSC was used for validation performance. The 
DSCs of TCAS + RR and TCAS + DR were 0.89 ± 0.02 
and 0.90 ± 0.02, respectively.

Registration methods
Image registration was performed for the two CT images 
acquired from the planning stage and the treatment stage. 
Generally, rigid and non-rigid registrations were sequen-
tially performed and we used our in-house registration 
package. The in-house rigid registration is an optimiza-
tion-based registration method. By using gradient decent 
optimization, the rigid transformation (translation and 
rotation) is estimated by minimizing the image dissimi-
larity. Since it is a mono-modal registration problem, the 

Fig. 3 Workflows of four methods
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image dissimilarity metric is defined by sum of squared 
distance, and tri-linear interpolation is applied during 
optimization. To improve the efficiency, all the optimiza-
tion procedures are implemented by using CUDA so that 
the registration efficiency can be significantly improved. 
For RR, a longitudinal semantic-aware registration 
algorithm was leveraged by two steps: (1) preprocess-
ing the CT images of different time points and enhanc-
ing the salient anatomy information (e.g., bone area), 
and (2) performing longitudinal registration by image 
and semantic information using gradient decent opti-
mization algorithms. A rigid transformation matrix was 
then obtained by the estimated translation and rotation 
parameters in 3D image space, and the CT image pair is 
globally aligned. After rigid registration, non-rigid regis-
tration was performed to further estimate the local defor-
mations. An unsupervised DL framework was applied 
to directly estimate the deformation field from the two 
images after rigid registration [23]. In the training stage, 
the registration network is trained using the loss func-
tion defined by image dissimilarity (e.g., mean square 
error and normalized cross correlation) and regulariza-
tion [24]. To further improve the smoothness and regis-
tration consistency, a new training strategy was used by 
introducing both pair-wise and group-wise deformation 
consistency constraints [25], in addition to the conven-
tional similarity and topology constraints. Specifically, 
losses enforcing both inverse-consistency for image pairs 
and cycle-consistency for image groups were applied 

for training. After the model training, in the application 
stage, we directly obtain the deformation field by input-
ting the to-be-aligned image pair into the trained model; 
the registered CT image can be obtained by applying the 
rigid and non-rigid transformations.

Qualitative and quantitative evaluation of algorithm 
accuracy
The CTV contour of the test group was created using 
the four methods described above: RR, DR, TCAS + RR 
and TCAS + DR. The algorithm accuracy was evaluated 
both qualitatively and quantitatively. For the RR and DR 
methods, RR and DR were applied to the test group, and 
CTV contours were generated according to the regis-
tration results. For the other two methods (TCAS + RR 
and TCAS + DR), the trained DL-based automatic seg-
mentation CTV1 model was applied to the test group. 
We evaluated the segmentation using the dice similarity 
coefficient (DSC) [26], mean surface distance (MSD) [27] 
and the Hausdorff distance (HD) [28]. A better algorithm 
result will provide higher DSC and lower MSD/HD.

Results
Qualitative evaluation of algorithm accuracy
To evaluate algorithm accuracy, we randomly selected 
one case from the test group for analyses and performed 
contouring using each of the four methods. The contour 
results from the different four methods are shown in 
Fig. 5. Five typical slices with CTV contour were chosen 

Fig. 4 The structure of VB‑Net



Page 7 of 10Ma et al. BMC Medical Imaging          (2022) 22:123  

to qualitatively evaluate the algorithm accuracy. The con-
tour using TCAS + RR and TCAS + DR is significantly 
better than that of RR or DR.

Quantitative evaluation of algorithm accuracy
We next used each of the four methods to generate CTV 
on plain CT findings in the test group, and the pCTV1 
DL model was applied to the postoperative test group. 
The DSC, MSD and HD values were calculated for each 
model and are shown in Table  1. T test was used to 
compare between the groups. P values of DSC, HD and 
MSD were calculated separately between TCAS + DR 
and other methods. The performance of DSC between 
TCAS + DR and RR/DR was significantly different 
(p < 0.05). However, the sample size of the test group was 
the limitation of the statistical tests.

Discussion
The typical CTVs for cervical cancer are usually large. 
The CTV position and shape are greatly influenced by the 
fill state of bladder, the rectum and other adjacent organs, 
which challenges the training of DL-based automatic seg-
mentation models [27].

This study verified the clinical applicability of the DL-
based automatic segmentation algorithm to evaluate the 
target area of cervical cancer in ART. The adaptive auto-
segmentation algorithm achieved comparable accuracy 
to the manual delineation performed by senior ROs and 
was significantly better than direct registration.

In view of the high HD values observed in this study, 
we selected some of the results to analyze the differ-
ences between the automatic segmentation output 
and the reference contours. The inconsistencies were 

Fig. 5 Contour of a representative test case using the five methods. Each column represents a different slice. The ground truth is in red, and the 
contour using the different methods is in the indicated colors. RR: Green, DR: blue, TCAS + RR: magenta, TCAS + DR: cyan

Table 1 Quantitative evaluation of algorithm accuracy (in the test group)

Method DSC P value MSD (mm) P value HD (mm) P value

RR 0.82 ± 0.04 2.04e−29 2.20 ± 0.75 0.018 8.23 ± 2.39 0.037

DR 0.83 ± 0.03 1.14e−6 2.03 ± 0.73 0.057 8.01 ± 2.44 0.065

TCAS + RR 0.89 ± 0.03 0.944 1.46 ± 0.84 0.997 6.14 ± 1.89 0.862

TCAS + DR 0.89 ± 0.02 1.45 ± 0.83 6.28 ± 2.31
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generally located around small lymph nodes at the level 
of the femoral head. During manual contouring process, 
the diagnosis information is used to determine whether 
these lymph nodes should be included. Therefore, per-
formance could potentially be improved by the follow-
ing: a) increasing the diversity of the training data (with 
and without included lymph nodes) and b) improving the 
consistency of the training data (for example, all lymph 
nodes are included or none are included). For example, 
Meng et  al. [29] decreased the HD value of automatic 
segmentation result by post-processing. The HD value 
of automatic liver segmentation decreased from 89.2 to 
29.2  mm, and the HD value of automatic liver cancer 
segmentation decreased from 65.4 to 7.7 mm. The direct 
HD value is generally used to represent the maximum 
difference between two contours and is very sensitive to 
abnormal contouring [30]. For automatic segmentation 
of the clinical target area, follow-up manual contouring 
and confirmation are generally needed, and these abnor-
mal points can be easily modified. The use of MSD or 
95% HD value may be better for the clinical evaluation 
of automatic segmentation results. In previous stud-
ies [23, 29] 95% HD was used to evaluate the accuracy 
of automatic segmentation, and the results are in the 
order of several millimeters. We calculated 95% HD val-
ues in the test group: 6.2 ± 2.6 mm, 13.7 ± 10.5 mm and 
5.4 ± 1.9  mm for dCTV1, dCTV2 and pCTV1, respec-
tively. For dCTV2, the 95% HD, like the HD, was rela-
tively high. Therefore, the root cause of interoperator 
variation in contour defining needs to be addressed.

We also evaluated the consistency of the automatic seg-
mentation and manual contouring results in the evalua-
tion dataset. No significant difference was observed for 
dCTV1. However, the automatic segmentation results for 
dCTV2 and pCTV1, which were similar to the manual 
contours of senior ROs, were better than manual con-
tours of the junior RO and one of the intermediate level 
ROs. In the current clinical workflow, manual contour-
ing is typically first performed by junior and intermediate 
ROs, after which the contours are reviewed and modified 
by senior ROs. Improving the target contouring skills of 
junior personnel is critical. Importantly, our results sug-
gest that the DL model will be useful to assist junior and 
intermediate ROs to improve the consistency and accu-
racy of their contouring, therefore reducing the time 
required by senior ROs to modify target areas.

The time required for manual contouring of a single 
target area was as great as 48 min in one case. It depends 
on the complexity of the target area, the size of the target 
area and the experience of the ROs. In comparison, the 
DL-based automatic segmentation method requires only 
a fraction of a second. In this regard, the automatic seg-
mentation algorithm has a clear and significant advantage 

over manual contouring. The use of DL-based automatic 
segmentation model as an assisting tool will significantly 
reduce the time required for contouring the target area. 
In the follow-up study, we will evaluate and compare the 
time required for contouring by junior, intermediate and 
senior ROs with the help of DL-based automatic with 
the time required for manual contouring. Our study fur-
ther indicates that DL-based autocontouring appears to 
be particularly well suited for cervical cancer evaluation, 
since the large CTV spans many CT slices, which would 
each need to be manually contoured. The sample size of 
the training and test groups is a limitation of the current 
research; we will evaluate the significance of the pro-
posed method in large public datasets [31–33] and more 
patient data in the future.

The subjective evaluation results of ROs in the evalua-
tion group show that for most autosegmentations, slight 
modifications by ROs are required before clinical use. 
These modifications are mostly because the automatic 
segmentation algorithm is currently not capable of fol-
lowing known fixed rules relating to specific boundaries. 
We believe these limitations will be addressed by includ-
ing identified normal tissues and boundaries in the train-
ing data, so that the neural network is able to learn more 
general anatomic spatial relationships. Alternatively, a 
hybrid algorithm that combines DL with logical target 
area contouring rules can be developed.

Conclusions
This study verifies the feasibility of application of the 
DL-based automatic segmentation method for cervi-
cal cancer radiotherapy in clinical practice. The results 
from automatic segmentation were consistent with that 
of reference contouring. Through comparative analysis of 
automatic segmentation results and manual contouring 
performed by three different groups of ROs, we conclude 
that the automatic segmentation results are in some cases 
equivalent to those of manual contouring by senior ROs. 
In addition, the time required for the automatic method 
is significantly shorter than that for manual contour-
ing. For dCTV2, because of the small range of the target 
area and poor consistency of manual contouring results 
in the training and validation groups, the automatic seg-
mentation results were relatively poor compared with the 
reference contouring. Similarly, the difference between 
manual contouring by different ROs was also large for 
dCTV2.

Based on the evaluation of nine ROs, the automatic 
segmentation results of most cases can be clinically 
applied, with only a few modifications required before 
application. In clinical application, implementation of the 
algorithm has reduced the time required for contouring 
and improved our clinical efficiency.
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