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Abstract 

Covid-19 is a disease that can lead to pneumonia, respiratory syndrome, septic shock, multiple organ failure, and 
death. This pandemic is viewed as a critical component of the fight against an enormous threat to the human 
population. Deep convolutional neural networks have recently proved their ability to perform well in classification 
and dimension reduction tasks. Selecting hyper-parameters is critical for these networks. This is because the search 
space expands exponentially in size as the number of layers increases. All existing approaches utilize a pre-trained or 
designed architecture as an input. None of them takes design and pruning into account throughout the process. In 
fact, there exists a convolutional topology for any architecture, and each block of a CNN corresponds to an optimiza-
tion problem with a large search space. However, there are no guidelines for designing a specific architecture for a 
specific purpose; thus, such design is highly subjective and heavily reliant on data scientists’ knowledge and expertise. 
Motivated by this observation, we propose a topology optimization method for designing a convolutional neural 
network capable of classifying radiography images and detecting probable chest anomalies and infections, includ-
ing COVID-19. Our method has been validated in a number of comparative studies against relevant state-of-the-art 
architectures.
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Introduction
COVID-19 is an infectious disease caused by severe 
acute respiratory syndrome [1] and is referred to as the 
coronavirus due to its appearance. The war on COVID-
19 has pushed researchers worldwide to examine, com-
prehend, and invent novel diagnostic and treatment 
methods in order to eliminate this generation’s greatest 
menace. Indeed, the chest X-ray is one of the most com-
monly used radiological tests for diagnosing a variety of 
lung diseases. Indeed, numerous X-ray imaging studies 
are archived and aggregated in many image archiving 
and communication systems throughout several modern 

hospitals. An open question arises: how can a database 
holding priceless image data be used to help the develop-
ment of data-starved deep learning models for computer-
assisted diagnostic systems? There are few published 
studies devoted to detecting the chest radiograph imag-
ing view [2]. Deep learning has made remarkable strides 
in a variety of computer vision challenges. During the 
last decade, deep learning has taken important steps in 
several domains such as transportation [46, 51], emer-
gency prediction [49, 50], Computer Vision Applications 
including the classification of natural and medical images 
[2, 3]. This accomplishment has inspired numerous 
researchers to use deep convolutional neural networks 
to diagnose chest diseases in chest radiography (DCNNs) 
[53]. Despite CNNs’ great performance, their architec-
tural design remains a serious challenge for researchers 
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and practitioners. The CNN architecture is defined by 
a large number of hyperparameters, which need to be 
fine-tuned to optimize the design. Several CNN designs 
have been presented over the last eight years by expe-
rienced engineers at well-known organizations like 
Google. ResNet [4], AlexNet [4] and VGGNet [5] are a 
few examples. Due to the fact that these structures were 
created manually, researchers in the fields of optimiza-
tion [45, 48] and machine learning [47] hypothesized that 
improved architectures could be discovered using auto-
mated methods. In fact, back propagation learning has 
often been shown to be inefficient in multi-layered net-
works due to the method being trapped in local minima 
by gradient descent. Indeed, some researchers [6, 7] have 
proposed novel learning approaches, most frequently 
layer per layer, to overcome the practical limits of back-
propagation and to maximize the internal representation 
potential of deep networks. All existing methods employ 
trained or designed architecture as input. None of them 
takes into account design and pruning throughout the 
process. In fact, a convolutional topology exists for 
every architecture, and each CNN block corresponds to 
an optimization problem with a large search space [52]. 
However, there are no guidelines for designing a par-
ticular architecture for a particular purpose; as a result, 
such design is highly subjective and heavily depend-
ent on the knowledge and experience of data scientists. 
Our goal is to define an automatic method to optimize 
the hyper-parameters of DCNNs, particularly those 
controlling their topology. The target is to optimize the 
number of hidden layers and the number of their associ-
ated neurons. Each layer has its own hyper-parameters; 
hence, the size of the search space increases exponen-
tially with the number of layers. After finding the opti-
mal CNN topologies, we determine the optimal number 
of neurons for each of the hidden layers before proceed-
ing with the learning for the next layer. This procedure 
enables the search space’s cardinality to be reduced. Our 
study finds the appropriate number of neurons per layer 
after the design of a CNN architecture in order to cre-
ate a suitable architecture with the least amount of com-
plexity for chest X-ray and CT Image Classification based 
on COVID-19 Diagnosis. The main contributions of our 
paper could be summarized as follows:

•	 Genetic algorithms are used to design CNN architec-
tures that are dependent on the following: (1) hyper-
parameter settings; and (2) the graph topologies of 
convolution nodes.

•	 For the first time, an evolutionary method that com-
bines CNN architecture generation with neural net-
work pruning for resizing a deep learning model by 
combining the removal of ineffective components.

•	 Examine the usefulness and adaptability of the gener-
ated optimized architecture for X-ray and CT image 
classification.

Related work
Topology optimization for deep neural networks
In recent years, evolutionary optimization for CNN 
design has been successfully used for many machine 
learning tasks. According to previous research, this suc-
cess can be attributed to population-based metaheuris-
tics’ global search capability, which allows them to avoid 
local optima while finding a near-globally optimal solu-
tion. Shinaozaki et al. [24] optimized a DNN’s structure 
and parameters using GA. While GA works with binary 
vectors that reflect the structure of a DNN as a directed 
acyclic graph, CMA-ES, which is fundamentally a contin-
uous optimizer, converts discrete structural variables to 
real values through an indirect encoding. Xie et  al. [25] 
optimized the recognition accuracy by representing the 
network topology as a binary string. The primary con-
straint was the high computing cost, which compelled 
the authors to conduct the tests on small-scale data sets. 
Sun et al. [26] proposed an evolutionary method for opti-
mizing the architectures and initializing the weights of 
convolutional neural networks (CNNs) for image classi-
fication applications. This objective was accomplished via 
the development of a novel weight initialization method, 
a novel encoding scheme for variable-length chromo-
somes, a slacked binary tournament selection technique, 
and an efficient fitness assessment technique. Lu et  al. 
[27] proposed a multi-objective modeling of the architec-
tural search issue by minimizing two potentially compet-
ing objectives: classification error rate and computational 
complexity, quantified by the number of floating-point 
operations (FLOPS). In Tables  1 and 2, we summarize 
respectively the X-ray and CT images based COVID-19 
as detailed in [3].

Deep neural network for COVID 19 control
Over the last decades, CNN for Xray images classification 
has shown its effectiveness, outperformance, and impor-
tance in the field of medical diagnosis. Several com-
putational approaches exist for diagnosing a variety of 
thoracic diseases using chest X-rays. Wang et al. [8] cre-
ated a framework for semisupervised multi-label unified 
classification that incorporates a variety of DCNN multi-
label loss and pooling methods. Islam et al. [9] developed 
a collection of several sophisticated network topolo85 
gies to increase classification accuracy. Rajpurkar et  al. 
[10] proved that a standard DenseNet architecture is 
more accurate than radiologists in detecting pneumo-
nia. Yao et al. [11] developed a method for optimizing the 
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use of statistic label dependencies and thus performance. 
Irvin et al. [12] developed CheXNet, a deep learning net-
work that makes optimization manageable through dense 
connections and batch normalization. Prabira et al. [13] 
collected a set of deep features using nine pre-trained 

CNN models and then passed them to an SVM (Support 
Vector Machines) classifier.

Proposed approach
Our approach is motivated by the following questions:

Table 1  Representative works for X-ray images based COVID-19 diagnosis according to [3]

References Model of classification Dataset

Gaal et al. [14] U-Net + adaptive histogram equalization with adversarial 
and contrast limits

247 pictures obtained from the Japanese Society of Radio-
logical Technology and 662 chest X-rays obtained from the 
Shenzhen dataset

Abbas et al. [15] Decompose, transfer, and compose CNN features of pre-
trained models using ImageNet and ResNet + (DeTraC)

80 typical CXR samples

Narin et al. [16] Transfer learning on a pre-trained ResNet50 model Dr. Joseph Cohen’s public GitHub repository

Wang et al. [17] COVID-Net 16,756 chest radiography pictures were collected from 13,645 
patients

Hemdanet al. [18] COVIDX-Net COVID-19 cases provided by Dr. Adrian Rosebrock

Asnaoui et al. [20] VGG16, VGG19, DenseNet201, Inception-ResNet-V2, Incep-
tionV3, Resnet50, MobileNet-V2, and Xception have been 
fine tuned

5856 pictures, 4273 of which are pneumonia and 1583 of 
which are normal

Sethy et al. [13] Deepfeatures fromResnet50 and SVM classification –

Ioannis [23] Various fine-tune models: VGG19, MobileNet, Inception, 
Inception Resnet V2, Xception

1427 X-ray images

Ghoshal et al. [22] Dropweights based Bayesian Convolutional Neural Networks 5941 pictures of PA chest radiography divided into four groups 
Normal: 1583, Bacterial Pneumonia: 2786, Viral Pneumonia not 
caused by COVID-19: 1504, and COVID-19: 68

Farooq and Hafeez [21] To boost model performance, they used a pre-trained 
ResNet50 architecture with the COVIDx dataset

COVIDx

Table 2  Representative works for CT based COVID-19 diagnosis according to [3]

References Classification model Segmentation model Dataset Number of participants

Song et al. [28] Details DRE-Net and ResNet50 
neural networks for relationship 
extraction, including Feature 
Pyramid Network and Attention 
module

– 777 CT images COVID-19 infection was identified 
in 88 individuals (101 infected with 
bacteria pneumonia, and 86 healthy 
persons)

Gozes et al. [29] The design of this 2D Deep con-
volutional neural network is based 
on Resnet-50

U-net architecture for image 
segmentation

– COVID-19 confirmation of 55 
patients

Shan et al. [31] – Segmentation of COVID-19 infec-
tion areas using a VB-Net neural 
network

249 CT scans 249 patients were validated using 
the COVID-19

Jin et al. [32] – AI system based on two-dimen-
sional CNNs; the model’s name is 
not specified

960 computed 
tomography 
images

496 patients verified with the 
COVID-19

Barstugan et.al [33] Matrix of Grey Level Size Zones 
SVM + Discrete Wavelet Transform

– 150 CT images –

Li et al. [34] COVNet Segmentation using U-Net 4356 CT images Six hospitals and 3322 people were 
included in the databases

Zheng et.al [35] 3COVID-19 Detection Using 
a Deep Convolutional Neural 
Network

Segmented with the aid of a pre-
trained UNet

– 540 patients

Jin et al. [36] On ResNet-50, transfer learning is 
possible

Segmentation model as a three-
dimensional U-Net++

– 723 COVID-19 positives
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(1)	 RQ1 There are an infinitely large number of poten-
tial topologies for CNN convolution blocks’ graphs, 
defining the relationships between nodes. How to 
determine the best block topology sequence for 
X-ray images?

(2)	 RQ2 Any architecture has a huge number of 
parameters; how can the number of parameters 
be reduced and the structure architecture recon-
structed?

To address these research questions, we must first 
determine the optimal graph topology sequence for clas-
sifying X-ray and CT images and detecting COVID-19 
infections, and then reconstruct and discover an opti-
mal number of neurons while maintaining the size of 
the previous layer. In addition, we are seeking to evalu-
ate the layer’s performance. This requires the ability to 
compare various topologies. However, such an unusual 
methodology raises several concerns. Indeed, we can 
query the existence of a single global optimum for layer 
size. Depending on the criterion used, there may be mul-
tiple or even an infinite number of global optima. With 
the typical objective of a model selection procedure being 
to find the most efficient model in terms of performance 
but also the least computationally intensive, we will seek 
to establish a lower bound on the number of neurons 
required for each hidden layer. Indeed, there is no guar-
antee that the hyper-parameter optimization problem 

can be separated from layers using the iterative, layer-
by-layer method that we propose. In fact, optimizing 
all hyper-parameters simultaneously in a very deep net-
work would be prohibitively expensive. Therefore, we will 
investigate the separability of the first two hidden layers. 
If the result of a global optimization is the same as the 
hyper-parameters that were found through layer-by-layer 
optimization, separability may be a good assumption. 
Figure  1 illustrates an overview of the proposed CNN 
for X-ray images classification based on evolutionary 
optimization.

CNN topologies layers
The solution encoding is a sequence of squared binary 
matrices, each of which represents a possible directed 
graph. An element value equal to 1 means that the row 
node is a predecessor of the column node, while a value 
of zero means that there is no connection between the 
two nodes.

Crossover operator we use the two-point crossover 
operator [37] to vary the population because it allows 
for variation in all chromosome segments. To implement 
such an operator, each parent solution must be a set of 
binary strings [37]. Two cutting points are applied to 
each parent in the two-point crossover process, and then 
the bits between the cuts are swapped to obtain two off-
spring solutions.

Fig. 1  Overview of the proposed CNN for X-ray images classification based EAs
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Mutation operator as with the crossover operator, the 
solution is converted to a binary string using Gray encod-
ing before applying the one-point mutation [37]. The test 
error is computed using the holdout validation technique 
[43], which randomly selects 80% of the data records for 
training and 20% for testing. To deal with this the over-
fitting issue, the training data (80%) is divided into 5 
folds, and thus fivefold cross-validation is applied during 
training. The classification performance is averaged over 
the 5 folds of the training partitions.

Reconstruction architecture
In response to the problem of hyper-parameter selection 
in deep convolution neural networks, we have optimized 
the topology of a deep neural network and, more specifi-
cally, the number of neurons in the hidden layers. Our 
goal is to discover an optimal number of neurons, layer 
after layer, with the size of the previous layer being fixed. 
To validate our approach, we optimize the size of the sec-
ond layer after setting the size of the layer according to 
the previous optimum. To perform a reconstruction, we 
first propagate the input to the highest layer using the 
conditional probabilities of each convolution. Secondly, 
the configuration of the highest layer is back-propagated 
with the conditional probabilities.

Experiments
Benchmarks and performance metrics
COVID-19 patients’ chest X-rays were obtained from Dr. 
Joseph Cohen’s opensource GitHub repository https://​
github.​com/​ieee8​023/​covid-​chest​xray-​datas​et. This 
repository contains chest X-ray images of a variety of 
patients who have been diagnosed with acute respiratory 
distress syndrome, severe acute respiratory syndrome, 
COVID-19, or pneumonia. Our experiment is based on 
a database of chest radiographic images divided into two 
categories: non-infected patients and COVID-19-in-
fected patients. The dataset was randomly divided into 
two independent datasets with 80% for training and 20% 
for testing.

Performance metrics
Based on the analysis of the related works, the most used 
performance metrics in image classification using deep 
neural networks are the Accuracy (Acc), Specificity and 
Sensitivity [37]. The Acc mathematical expression is given 
by Eq. (1) where TP is the number of true positives, TN is 
the number of true negatives, and NE is the total number 
examples.

The unbalanced class distribution has been addressed 
using Geometric Mean metrics derived from the binary 

(1)Acc = (TP + TN ) NE

confusion matrix. Geometric The mean G-mean is the 
geometric mean of positive and negative true rates. This 
measure aims to balance the classification performance 
of majority and minority classes. This metric is insensi-
tive to data imbalance. Equation 2 illustrates the G-mean 
formula.

Technical details
There exists a topology of convolution within each block 
of a CNN for any architecture, as illustrated in Fig. 2. This 
topology corresponds to an optimization problem with a 
large search space. Numerous CNN architectures already 
exist, according to the literature. Unfortunately, there are 
no guidelines for designing a specific architecture for a 
specific task; as a result, such design remains highly sub-
jective and highly dependent on data scientists’ expertise. 
As described in Section A, the solution encoding consists 
of a series of squared binary matrices, each of which rep-
resents a possible directed graph. Table 3 summarizes the 
parameters settings used in our experiments.

Optimizing the size of a layer
Figure  3 gives the reconstruction as a function of the 
number of neurons in the first hidden layer L1 of CNN. 
The size of the layer, on the abscissa, is presented on a 
logarithmic scale. It can be seen that the best perfor-
mance is obtained for the configurations having a mini-
mum of 400 neurons in this hidden layer.

Moreover, once this minimum is reached, adding more 
neurons does not significantly increase performance. 
This observation validates our choice to determine a 
lower bound for the optimal size of a hidden layer. In 
fact, to perform a reconstruction, we first propagate the 
input to the topmost layer using the conditional prob-
abilities. Secondly, the configuration of the highest layer 
is back-propagated with the conditional probabilities. 
The reconstruction error is then the distance between 
the initial entry and the reconstructed entry. To validate 
the results, we optimize the size of the second L1 layer 
after setting the size of the L1 layer according to the pre-
vious optimum (400 neurons). The lower bounds of the 
optimal topology, namely 400 neurons on L1 and 300 on 
L2, are found with the simultaneous optimizations of the 
two hidden layers, as can be seen in Fig. 4. To validate the 
results, we optimize the size of the second L1 layer after 
setting the size of the L1 layer according to the previous 
optimum (400 neurons). The lower bounds of the optimal 
topology, namely 400 neurons on L1 and 300 on L2, are 
found with the simultaneous optimization of the two hid-
den layers, as can be seen in Figs. 3 and 4.

(2)G −mean =
√
TRP.TNR

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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Comparative results
Recently, many computational intelligence methods 
have been proposed for COVID19 detection using 
X-ray images and Computed Tomography (CT) ones. 
Our approach is compared to the most representa-
tive works of CNN architecture generation methods. 
Tables  4 and 5 summarizes the obtained comparative 
results of the different architectures outputted by the 
confronted CNN design methods on X-ray images.

In fact, Tables  4 and 5 summarize the obtained Acc 
results on CT images and X-ray ones, respectively. We 
observe that the Acc of CT based COVID-19 Diagno-
sis is lying between 82.9 and 99.6%. Shuai Wang et  al. 
[8] corresponds to the worst method and provides an 
Acc 82.9% with specificity of 80.5% and sensitivity of 

Fig. 2  Block topologies of three samples CNNs: VGGNet, ResNet, and DenseNet; for 4 convolution nodes

Table 3  Summary of parameter settings

Categories Parameters Value

Gradient descent Batch size 128

Epochs 50/350

SGD learning rate 0.1

Momentum 0.9

Weight decay 0.0001

Search strategy # Of generation 40

Population size 60

Crossover probability 0.9

Mutation probability 0.1

Fig. 3  Reconstruction error depending on the size of the hidden 
layer L1
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84%. Always in terms of classification Acc, Xu et  al. 
[19] provides 86.7%, Song et  al. [28] provides 93%, 
Shan [31] provide 91.6% and Jin et  al. [32] provides 
94.98%. Always based on Table 4, Chen et al. [32] pro-
vides 95.24% with sensitivity of 100% and specificity of 
93.55%. We observe that Our work is able to achives 
better ACC values than the considered peer meth-
ods. Furthermore, Table  5 show that the Acc of X-ray 
based COVID-19 Diagnosis is lying between 88.39% 
and 97.5%. Ghoshal et al. [22] corresponds to the worst 
method and provides an Acc 88.39%. Always in terms 
of classification Acc, Wang et  al. [17] provides 92.4% 

on COVIDx dataset, Abbas et al. [15] provides 95.12% 
with a sensitivity of 97.91%, a specificity of 91.87%, 
Sethy et  al. [13] provides 95.38% and Apostolopoulos 
et al. [23] provides 95.57% with sensitivity of 0.08% and 
specificity of 99.99%. Always in Table 5, Asnaoui et al. 
[20] show highly satisfactory performance with accu-
racy 96%, Farooq and Hafeez [21] and Gaal et  al. [14] 
provides 96.23% and 97.5% respectively. We observe 
that our work is able to achieve better ACC values 
than the considered peer methods. The following argu-
ments could explain these findings: manually designing 
CNNs is a time-consuming and complex operation that 
demands a high level of competence on the part of the 
user. Even with a high level of expertise, developing a 
good architecture is not easy due to the vast variety of 
alternative architectures. Evolutionary approaches out-
performed other methods in this and earlier studies 
because reinforcement learning based approaches have 
greedy behavior that optimizes the ACC throughout 
the search process. However, evolutionary approaches 
are capable of escaping local optima and covering 
the whole search space because of their global search 
capability and the probability acceptance of inefficient 
structures via the mating selection operator. These 
findings validate our proposed algorithm’s ability to 
construct task-dependent designs 220 automatically. 
Indeed, we note that our approach is capable of auto-
matically designing a CNN architecture with higher 
accuracy values than the peer techniques reviewed.

This might be explained by the fact that design-
ing CNNs is very difficult, even with a high degree of 
knowledge. On radiographic pictures, automated design 
approaches outperform manually created systems. The 
reason for this is because there are an infinite number 
of alternative architectures. To summarize, the optimi-
zation of the network topology has a significant influ-
ence on classification performance since each topology 
determines the interactions between the neural network 
nodes.

Diagnosis using X‑ray 14 images
Description and motivation
Chest X-ray14 database consisting of 112,120 frontal-
view radiographs X-ray images from 30,805 unique 
patients. The database was compiled using natural lan-
guage processing techniques from associated radiological 
reports stored in hospital image archiving and communi-
cation systems. Each image may have one or more com-
mon chest conditions (one or many common thoracic 
diseases), or”Normal” otherwise (see Fig.  5).The dataset 
is publicly available from NIH at https://​nihcc.​app.​box.​
com/v/​Chest​Xray-​NIHCC.

Fig. 4  Reconstruction error as a function of the size of the L2 layer, 
the size of L1 having been set at 400neurons

Table 4  Representative works for CT based COVID-19 Diagnosis 
according to [3]

Study References Test Acc 
(%)

Sensitivity Specificity G-mean

Chen 
et al.

[32] 95.24 100 93.55 92.30

Wang 
et al.

[8] 82.9 84 80.5 87.45

Xu et al. [19] 86.7 – – 88.91

Song 
et al.

[28] 93 – – 90.66

Gozes 
et al.

[29] 94.22 98.2 92.2 92.30

Shan 
et al.

[31] 91.6 – – 89.95

Jin et al [32] 94.98 – – 92.77

Li et al. [34] 88.17 90 96 89.45

Jin et al. [36] 93.58 97 92 92.97

Louati 
et al.

Our work 96.87 97.58 95.14 96.10

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
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Experimentation
The proposed method is compared to the most repre-
sentative works in each of the three categories of meth-
odologies for creating CNN architectures (see Fig.  6). 
The parameters employed in our trials are summarized in 
Table 6.

Table  6 summarizes the comparative findings 
achieved for the various architectures developed by the 
various CNN design approaches when applied to X-ray 
images. For manual approaches, the AUROC ranges 
from 79.8 to 84.6%. Google AutoML has the lowest 

AUROC of any non-manual method, at 79.7 percent.
The evolving AUROC curves provide AUROC values 
of 84.3% for LEAF (2019) and 84.6% for NSGANet-X 
showing the disease curve of CNN-XRAY and the com-
parison AUROC by a disease with other peer meth-
ods are provided in Fig.  6. We observe that our work 
is able to automatically design a CNN architecture that 
achieves better AUROC values than the considered 
peer methods. Figure 7 illustrates a random sampling of 
activations shown in filters of the first and second con-
volutional layers.

Table 5  Representative work for X-ray based COVID-19 diagnosis [3]

Study References Test Acc (%) Sensitivity Specificity G-mean

Gaal et al. [14] 97.5 – – 97.14

Abbas et al. [15] 95.12 97.91 91.87 94.69

Narin et al. [16] 97 – – 96.78

Wang et al. [17] 92.4 – – 91.06

Asnaoui et al. [20] 96 – – 95.98

Sethy et al. [13] 95.38 – – 94.14

Ioannis et al. [23] 95.57 0.08 99.99 93.44

Ghoshal et al. [22] 88.39 – – 89.91

Farooq and Hafeez [21] 96.23 – – 95.81

Louati et al. Our work 98.12 98.44 96.63 97.90

Fig. 5  Common thoracic diseases observed in Chest X-ray14 [30]
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Conclusion
Deep neural networks have demonstrated outstand-
ing performance in a wide range of machine learning 
tasks, including classification and clustering [39, 40], 

for real-life applications of soft computing techniques 
in different fields [41, 42]. Developing an appropri-
ate architecture for a Deep Convolutional Neural Net-
work (DCNN) has remained an extremely intriguing, 
demanding, and topical issue to date. Following the 
manual design, many other methodologies have been 
presented, most of which are based on reinforcement 
learning and evolutionary optimization, with some 
adopting a multi-objective perspective. Indeed, there 
are a huge number of conceivable possible designs with 
various network topologies. However, since there are 
no recommendations for designing a specific archi-
tecture for a certain task, such design remains highly 
subjective and heavily dependent on the data scien-
tist’s knowledge. By searching for the ideal sequence of 
block topologies and reconstructing and determining 
the optimal number of neurons, layer by layer, to detect 

Fig. 6  Multi-label classification performance on Chest X-ray14, the class-wise mean test AUROC comparison with peer works

Table 6  Obtained AUROC and #Params, results on Chest X-ray14

Method Search method Test AUROC (%) #Params

Yao et al. Manual 79.8 –

Wang et al. Manual 73.8 –

CheXNet Manual 84.4 7.0 M

Google AutoML RL 79.7 –

LEAF EA 84.3 –

NSGANet-X EA 84.6 2.2 M

Our work EA 84.91 1.6 M

Fig. 7  Random sampling of activations is shown in filters of the first and second convolutional layers
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COVID-19 infections, we propose an efficient evolu-
tionary technique for designing the CNN architecture 
in this study. Experiments have shown the efficacy of 
our proposed technique, which outperforms various 
typical designs on a data set of CT and X-ray image 
benchmarks. It is worth emphasizing that the genetic 
algorithm is computationally expensive, because we 
need to conduct a complete network training process 
for each generated individual. Therefore, we run the 
genetic process on datasets, and demonstrate its ability 
to find high-quality network structures. It is interest-
ing to see that the generated structures, most of which 
have been less studied before, often perform better 
than the standard manually designed ones. Therefore, 
we need transfer the learned structures such as [44] to 
large-scale experiments and verify their effectiveness. 
The approach of TL to overcome the issues of transfer 
learning from pretrained models of the ImageNet data-
set to medical imaging tasks and the annotation process 
of medical images. Moreover, it will help to address the 
issue of the lack of training in medical imaging tasks.
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