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from clinical features and deep learning‑based 
segmentations: Can thoracic CT on admission 
help us to predict hospitalized COVID‑19 
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Abstract 

Background:  The aim of the study was to predict the probability of intensive care unit (ICU) care for inpatient COVID-
19 cases using clinical and artificial intelligence segmentation-based volumetric and CT-radiomics parameters on 
admission.

Methods:  Twenty-eight clinical/laboratory features, 21 volumetric parameters, and 74 radiomics parameters 
obtained by deep learning (DL)-based segmentations from CT examinations of 191 severe COVID-19 inpatients 
admitted between March 2020 and March 2021 were collected. Patients were divided into Group 1 (117 patients dis-
charged from the inpatient service) and Group 2 (74 patients transferred to the ICU), and the differences between the 
groups were evaluated with the T-test and Mann–Whitney test. The sensitivities and specificities of significantly dif-
ferent parameters were evaluated by ROC analysis. Subsequently, 152 (79.5%) patients were assigned to the training/
cross-validation set, and 39 (20.5%) patients were assigned to the test set. Clinical, radiological, and combined logit-fit 
models were generated by using the Bayesian information criterion from the training set and optimized via tenfold 
cross-validation. To simultaneously use all of the clinical, volumetric, and radiomics parameters, a random forest model 
was produced, and this model was trained by using a balanced training set created by adding synthetic data to the 
existing training/cross-validation set. The results of the models in predicting ICU patients were evaluated with the test 
set.

Results:  No parameter individually created a reliable classifier. When the test set was evaluated with the final models, 
the AUC values were 0.736, 0.708, and 0.794, the specificity values were 79.17%, 79.17%, and 87.50%, the sensitivity 
values were 66.67%, 60%, and 73.33%, and the F1 values were 0.67, 0.62, and 0.76 for the clinical, radiological, and 
combined logit-fit models, respectively. The random forest model that was trained with the balanced training/cross-
validation set was the most successful model, achieving an AUC of 0.837, specificity of 87.50%, sensitivity of 80%, and 
F1 value of 0.80 in the test set.
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Background
Severe COVID-19 patients who are admitted to the inpa-
tient ward due to the need for supplemental oxygen or due 
to evidence of systemic inflammation must be monitored 
for the development of critical illness, a rapid increase in 
oxygen needs and/or an increasing systemic deterioration 
[1]. For patients who progress to a critical illness level, 
transfers to the intensive care unit (ICU) are required; 
additionally, depending on the severity of the condition, 
the patient may also need oxygen delivery through a high-
flow device, noninvasive ventilation, invasive mechani-
cal ventilation, or extracorporeal membrane oxygenation 
[1]. Planning the ICU bed capacity is of primary impor-
tance during pandemic surges [2] since limitations in the 
ICU bed capacity have been reported to have an effect on 
mortality [3]. Thus, it is important to predict the need for 
ICUs, especially for patients with a severe clinical condi-
tion that requires inpatient treatment [4, 5]. Additionally, 
starting remdesivir in the ward was recommended if dis-
ease progression was predicted [1].

Although models for identifying ICU candidate 
patients have been reported, most of these models are 
based only on clinical data [6–11]. In a study where the 
candidate parameters included the presence or absence 
of chest X-ray findings, it was noted that this param-
eter was not included in the final model [12]. Promising 
results were achieved by combining the clinical data with 
the semiquantitative visual severity scores (VSS) depend-
ing on the volume, type, and extent of the infiltration that 
were measured on chest X-ray and CT [13–15].

Radiomics analysis extracts different quantitative 
data from medical images with various algorithms, and 
these data are used in further analyses for decision sup-
port [16]. Studies using radiomics models and machine 
learning methods have shown that these methods can 
diagnose COVID-19 [17, 18] and can determine its prog-
nosis [19]. Although combined models of the clinical and 
radiomics parameters in RT-PCR-positive cohorts were 
reported [20], studies evaluating the efficacy of models 
that include clinical, quantitative volumetric and radiom-
ics parameters for predicting disease progression in hos-
pitalized COVID-19 patients are lacking.

Using deep learning (DL) for a COVID-19 diagno-
sis was previously studied by using chest X-ray and CT 
parameters in pretrained or customized models, and the 

results were successful [21]. DL networks are also used 
for automated segmentation, and a high accuracy was 
shown in the U-Net architecture for the CT images in 
COVID-19 patients [22].

The aim of this study was to generate and compare 
models that predict the need for ICUs in hospitalized 
COVID-19 patients using clinical features and volumet-
ric and radiomics data that were calculated by automated 
segmentations.

Materials and methods
This retrospective, cross-sectional, single-center study 
was approved by our institution’s review board (EK-E1-
21-2090), and written informed consent was waived. All 
of the procedures that were performed in this study were 
in accordance with the 1964 Helsinki Declaration and its 
later amendments.

Study population
A total of 268 RT-PCR-positive severe COVID-19 
patients hospitalized consecutively in our inpatient ward 
between March 2020 and March 2021 were evaluated 
(Fig. 1). All these patients had one or more of the criteria 
for severe illness [1]: an SpO2 < 94% when breathing room 
air, a < 300 mmHg arterial partial oxygen pressure to frac-
tion of inspired oxygen (PaO2/FiO2) ratio, a respiratory 
rate > 30 per minute or infection involving more than 
50% of the lung parenchyma. Patients were transferred to 
the ICU when one or more of the signs of critical illness 
[1], including acute respiratory distress syndrome, septic 
shock, and multiorgan failure, had developed.

The inclusion criteria in this patient group were 
patients older than 18  years of age, patients who had a 
thoracic CT scan in our hospital, patients who did not 
receive any steroid or antiviral treatment before the CT 
study, patients with no interstitial pulmonary disease, 
and patients who had not undergone pulmonary sur-
gery, and 222 patients met these criteria. In this group, 
patients with enhanced CT examinations (n = 7, all were 
suspicious for embolism), respiratory artifacts (n = 14), 
massive pleural effusion (over two-thirds of the hemitho-
rax) (n = 4), pneumothorax (n = 1), and cystic lung dis-
ease (n = 1) were excluded from the study.

Conclusion:  By using a machine learning algorithm that was composed of clinical and DL-segmentation-based 
radiological parameters and that was trained with a balanced data set, COVID-19 patients who may require intensive 
care could be successfully predicted.

Keywords:  COVID-19, Deep learning, Artificial intelligence, Computed tomography, Radiomics, Machine learning, 
Logistic regression models
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CT protocol
CT studies were performed with a 128-detector system 
(GE Revolution, General Electric, Milwaukee, WI) from 
the first rib to the adrenal glands, nonenhanced by using 
the following parameters: 100  kV, 110  mAs, body filter, 
a 1.25  mm slice thickness, a 512 × 512 reconstruction 
matrix, a spiral pitch factor of 1.375:1, BonePlus convolu-
tion kernel, adaptive statistical iterative reconstruction of 
70%.

Deep learning segmentation and radiomics feature 
calculation
The entire lung parenchyma and pneumonic lesions 
were segmented by using Quibim’s U-Net model, which 

is a convolutional neural network architecture that uses 
the ResNet-34 backbone, which was developed for the ‘A 
European initiative for automated diagnosis and quanti-
tative analysis of COVID-19 on imaging’ project.

Slices of the studies were preprocessed as the segmen-
tation model input by applying a constant lung window 
level (WW = 1600, WL = − 600), normalization in range 
[0, 1], as well as by using the Balance Contrast Enhance-
ment Technique (BCET preprocessing). Thus, the basic 
shapes of the image histograms were maintained.

Several metrics were accounted for in order to evalu-
ate the segmentation model. Dice Similarity Coefficient 
(DSC) and Intersection over Union (IoU) values were 
calculated on all of the scans with at least 1000 voxels in 

Fig. 1  Flowchart of the study. Clinical, Radiological and Combined models are the final models in cross-validation. LR is Logistic regression
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the ground truth segmentation. Due to the fact that DSC 
and IoU are zero in cases without ground truth mask, the 
final test set for these metrics was determined by using 
a histogram-based threshold of more than 1000 positive 
voxels. Average false positive and false negative volumes 
were calculated for all of the scans. In addition, Pearson’s 
correlation coefficients of positive prediction and ground 
truth were determined.

Two authors (MG, 16 years of experience and EO, last 
year of residency training) checked whether all ground 
glass opacities (GGO), consolidation or crazy paving 
areas in the CT studies were segmented by the DL algo-
rithm. It was noted that DL did not segment GGO that 
were smaller than 1 mL, and patients who only had such 
lesions were excluded from the study (n = 4). Finally, the 
final study population consisted of 191 patients.

The radiomics features were calculated using Quibim 
Texture Analysis software (Quibim SL, Valencia, Spain) 
from the obtained segmentations by the following param-
eters: (1) Resampled voxel size 1 × 1 × 1  mm3 by using 
bicubic interpolation, (2) Fixed bin-width of 25 for gray 
value discretization, (3) Density normalization according 
to Eq. (1):

where f(x) is the normalized voxel density, x is the origi-
nal density, μx is the mean density, σx is the standard 
deviation and S is the scaling factor (set to 500). (4) A 
voxel array shift of 1024 was added to prevent the nega-
tive values from being squared. (5) Second-order matri-
ces were calculated using a distance of 1 voxel and 13 
isotropic displacement vectors at angles of 0°, 45°, 90° and 
135°.

Statistical analysis
Patients were categorized into Group 1 (patients who 
recovered with treatment in the inpatient ward) and 
Group 2 (patients transferred to the ICU for progressive 
disease from the inpatient ward).

The data obtained from the patients were divided into 
(1) clinical data consisting of the demographic data of the 
patients, comorbid disease history, therapeutics given 
to the patient in the inpatient service, oxygen satura-
tion, complete blood count, biochemical parameters, 
and acute phase reactants obtained at admission and (2) 
radiological data consisting of the volumetric data of the 
whole lung, the inflamed lung parenchyma as segmented 
by DL and the first- and second-order radiomics param-
eters calculated from the segmented lesions.

Comparison of the nominal data between the two 
groups was performed with the chi-squared test or 
the Fisher’s exact test. For continuous data, the values 

(1)f (x) =
(x − µx)

σx
× S

of a normally distributed parameter were given as the 
mean ± SD, and the values of nonnormally distributed 
parameters were provided as the median (IQR). Com-
parisons of the groups were conducted with the T-test 
or Mann–Whitney test, accordingly.

If a parameter differed significantly between the two 
groups, the area under the curve (AUC) was calculated 
with the receiver operator characteristic (ROC) test, 
and the cutoff value, optimal sensitivity, and specificity 
were determined by using the Youden index. Logistic 
regression was used for the univariate nominal param-
eters to calculate the sensitivity and specificity.

After the patient population was randomly divided 
into a training and cross-validation set (n = 152, 79.6%) 
and a test set (n = 39, 20.4%), logit fit models were cre-
ated by using the Bayesian information criterion (BIC) 
from the training set. The clinical model was selected 
from the clinical data, and the radiological model was 
selected from the radiological data. A combined model 
from both clinical and radiological data was also con-
structed. The adequacy of the model’s parameters in 
predicting the categorical outcomes was evaluated with 
the Hosmer–Lemeshow goodness-of-fit test. Multi-
collinearity was evaluated by calculating the variance 
inflation factor (VIF).

Models were optimized by calculating cost function 
(log loss), and the gradient descent optimization algo-
rithm and initial theta vectors were replaced with the 
optimized ones. By using a tenfold cross-validation, 
the mean sensitivity, specificity, and accuracy values of 
the model were calculated by averaging all of the cross-
validation results, and the model-specific cutoff values 
for each model were calculated via the Youden index of 
ROC analyses [23]. The test set results were obtained 
by using optimized models and model-specific cutoff 
values. The C-index and 95% CI values of the models 
were further separately calculated for the training and 
cross-validation sets via 1000 bootstrapping studies.

To solve the class imbalance problem, the Synthetic 
Minority Oversampling Technique (SMOTE) algorithm 
was used by using the “smotefamily” package in the R 
statistical computing environment (R Foundation for 
Statistical Computing, Vienna, Austria) [24]. During 
the generation of the synthetic data, k = 3 was selected 
for the K-nearest neighbor algorithm.

Another model including all of the clinical and radio-
logical parameters in the study was created via the ran-
dom forest classification algorithm, and this model was 
trained with the balanced training set containing the 
synthetic data. The effectiveness of the final random 
forest model was evaluated with the same test set that 
was used for the logit-fit models.
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Statistical analyses were performed using IBM SPSS 
v23 (IBM Corp, Armonk, NY), MedCalc v20.011 (Med-
Calc Software bvba, Ostend, Belgium), R v4.0.2 (R foun-
dation, Vienna, Austria) and XLStat statistical and data 
analysis v2021.3.1 (Addinsoft, NY, USA). The power anal-
ysis was conducted using G*Power 3.1.

Results
Group features, demographics, symptoms and findings
There were 117 patients in Group 1 (61.6%) and 74 
in Group 2 (38.4%). The mean age of the patients was 
65.45 ± 14.02 (26–96  years), 57.6% of the patients were 
male, and 42.4% were female. ICU patients were fol-
lowed in the ward for an average of 3.2 days (1–12 days) 
prior to transfer to the ICU. Whereas Group 1 patients 
were discharged with a mean duration of 8.8 ± 4.7  days 
(2–29  days), Group 2 patients had a mean duration of 
19.2 ± 13.8 days (7–41 days, including ICU stay) of hos-
pitalization that resulted in either death (n = 3) or dis-
charge (n = 71).

The mean age of the patients and the number of males 
were higher in Group 2, and the differences were signifi-
cant (Table  1). Regarding the symptoms and findings, 
only fever was significantly different between the two 

groups. Among the comorbidities, patients diagnosed 
with chronic renal failure or coronary heart disease 
required significantly more ICU admissions (Table  1). 
Patients who needed corticosteroids in the ward were 
more frequently transferred to the ICU (Table 1).

Laboratory findings
Most of the laboratory findings differed significantly 
between the two groups (Table 2). However, at the time 
of admission, it was observed that patients who needed 
ICU care did not have a lower oxygen saturation value. 
Among the blood tests, procalcitonin was the most effec-
tive univariate classifier (Table 2).

DL segmentation findings and radiomics
The time between the onset of symptoms and the CT 
examination was 6 [7] days in Group 1 and 5 [5] days in 
Group 2 (p = 0.775, Mann–Whitney test). The positive 
RT-PCR test result and the CT study were conducted on 
the same day.

The DL algorithm segmented both the whole lung 
tissue and the pneumonic areas of COVID-19 infec-
tion in the patients. In Group 2 patients, both the per-
centage and volume of pneumonic tissue secondary to 

Table 1  Demographics, symptoms, findings, comparison between the groups and discrimination assessment

Group results were given as Median (IQR)

Group 1: Patients discharged from inpatient floor; Group 2: Patients transferred to ICU

COPD chronic obstructive pulmonary disease, CS corticosteroid, R received, N/R not received
a Mann–Whitney test result
b Chi-squared test result
c Fisher’s exact test result
d ROC analysis results
e One-parameter logistic regression result

Parameter Group 1 Group 2 p Cut-off or Risk factor Sensitivity % Specificity % AUC​

Age (years) 62 (21) 70 (23.3) < 0.001a > 71 55.9 73.1 0.679d

Sex Male: 52.0% Male: 48.0% 0.005b Male 67.3 50.3 0.774e

Female: 69.3% Female: 30.7%

Fever (body temperature > 38 °C) 58.0% 72.0% 0.014b Present 72.0 42.0 0.770e

Dyspnea 31.9% 43.8% 0.082b

Cough 49.5% 50.5% 0.491b

Diabetes mellitus 28.7% 34.6% 0.344b

Hypertension 42.5% 57.5% 0.210b

Acute renal failure 1.9% 3.7% 0.446c

Chronic renal failure 0.4% 3.8% 0.001c Present 9.4 99.3 0.863e

Coronary heart disease 21.0% 33.6% 0.022b Present 33.6 79.0 0.764e

COPD 15.3% 15.0% 0.941b

Malignity 3.2% 6.5% 0.199b

CS treatment at the ward R: 66.7% R: 83.8% 0.009b Need for CS treatment 83.78 33.33 0.595e

N/R: 33.3% N/R: 16.2%

High dose CS pulse treatment at the 
ward

R: 30.9% R: 63.8% < 0.001b Need for pulse CS treatment 63.77 69.07 0.680e

N/R: 69.1% N/R:36.2%
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COVID-19 were significantly higher (Table 3) than those 
in Group 1 patients. Additionally, in Group 2, the mean 
total lung volume was decreased by 11.2% compared to 
that in Group 1.

Eighteen first-order and 58 second-order radiom-
ics parameters were calculated from the segmentations 
(Table 4). The skewness was higher in Group 1, and the 
mean density was higher in Group 2 (Table 4).

Predictive logit‑fit models
None of the clinical, volumetric or radiomics parameters 
provided a dependable univariate classifier. Therefore, 
logit-fit models were created (Table 5).

The clinical model’s PP was calculated using Eq. (2):

where PLT is the platelet count, GFR is the estimated 
glomerular filtration rate, AST is aspartate aminotrans-
ferase, LDH is lactate dehydrogenase and PCT is procal-
citonin. Although the clinical model had good specificity, 
its sensitivity was limited in the training and validation 
sets (Table 5).

Radiological model’s PP calculated using Eq. (3):

(2)

PP = 1/(1+ exp−(−5.180+ 0.046× Age−0.0041

× PLT−0.010×GFR+ 0.011× AST+ 0.008

× LDH+ 2.556× PCT+ 0.787× Fever))

where PIL is the percent of infected lung, RMAD is 
Robust Mean Absolute Deviation, and LDLGLE is 
GLDM-LargeDependenceLowGrayLevelEmphasis. This 
model showed a better sensitivity but a worse specificity 
than the clinical model (Table 5).

Combined model’s PP calculated using Eq. (4):

where PIL is the percent of infected lung, S is the 
skewness, C is GLCM-Clustershade, GLE is GLSZM-
LargeAreaLowGrayLevelEmphasis, NLR is the neutro-
phil-to-lymphocyte ratio, PLT is the platelet count, GFR 
is the estimated glomerular filtration rate, and AST is 
aspartate aminotransferase. This model had the highest 
AUC and specificity (Table 5).

(3)

PP = 1/(1+ exp−(−48.219+ 0.045× PIL−0.030

× RMAD− 3.664 × Skewness+ 8.532

×GLCM Sumentropy+ 82.320× LDLGLE))

(4)

PP = 1/(1+ exp−(2.633+ 0.051× PIL−4.596

× S+ 0.000303× C+ 0.435×GLE+ 0.085

×NLR−0.007× PLT−0.039

×GFR+ 0.020× AST))

Table 2  Laboratory findings, comparison between the groups and results of ROC analysis

Group results were given as Median (IQR)

Group 1: Patients discharged from inpatient floor; Group 2: Patients transferred to ICU

SPO2 Pulse oximetry saturation, eGFR estimated-glomerular filtration rate
a Mann–Whitney test result
b ROC analysis result

Parameter Group 1 Group 2 pa Cut-off Sensitivity % Specificity % AUC​b

SPO2 (%) 92 (2) 92 (4) 0.987

wbc count (/μL) 6100 (2730) 5860 (3320) 0.948

Lymhoocyte count (/μL) 1100 (670) 810 (530) 0.0002 ≤ 1000 72.0 57.3 0.655

Neutrophil/Lymphocyte ratio 5.14 (4.07) 8.59 (8.30) 0.0001 > 3.65 75.7 49.6 0.659

Platelet count (× 103/μL) 225 (93.5) 192 (96) 0.010 ≤ 214 61.7 56.0 0.593

eGFR (mL/min/1.73 m2) 87 (33) 69 (50) 0.0003 ≤ 74 56.1 66.2 0.632

Alanine aminotransferase (ALT; Units/L) 28 (26) 29 (28) 0.594

Aspartate aminotransferase (AST; Units/L) 34 (21) 44 (39) 0.0004 > 37 68.2 61.1 0.668

Lactate dehydrogenase (LDH; Units/L) 294 (120) 390 (182) 0.00001 > 360 66.4 75.8 0.755

Creatine kinase (CK; Units/L) 99.5 (110) 179 (247) 0.0001 > 172 53.3 76.3 0.676

C-reactive protein (CRP; mg/L) 71 (85.5) 100 (104) 0.0005 > 134 39.3 86.0 0.627

Procalcitonin (PCT; μg/L) 0.04 (0.06) 0.17 (0.27) 0.00001 > 0.11 62.6 81.5 0.785

Ferritin (ng/mL) 254 (407) 445 (706) 0.0001 > 408 58.3 66.7 0.648

D-Dimer (ng/mL) 0.70 (0.60) 1.00 (1.28) 0.001 > 0.92 51.9 69.3 0.626
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The calculated p values for the clinical, radiological, 
and combined models were 0.376, 0.399, and 0.631, 
respectively, in the Hosmer–Lemeshow test. Radiologic 
and combined models showed better calibration than 
the clinical model (Fig. 2). The VIF value was less than 
3.0 for all parameters in the models; thus, there was no 
significant multicollinearity.

The optimal cutoff-off values were calculated for the 
clinical, radiological, and combined models as 0.565, 
0.444, and 0.429, respectively (Fig. 3).

Test set features and test set results of logit‑fit models
Fifty-nine patients in the training set and 15 in the 
test set were transferred to the ICU (p = 0.908, chi-
squared test). The median age of the patients was 65 
(22.8) years in the training set and 61 [20] years in the 
test set (p = 0.056, Mann–Whitney test). The train-
ing set included 88 males and 64 females, and the test 

set included 22 males and 17 females (p = 0.867, chi-
squared test).

In the test set, the combined model produced the best 
AUC, followed by the clinical model (Table 5).

Synthetic data generation and random forest algorithm
Despite the fact that they were well calibrated, there 
were problems with the logit-fit models due to the 
study population. The data had a low sample size and 
were affected by class-imbalance. Due to the fact that 
our sample size was low, the BIC method, which penal-
izes complex models with more parameters [25], was 
preferred in the model selection for logit-fit models 
to avoid overfitting [26]. In addition to the logit-fit 
models, a random forest classification algorithm, as a 
method that resistant to overfitting, was used for gen-
erating a model that uses all of the study parameters.

While 93 (61%) patients in the training set did 
not require intensive care, 59 (39%) patients were 

Table 3  Volumetric data, comparison between the groups and results of ROC analysis

Group results were given as Median (IQR) or Mean ± SD according to the parameter’s distribution

Group 1: Patients discharged from inpatient floor; Group 2: Patients transferred to ICU
a Mann–Whitney test result
b T-test result
c ROC analysis result

Parameter Group 1 Group 2 p Cut-off Sensitivity % Specificity % AUC​c

Right lung

Upper Third (%) 5 (16) 11.5 (20) 0.011a > 9 59.5 65.8 0.608

Middle Third (%) 14 (17) 21.5 (27) 0.015a > 24 48.7 77.8 0.604

Lower Third (%) 12 (18) 18.5 (30) 0.012a > 35 26.4 93.2 0.608

Infected Total (%) 12 (12) 21 (21) 0.002a > 19 54.1 76.1 0.635

Upper Third (mL) 25 (71) 51 (105) 0.032a > 39 60.1 60.1 0.592

Middle Third (mL) 136 (152) 174.5 (220) 0.120a

Lower Third (mL) 41 (69) 63.5 (94) 0.049a > 77 46.0 73.0 0.584

Infected Total (mL) 222 (235) 307.5 (416) 0.010a > 354 47.3 76.9 0.611

Whole Right Lung Volume(mL) 1849 ± 574 1628 ± 515 0.008b ≤ 1516 46.0 69.2 0.592

Left lung

Upper Third (%) 1 (7) 4 (16) 0.020a > 7 40.5 77.8 0.597

Middle Third (%) 10 (20) 19 (30) 0.005a > 12 66.2 58.1 0.622

Lower Third (%) 11 (22) 21 (31) 0.024a > 26 43.2 76.1 0.597

Infected Total (%) 10 (16) 15.5 (19) 0.001a > 11 63.5 59.8 0.640

Upper Third (mL) 9 (30) 13.5 (79) 0.012a > 71 27.0 92.3 0.575

Middle Third (mL) 73 (136) 125 (174) 0.080a

Lower Third (mL) 38 (70) 67 (88) 0.060a

Infected Total (mL) 139 (209) 232 (281) 0.092a

Whole Left Lung Volume(mL) 1583 ± 525 1419 ± 491 0.033b ≤ 1819 83.8 31.6 0.581

Both lungs

Total infected lung (%) 12.26 (12.55) 18.60 (19.24) < 0.001a > 16.61 59.5% 70.1% 0.674

Total infected lung (mL) 377 (441) 583.5 (612) 0.001a > 435 68.9% 58.1% 0.638

Total Lung Volume 3433 ± 1078 3049 ± 956 0.011b ≤ 3804 83.8% 33.3% 0.589
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Table 4  Radiomic parameters, comparison between the groups and results of ROC analysis

Parameter Group 1 Group 2 p Cut-off Sensitivity % Specificity % AUC​c

First order

10th percentile* − 126.15 (109.66) − 86.95 (113.60) 0.010a > − 87.04 50.0 73.5 0.611

90th percentile* 508.17 ± 147.39 591.50 ± 120.42 < 0.001b > 488.26 85.1 45.3 0.672

Energy (× 1011) 5.71 (6.94) 11.4 (9.94) < 0.001a > 6.90 66.2 65.8 0.675

Entropy 5.15 (0.32) 5.29 (0.20) < 0.001a > 5.25 66.2 65.0 0.672

Interquartile Range* 355.01 ± 93.75 398.27 ± 84.74 0.001a > 319.42 87.8 40.2 0.644

Kurtosis 2.64 (1.17) 2.26 (0.63) < 0.001a ≤ 2.56 74.3 53.0 0.652

Maximum* 998.36 ± 122.10 1009.82 ± 121.38 0.527b

Mean Absolute Deviation* 199.58 ± 36.68 214.74 ± 32.06 0.003b > 201.11 75.7 50.4 0.629

Mean* 162.99 ± 119.13 243.10 ± 122.06 < 0.001b > 159.23 77.0 54.7 0.691

Median* 129.73 ± 109.82 231.95 ± 146.89 0.001b > 185.67 60.8 71.8 0.702

Minimum* − 479.49 ± 83.67 − 487.67 ± 89.95 0.506b

Range* 1477.85 ± 101.11 1497.49 ± 134.92 0.278b

RMAD * 146.78 ± 35.51 162.46 ± 31.45 0.002b > 134.00 86.5 39.3 0.636

Root Mean Squared* 1211.68 ± 121.50 1293.10 ± 121.19 0.001b > 1213.80 74.3 57.3 0.693

Skewness 0.578 (0.730) 0.187 (0.648) < 0.001a ≤ 0.788 94.6 39.3 0.721

Total Energy (× 1011) 7.09 (6.95) 10.00 (9.94) < 0.001a > 6.9 66.2 65.8 0.675

Uniformity 0.0323 (0.0100) 0.0281 (0.0058) < 0.001a ≤ 0.0292 62.2 67,5 0.678

Variance 59,791 ± 17,619 66,375 ± 15,803 0.010b > 59,734 73.0 53.0 0.618

Second order—gray level cooccurrence matrix (GLCM)

Autocorrelation 721.06 (420.12) 1009.76 (446.41) < 0.001a > 706.42 87.8 47.9 0.698

Cluster tendency 310.78 (144.06) 354.96 (89.13) 0.012a > 311.05 75.7 51.3 0.608

Clustershade 2585.01 (3335.90) 807.02 (4056,87) < 0.001a ≤ 1429.10 60.8 70.1 0.676

Maximum probability 0.00464 (0.00345) 0.00353 (0.00332) 0.005a ≤ 0.00330 47.3 73.5 0.620

Sumentropy 6.0181 (0.3201) 6.1410 (0.1770) < 0.001a > 6.0286 78.4 53.9 0.666

Joint energy (× 10–3) 1.628 (1.022) 1.320 (0.701) 0.002a ≤ 1.600 71.6 53.0 0.631

Joint entropy 9.814 (0.514) 10.016 (0.481) 0.005a > 9.9209 62.2 62.4 0.620

Correlation 0.6750 ± 0.0810 0.6906 ± 0.0844 0.206b

Contrast 58.517 (24.270) 61.059 (24.522) 0.203a

IDN 0.9190 ± 0.0168 0.9169 ± 0.0116 0.238b

IMC 0.7626 (0.1008) 0.7949(0.1031) 0.027a > 0.8311 35.1 85.5 0.596

Second order—gray level run length matrix (GLRLM)

Gray Level NUN (× 10–2) 3.202 (0.992) 2.776 (0.577) < 0.001a ≤ 2.907 63.5 66.7 0.680

Gray Level Variance 94.812 (39.683) 107.492 (25.276) 0.007a > 96.082 73.0 53.0 0.617

High GL Run Emphasis 751.038 (415.427) 1021.780 (440.303) < 0.001a < 724.968 89.2 47.9 0.699

Long-run emphasis 1.192 (0.052) 1.188 (0.058) 0.465a

Long-run High GLE 882.784 (474.590) 1241.118 (520.097) < 0.001a > 1052.402 68.9 67.5 0.704

Long-run Low GLE(× 10–3) 2.889 (1.573) 2.103 (1.366) < 0.001a ≤ 2.504 67.6 64.1 0.667

Low GL Run Emphasis (× 10–3) 2.402 (1.146) 1.802 (1.043) < 0.001a ≤ 2.107 68.9 63.2 0.673

Run Entropy 5.501 (0.253) 5.618 (0.171) < 0.001a > 5.510 78.4 53.0 0.686

Run Length Nonuniformity 0.892 (0.240) 0.895 (0.269) 0.478a

Run Percentage 0.942 (0.138) 0.943 (0.154) 0.473a

Run Variance 0.660 (0.183) 0.646 (0.222) 0.455a

Short Run Emphasis 0.957 (0.103) 0.958 (0.115) 0.475a

Short-run High GLE 719.368 (390.961) 982.643 (415.463) < 0.001a > 693.117 89.2 46.2 0.697

Short-run Low GLE (× 10–3) 2.294 (1.096) 1.730 (0.997) < 0.001a ≤ 1.993 68.9 64.1 0.675

Second order—neighborhood gray tone difference matrix (NGTDM)

Busyness 27.061 (27.856) 35.585 (28.361) 0.071a

Coarseness (× 10–5) 2.331 (2.957) 1.785 (1.479) 0.007a ≤ 2.505 75.7 47.9 0.616
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transferred to the ICU. The use of the unbalanced 
training set, especially for the high-dimensional data, 
was reported as a reason for model bias in favor of the 
majority class [27]. To solve this problem, the instance 
of the minority class, which involves patients being 
transferred to the ICU, was increased to 93 by using the 
SMOTE algorithm.

The prediction results on the test set of the model 
that was trained with the random forest algorithm on a 

more balanced training set did not lead to an increase 
in specificity (87.5%). On the other hand, sensitivity 
(80%) was increased, and increases in accuracy (84.6%), 
AUC (0.837), precision (0.80), and F1 score (0.80) were 
followed.

A feature importance study was also conducted for the 
random forest model (Fig. 4). Overall importance was the 
highest in the PCT, followed by Skewness, LDH, PIL, CK, 
and GLDM-LargeDependenceLowGrayLevelEmphasis. 

Group results were given as Median (IQR) or Mean ± SD according to the parameter’s Nonnormal or Normal distribution, respectively

Group1: Patients discharged from inpatient floor; Group 2: Patients transferred to ICU

IDN inverse difference normalized, IMC informational measure of correlation, RMAD robust mean absolute deviation, GL gray level, GLE gray level emphasis, NUN 
nonuniformity normalized, DHGLE dependence high gray level emphasis, DLGLE dependence low gray level emphasis
* Standardized results
a Mann–Whitney test result
b T-test result
c ROC analysis result

Table 4  (continued)

Parameter Group 1 Group 2 p Cut-off Sensitivity % Specificity % AUC​c

Complexity 5736.34 ± 1210.86 6093.04 ± 1887.26 0.150b

Contrast 0.2082 ± 0.0766 0.2329 ± 0.0694 0.026b > 0.2012 66.2 52.1 0.605

Strength (× 10–2) 3.518 (3.577) 2.365 (1.710) < 0.001a ≤ 2.629 63.5 66.7 0.655

Second order—gray level size zone matrix (GLSZM)

GL NUN (× 10– 2) 2.810 (0.567) 2.615 (0.299) < 0.001a ≤ 2.748 73.0 55.6 0.663

GL Variance 103.41 ± 21.82 110.81 ± 20.47 0.020a > 97.76 79.7 43.6 0.610

High GL Zone Emphasis 816.41 (376.85) 1057.04 (340.56) < 0.001b > 873.41 77.0 59.0 0.700

Low GL Zone Emphasis(× 10–2) 2.429 (1.146) 1.775 (0.880) < 0.001a ≤ 2.234 74.3 56.4 0.677

Size Zone NUN 0.4399 (0.0395) 0.4425 (0.0499) 0.884b

Large Area High GLE 16,758 (42,765) 25,675 (86,414) 0.033a > 11,560 85.1 37.6 0.592

Large Area Low GLE 0.0964 (0.3851) 0.0635 (0.2388) 0.229a

Small Area High GLE 620.68 ± 186.50 745.62 ± 203.19 < 0.001b > 616.24 74.3 58.1 0.689

Small Area Low GLE (× 10–3) 1.642 (0.790) 1.231 (0.627) < 0.001a ≤ 1.773 87.8 41.9 0.675

Zone Entropy 7.1386 ± 0.1490 7.2035 ± 0.1828 0.008b > 7.2178 59.5 71.8 0.639

Zone Percentage 0.4554 ± 0.0678 0.4623 ± 0.0806 0.527b

ZoneVariance 26.686 (86.459) 29.728 (160.183) 0.981a

Second order—gray leve dependence matrix (GLDM)

Dependence Entropy 7.410 ± 0.179 7.511 ± 0.194 < 0.001b > 7.489 62.2 69.2 0.666

Dependence Nonuniformity 85,241 (96,288) 138,809 (115,232) 0.001a > 94,982 74.3 55.6 0.646

Dependence NUN 0.2321 (0.0407) 0.2359 (0.0477) 0.314b

Dependence variance 2.077 (0.815) 1.983 (0.776) 0.281a

Dependence GLNU 13,166 (15,270) 17,013 (18,239) 0.031a > 15,837 58.1 59.8 0.593

GL Variance 95.750 ± 28.192 106.284 ± 25.285 0.010b > 95.667 73.0 53.0 0.618

High GLE 834.296 (424.553) 1047.474 (442.943) < 0.001a > 719.576 89.2 47.9 0.698

Low GLE (× 10–3) 2.408 (1.157) 1.801 (1.059) < 0.001a ≤ 2.126 68.9 63.2 0.672

Large Dependence Emphasis 8.245 (2.248) 8.690 (2.938) 0.419a

Small Dependence Emphasis 0.397 ± 0.055 0.403 ± 0.067 0.534b

Large DHGLE 5541.21 (2636.73) 7369.43 (3673.84) < 0.001a > 6562.75 70.3 58.4 0.708

Large DLGLE (× 10– 2) 1.979 (2.010) 1.388 (1.199) 0.001a ≤ 1.455 59.5 68.4 0.646

Small DHGLE 354.751 ± 134.628 435.646 ± 147.741 < 0.001b > 331.553 78.4 53.0 0.670

Small DLGLE (× 10– 4) 8.898 (4.828) 6.843 (3.277) < 0.001a ≤ 8.198 68.9 62.4 0.678
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It was observed that most of the parameters that were 
included in the logit-fit models also had high mean 
decrease accuracy values in the random forest model.

When the ROC curves of the models were evaluated by 
pairwise comparison [28], no significant difference was 
found between the RF model and the Combined logit fit 
model (Fig. 5).

Power analysis
On the post hoc analysis, for a difference of the mean for 
two independent groups including 117 and 74 patients 
with input parameters of a medium effect size (Cohen’s 
d = 0.5), two tails, and alpha = 0.05, the calculated power 
was 0.91.

Discussion
COVID-19 surges in the United States over the past two 
years were assessed by the CDC as three periods [29]. 
These are the Winter 2020–2021 period, the Delta period 
from July to November 2021, and the Omicron period 
that we are currently in, which started in December 2021. 
The maximum number of 7-day moving average ICU bed 
in use for COVID-19 was reported as 27,958 (January 

9–16, 2021) in the Winter 2020–2021 period, 24,775 
(September 6–13, 2021) in the Delta period, and 24,776 
(January 15, 2022) in the Omicron period [29]. It has 
been reported that the number of patients who required 
intensive care due to the Omicron variant is one-fourth 
compared to the Delta variant [30]. The lack of difference 
between the ICU admission numbers between the Omi-
cron period and the Delta period is due to the difference 
in the number of COVID-19 cases. While the maximum 
case number of 7-day moving average in the Delta period 
was 164,249, this value was reported as 798,976 in the 
Omicron period [29].

Since none of the 28 clinical, 21 volumetric, and 74 
radiomics parameters could reliably predict patients who 
would require ICU admission, clinical, radiological, and 
combined models were built, and the combined model 
provided the best predictions.

Models based solely on the clinical data emerged with 
easy accessibility and usability features. High fever, older 
age, elevated LDH, increased acute phase reactants and 
a decreased lymphocyte count were frequently reported 
in ICU candidates [4–11]. In our study, procalcitonin 
was distinguished as the parameter with the highest 

Table 5  Features of clinical, radiological and combined models in detecting ICU candidate COVID-19 patients

AUC​ area under curve, Spec% specificity %, Sens% sensitivity % (Recall), Acc% accuracy %, eGFR estimated glomerular filtration rate, AST aspartate aminotransferase, 
LDH lactate dehydrogenase, N/L neutrophil tolymphocyte ratio, GLCM gray level co-occurrence matrix, GLDM LDLGLE gray level dependence matrix 
LargeDependenceLowGrayLevelEmphasis, GLSZM LALGLE gray level size zone matrix LargeAreaLowGrayLevelEmphasis

*Standardized values, **Cut-off = 0.500, ***Model-specific cut-off, § 95% CI calculated via 1000 iterations of bootstrap resampling

Model features Training and 
validation set**

Test set***

Type Parameters p Odds Ratio* (95% CI) C-index 95% CI§ AUC​ Spec% Sens% Acc% Precision F1

Clinical model Age 0.002 1.057 (1.023–1.092) Training
0.846
0.824–0.866
Validation
0.805
0.724–0.869

0.736 79.17 66.67 74.36 66.67 0.67

Platelet count 0.117 0.995 (0.990–0.999)

eGFR 0.385 0.989 (0.966–1.014)

AST 0.322 1.016 (0.998–1.034)

LDH < 0.001 1.007 (1.003–1.011)

Procalcitonin < 0.001 8.542 (1.892–38.559)

Fever > 38 °C 0.092 3.418 (1.439–8.121)

Radiological model Percent infected lung 0.010 1.043 (1.009–1.078) Training
0.841
0.819–0.860
Validation
0.815
0.746–0.877

0.708 79.17 60.00 71.79 64.28 0.62

First order skewness < 0.001 0.029 (0.006–0.138)

First order RMAD 0.030 0.969 (0.942–0.997)

GLCM sumentropy 0.002 7.181 (1.974–26.128)

GLDM LDLGLE 0.005 5.486 (1.650–18.245)

Combined model Percent infected lung 0.015 1.048 (1009–1088) Training
0.897
0.882–0.914
Validation
0.853
0.787–0.905

0.794 87.50 73.33 82.05 78.57 0.76

First order skewness 0.001 0.012 (0.001–0.166)

GLCM clustershade 0.058 1.000 (1.000–1.001)

GLSZM LALGLE 0.002 1.525 (1.174–1.982)

N/L ratio 0.051 1.088 (1.000–1.184)

Platelet count 0.009 0.993 (0.987–0.998)

eGFR < 0.001 0.962 (0.942–0.983)

AST 0.024 1.021 (1.003–1.040)
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odds ratio value, and patients with chronic renal failure 
showed a significantly higher need for ICU care, which is 
consistent with previous publications [12].

In a study involving cases from 100 hospitals in South 
Korea, the presence or absence of chest X-ray findings 
did not significantly improve the clinical model outcomes 
when used as a parameter [12]. On the other hand, it 
has been reported that a better prediction was obtained 
when a deep-learning model, which was trained to dis-
criminate critical and noncritical chest X-ray findings, 
was combined with a clinical model [31].

In prognostic studies that have evaluated CT find-
ings, both increased volumes in pulmonary involvement 

[32] and an increased ratio of consolidation in pulmo-
nary lesions [33] were associated with an unfavorable 
prognosis. In our study, the percentage of infected lung 
parenchyma was included in the radiological and com-
bined models. The mean and median densities of the 
lesions were significantly higher in ICU patients, sug-
gesting a higher frequency of consolidation. However, 
this parameter was not included, and skewness was 
selected for the models by BIC. It has been previously 
shown that as the GGO areas in the lesions increase, 
the skewness value of the lesion also increases [18]. We 
showed that the skewness of the lesions was significantly 
higher in patients who did not require ICU admission. 

Fig.2  Calibration plot of Clinical (a), Radiological (b), and Combined (c) models
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Fig.3  Prediction probability score versus model score graph of clinical (a), radiological (b), and combined (c) models. In the ROC analysis of the 
cross-validation sets, the optimal cutoff values of the models were determined and marked by using the Youden index
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VSS, which includes the classification of lesions as GGO 
or consolidation, has been reported as an effective 
method in the evaluation of COVID-19 prognosis [34, 
35]. However, this method is reported to have reliability 
and reproducibility problems due to issues such as dif-
ficulty classifying lesions containing both areas of con-
solidation and GGO, and radiomics models were found 
to be more useful for predicting prognosis [36].

The total lung volume was 12% lower in the ICU group. 
Alveolar collapse is known to occur in patients with 
SARS-CoV-2 infection [37, 38], and surfactant reduc-
tion that results from the loss of alveolar type 2 cells, 
increased inflammatory cell migration to the interstitial 
space, and microvascular thrombosis may be responsi-
ble for this outcome [39]. Although the total lung volume 
was not directly entered into the models in the parameter 

Fig.4  Mean Decrease Accuracy of study parameters in Random Forest model. Features with the highest overall importance were indicated. PIL: 
Percent infected lung, PLT: Platelet count, LDH: Lactate dehydrogenase, CK: Creatine kinase, PCT: Procalcitonin

Fig. 5  ROC curves and their non-parametric pairwise comparison table of machine learning models in the study. The p values of the comparison 
results were given. RF: Random Forest model
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selections, it participated in the calculation of the percent 
of infected lung parameter.

Although segmentation can be performed manually 
in radiomics modeling studies related to COVID-19 
[18, 40], this method takes considerable time due to the 
large number of lesions per patient, and the reproduc-
ibility problem needs to be overcome. Methods such as 
the segmentation of the entire lung (healthy and dis-
eased), rather than individual lesions, have been sug-
gested [36].

Automated segmentation solves all of these problems. 
While the use of AI in CT sections is not recommended 
as a screening test, its use as a predictive and prognostic 
decision support system in hospitalized patients has been 
suggested [41]. In a study examining clinical data and the 
radiomic features calculated from automated segmenta-
tions, a combination model produced the best predic-
tions [19]. In our study, apart from radiomic parameters, 
the percent of infected lung parameter was included in 
the models. Thus, the subjective calculation of critical 
parameters, such as the lesion classification and the ratio 
of the diseased parenchyma in the VSS method, were 
solved, and the models were based on objective criteria. 
Additionally, volumetric parameters produced by auto-
mated segmentations are reportedly more accurate than 
human semiquantitative estimates [42].

The model that we propose for predicting the risk of 
ICU in the COVID-19 patient has two important fea-
tures. First, it does not solely use clinical data. Models 
that are solely based on laboratory parameters did not 
consider lung parenchyma involvement as a parameter, 
nevertheless all of the combined models in our study 
included more than one radiological parameter, regard-
less of the machine learning algorithm that was used. 
Second, the reproducibility problem of VSS methods has 
been resolved by using the segmentations of the deep 
learning algorithm that was trained with CT studies from 
multiple hospitals in affected countries across Europe. 
Thus, we believe that models based on non-subjective 
clinical and radiological data that require no parameter 
calculation effort and that provide reproducible results 
could be more widely used in the field and can help 
healthcare providers to make decisions and better organ-
ize hospitals’ resources.

This study has some limitations. First, these are the 
results of single center. However, we used automated 
segmentation, and CT data were resampled dur-
ing the radiomics parameter calculation. Second, the 
patient population was retrospectively selected from 
patients who had an indication for hospitalization, 
which could introduce selection bias. Third, the rela-
tionship between the antiviral treatment efficacy and 
the ICU requirements was not evaluated in this study 

since there is no definitively proven antiviral treatment 
for COVID-19. Fourth, we used an unbalanced data set; 
however, we increased the sensitivity by adding syn-
thetic data to the training set. Finally, patients with a 
contrast-enhanced examination were not included in 
this study since the radiomics parameters would be 
affected. We believe that a different model is required 
for embolism cases.

Conclusion
The model that was created by combining the radio-
logical parameters obtained by automated segmenta-
tion and the clinical parameters in COVID-19 patients 
requiring hospitalization was found to be useful as an 
objective method in predicting the risk of developing 
critical illness.

Abbreviations
AUC​: Area under curve; DCA: Decision curve analysis; DL: Deep learning; FiO2: 
Fraction of inspired oxygen; GGO: Ground glass opacities; GLCM: Gray level co-
occurrence matrix; GLDM: Gray level dependence matrix; GLRLM: Gray level 
run-length matrix; GLSZM: Gray level size zone matrix; IQR: Interquartile range; 
NLR: Neutrophil to lymphocyte ratio; PaO2: Partial pressure of oxygen; RMAD: 
Robust mean absolute deviation; ROC: Receiver operator characteristics; SD: 
Standard deviation; SMOTE: Synthetic Minority Oversampling TEchnique; 
SpO2: Oxygen saturation (estimated by pulse oximetry); VIF: Variance inflation 
factor; VSS: Visual severity score.

Acknowledgements
Authors would like to thank Angel Alberich-Bayarri for his support during the 
calculation of radiomics parameters and Cristobal Bautista Hernandez for his 
support during the development of the models.

Author contributions
MG: Conceptualization, data curation, AI results evaluation, statistics, writing. 
AB: Conceptualization, data curation, case selection, ethical evaluation of the 
study. EO: Data curation, AI results evaluation. BYO: Data curation, clinical find-
ings collection and evaluation of the cases. BARM: Data curation, radiologic 
findings evaluation of the cases. HB: Conceptualization, data curation, ethical 
evaluation of the study. All authors read and approved the final manuscript.

Funding
The authors state that this work has not received any funding.

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
Institutional Review Board approval was obtained. From, Ankara City Hospital 
Institutional Review Board No: 1. Email: ankarash.etikkurul@saglik.gov.tr. Fax: + 
90 312 552 99 82. Study No: 2090. IRB decision number: EK-E1-21-2090. All pro-
cedures performed in this study was in accordance with the ethical standards 
of the institutional and/or national research committee and with the 1964 Hel-
sinki Declaration and its later amendments or comparable ethical standards. 
This study has an IRB approval of an informed consent waiver.



Page 15 of 16Gülbay et al. BMC Medical Imaging          (2022) 22:110 	

Consent for publication
Not applicable.

Conflict of interest
The authors of this manuscript declare no relationships with any companies, 
whose products or services may be related to the subject matter of the article.

Author details
1 Department of Radiology, Ankara City Hospital, Üniversiteler Mahallesi 1604. 
Cadde No: 9, 06800 Çankaya, Ankara, Turkey. 2 Department of Infectious Dis-
eases and Clinical Microbiology, University of Health Sciences Turkey, Gülhane 
Faculty of Medicine, Ankara City Hospital, Ankara, Turkey. 3 Department of Clini-
cal Microbiology and Infectious Diseases, Ankara City Hospital, Ankara, Turkey. 

Received: 7 November 2021   Accepted: 27 May 2022

References
	1.	 COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 

(COVID-19) treatment guidelines. National Institutes of Health. Available 
at https://​www.​covid​19tre​atmen​tguid​elines.​nih.​gov/. Accessed 24 Oct 
2021.

	2.	 Goic M, Bozanic-Leal MS, Badal M, et al. COVID-19: short-term forecast of 
ICU beds in times of crisis. PLoS ONE. 2021;16(1):e0245272. https://​doi.​
org/​10.​1371/​journ​al.​pone.​02452​72.

	3.	 Pascarella G, Strumia A, Piliego, et al. COVID-19 diagnosis and manage-
ment: a comprehensive review (review). J Intern Med. 2020;288(2):192–
206. https://​doi.​org/​10.​1111/​joim.​13091.

	4.	 Ayaz A, Arshad A, Malik H, et al. Risk factors for intensive care unit admis-
sion and mortality in hospitalized COVID-19 patients. Acute Crit Care. 
2020;35(4):249–54. https://​doi.​org/​10.​4266/​acc.​2020.​00381.

	5.	 Vanhems P, Gustin MP, Elias C, et al. Factors associated with admission 
to intensive care units in COVID-19 patients in Lyon-France. PLoS ONE. 
2021;16(1):e0243709. https://​doi.​org/​10.​1371/​journ​al.​pone.​02437​09.

	6.	 Gong J, Ou J, Qiu X, et al. A tool to early predict severe corona virus 
disease 2019 (COVID-19): a multicenter study using the risk nomogram 
in Wuhan and Guangdong. China Clin Infect Dis. 2020;71(15):833–40. 
https://​doi.​org/​10.​1093/​cid/​ciaa4​43.

	7.	 Yan L, Zhang H-T, Xiao Y, Wang M, Sun C, Liang J, et al. Prediction of 
criticality in patients with severe Covid-19 infection using three clinical 
features: a machine learning-based prognostic model with clinical data in 
Wuhan. medRxiv. 2020. https://​doi.​org/​10.​1101/​2020.​02.​27.​20028​027.

	8.	 Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and 
validation of a clinical risk score to predict the occurrence of criti-
cal illness in hospitalized patients with COVID-19. JAMA Intern Med. 
2020;180(8):1081–9. https://​doi.​org/​10.​1001/​jamai​ntern​med.​2020.​2033.

	9.	 Caramelo F, Ferreira N, Oliveiros B. Estimation of risk factors for COVID-19 
mortality - preliminary results. medRxiv. 2020. https://​doi.​org/​10.​1101/​
2020.​02.​24.​20027​268.

	10.	 Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients with 
COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020. https://​doi.​
org/​10.​1093/​cid/​ciaa4​14.

	11.	 Xie J, Hungerford D, Chen H, Development and external validation of a 
prognostic multivariable model on admission for hospitalized patients 
with COVID-19. medRxiv. 2020. https://​doi.​org/​10.​1101/​2020.​03.​28.​20045​
997.

	12.	 Heo J, Han D, Kim HJ, et al. Prediction of patients requiring intensive 
care for COVID-19: development and validation of an integer-based 
score using data from Centers for Disease Control and Prevention 
of South Korea. J Intensive Care. 2021;9:16. https://​doi.​org/​10.​1186/​
s40560-​021-​00527-x.

	13.	 Liu S, Nie C, Xu Q, et al. Prognostic value of initial chest CT find-
ings for clinical outcomes in patients with COVID-19. Int J Med Sci. 
2021;18(1):270–5. https://​doi.​org/​10.​7150/​ijms.​48281.

	14.	 Wasilewski PG, Mruk B, Mazur S, Półtorak-Szymczak G, Sklinda K, Walecki J. 
COVID-19 severity scoring systems in radiological imaging: a review. Pol J 
Radiol. 2020;17(85):e361–8. https://​doi.​org/​10.​5114/​pjr.​2020.​98009.

	15.	 Yu Q, Wang Y, Huang S, et al. Multicenter cohort study demonstrates 
more consolidation in upper lungs on initial CT increases the risk 

of adverse clinical outcome in COVID-19 patients. Theranostics. 
2020;10(12):5641–8. https://​doi.​org/​10.​7150/​thno.​46465.

	16.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. 
They Are Data Radiol. 2016;278(2):563–77. https://​doi.​org/​10.​1148/​radiol.​
20151​51169.

	17.	 Zhang X, Wan D, Shao J, et al. A deep learning integrated radiom-
ics model for identification of coronavirus disease 2019 using com-
puted tomography. Sci Rep. 2021;11:3938. https://​doi.​org/​10.​1038/​
s41598-​021-​83237-6.

	18.	 Gülbay M, Özbay BO, Mendi BA, et al. A CT radiomics analysis of COVID-
19-related ground-glass opacities and consolidation: Is it valuable in 
a differential diagnosis with other atypical pneumonias? PLoS ONE. 
2021;16(3):e0246582. https://​doi.​org/​10.​1371/​journ​al.​pone.​02465​82.

	19.	 Wang D, Huang C, Bao S, et al. Study on the prognosis predictive model 
of COVID-19 patients based on CT radiomics. Sci Rep. 2021;11:11591. 
https://​doi.​org/​10.​1038/​s41598-​021-​90991-0.

	20.	 Wu Q, Wang S, Li L, et al. Radiomics analysis of computed tomography 
helps predict poor prognostic outcome in COVID-19. Theranostics. 
2020;10(16):7231–44. https://​doi.​org/​10.​7150/​thno.​46428.

	21.	 Huang S, Yang J, Fong S, et al. Artificial intelligence in the diagnosis of 
COVID-19: challenges and perspectives. Int J Biol Sci. 2021;17(6):1581–7. 
https://​doi.​org/​10.​7150/​ijbs.​58855.

	22.	 Saood A, Hatem I. COVID-19 lung CT image segmentation using deep 
learning methods: U-Net versus SegNet. BMC Med Imaging. 2021;21:19. 
https://​doi.​org/​10.​1186/​s12880-​020-​00529-5.

	23.	 Taylor S. Logistic regression: application to clinical classification. UC Davis 
Health—Clinical and Translational Science Center. https://​health.​ucdav​
is.​edu/​ctsc/​area/​Resou​rce_​Libra​ry/​docum​ents/​Logis​ticRe​gress​ion_​II_​
10Mar​ch2021.​pdf. Accessed 24 Oct 2021.

	24.	 Package ‘smotefamily’. https://​cran.r-​proje​ct.​org/​web/​packa​ges/​smote​
family/​smote​family.​pdf. Accessed 23 Jan 2022.

	25.	 Bayesian information criterion. https://​en.​wikip​edia.​org/​wiki/​Bayes​ian_​
infor​mation_​crite​rion. Accessed 23 Jan 2022.

	26.	 Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number 
of events per variable in logistic regression analysis. J Clin Epidemiol. 
1996;49(12):1373–9. https://​doi.​org/​10.​1016/​s0895-​4356(96)​00236-3.

	27.	 Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. 
BMC Bioinform. 2013. https://​doi.​org/​10.​1186/​1471-​2105-​14-​106.

	28.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44(3):837–45. https://​doi.​org/​10.​
2307/​25315​95.

	29.	 Trends in Disease Severity and Health Care Utilization During the Early 
Omicron Variant Period Compared with Previous SARS-CoV-2 High 
Transmission Periods—United States, December 2020–January 2022. 
https://​www.​cdc.​gov/​mmwr/​volum​es/​71/​wr/​mm710​4e4.​htm#​F1_​down. 
Accessed 26 Mar 2022.

	30.	 Abdullah F, Myers J, Basu D, et al. Decreased severity of disease during 
the first global omicron variant covid-19 outbreak in a large hospital in 
Tshwane, South Africa. Int J Infect Dis. 2022;116:38–42. https://​doi.​org/​10.​
1016/j.​ijid.​2021.​12.​357.

	31.	 Jiao Z, Choi JW, Halsey K, et al. Prognostication of patients with COVID-19 
using artificial intelligence based on chest x-rays and clinical data: a 
retrospective study. Lancet Digit Health. 2021;3:e286–94. https://​doi.​org/​
10.​1016/​S2589-​7500(21)​00039-X.

	32.	 Yuan M, Yin W, Tao Z, et al. Association of radiologic findings with mortal-
ity of patients infected with 2019 novel coronavirus in Wuhan, China. 
PLoS ONE. 2020;15(3):e0230548. https://​doi.​org/​10.​1371/​journ​al.​pone.​
02305​48.

	33.	 Cau R, Falaschi Z, Paschè A, et al. Computed tomography findings of 
COVID-19 pneumonia in Intensive Care Unit-patients. J Public Health Res. 
2021. https://​doi.​org/​10.​4081/​jphr.​2021.​2270.

	34.	 Wang X, Hu X, Tan W, et al. Multicenter study of temporal changes and 
prognostic value of a CT visual severity score in hospitalized patients 
with coronavirus disease (COVID-19). Am J Roentgenol. 2021;217:83–92. 
https://​doi.​org/​10.​2214/​AJR.​20.​24044.

	35.	 Zhao W, Zhong Z, Xie X, et al. Relation between chest CT findings and 
clinical conditions of coronavirus disease (COVID-19) pneumonia: a 
multicenter study. Am J Roentgenol. 2020;214(5):1072–7. https://​doi.​org/​
10.​2214/​AJR.​20.​22976.

https://www.covid19treatmentguidelines.nih.gov/
https://doi.org/10.1371/journal.pone.0245272
https://doi.org/10.1371/journal.pone.0245272
https://doi.org/10.1111/joim.13091
https://doi.org/10.4266/acc.2020.00381
https://doi.org/10.1371/journal.pone.0243709
https://doi.org/10.1093/cid/ciaa443
https://doi.org/10.1101/2020.02.27.20028027
https://doi.org/10.1001/jamainternmed.2020.2033
https://doi.org/10.1101/2020.02.24.20027268
https://doi.org/10.1101/2020.02.24.20027268
https://doi.org/10.1093/cid/ciaa414
https://doi.org/10.1093/cid/ciaa414
https://doi.org/10.1101/2020.03.28.20045997
https://doi.org/10.1101/2020.03.28.20045997
https://doi.org/10.1186/s40560-021-00527-x
https://doi.org/10.1186/s40560-021-00527-x
https://doi.org/10.7150/ijms.48281
https://doi.org/10.5114/pjr.2020.98009
https://doi.org/10.7150/thno.46465
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/s41598-021-83237-6
https://doi.org/10.1038/s41598-021-83237-6
https://doi.org/10.1371/journal.pone.0246582
https://doi.org/10.1038/s41598-021-90991-0
https://doi.org/10.7150/thno.46428
https://doi.org/10.7150/ijbs.58855
https://doi.org/10.1186/s12880-020-00529-5
https://health.ucdavis.edu/ctsc/area/Resource_Library/documents/LogisticRegression_II_10March2021.pdf
https://health.ucdavis.edu/ctsc/area/Resource_Library/documents/LogisticRegression_II_10March2021.pdf
https://health.ucdavis.edu/ctsc/area/Resource_Library/documents/LogisticRegression_II_10March2021.pdf
https://cran.r-project.org/web/packages/smotefamily/smotefamily.pdf
https://cran.r-project.org/web/packages/smotefamily/smotefamily.pdf
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://doi.org/10.1016/s0895-4356(96)00236-3
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.2307/2531595
https://doi.org/10.2307/2531595
https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm#F1_down
https://doi.org/10.1016/j.ijid.2021.12.357
https://doi.org/10.1016/j.ijid.2021.12.357
https://doi.org/10.1016/S2589-7500(21)00039-X
https://doi.org/10.1016/S2589-7500(21)00039-X
https://doi.org/10.1371/journal.pone.0230548
https://doi.org/10.1371/journal.pone.0230548
https://doi.org/10.4081/jphr.2021.2270
https://doi.org/10.2214/AJR.20.24044
https://doi.org/10.2214/AJR.20.22976
https://doi.org/10.2214/AJR.20.22976


Page 16 of 16Gülbay et al. BMC Medical Imaging          (2022) 22:110 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	36.	 Homayounieh F, Ebrahimian S, Babaei R, et al. CT radiomics, radiologists, 
and clinical information in predicting outcome of patients with COVID-19 
pneumonia. Radiol Cardiothorac Imaging. 2020;2:4. https://​doi.​org/​10.​
1148/​ryct.​20202​00322.

	37.	 Iwasawa T, Sato M, Yamaya T, et al. Ultra-high-resolution computed 
tomography can demonstrate alveolar collapse in novel coronavirus 
(COVID-19) pneumonia. Jpn J Radiol. 2020;38:394–8. https://​doi.​org/​10.​
1007/​s11604-​020-​00956-y.

	38.	 Shi F, Wei Y, Xia L, et al. Lung volume reduction and infection localiza-
tion revealed in Big data CT imaging of COVID-19. Int J Infect Dis. 
2021;102:316–8. https://​doi.​org/​10.​1016/j.​ijid.​2020.​10.​095.

	39.	 Savaş R, Öz ÖA. Evaluation of lung volume loss with 3D CT volumetry in 
COVID-19 patients. Diagn Interv Radiol. 2021;27:155–6. https://​doi.​org/​10.​
5152/​dir.​2020.​20451.

	40.	 Wang L, Kelly B, Lee EH, et al. Multi-classifier-based identification of 
COVID-19 from chest computed tomography using generalizable and 
interpretable radiomics features. Eur J Radiol. 2021;136:109552. https://​
doi.​org/​10.​1016/j.​ejrad.​2021.​109552.

	41.	 Neri E, Miele V, Coppola F, et al. Use of CT and artificial intelligence in 
suspected or COVID-19 positive patients: statement of the Italian Society 
of Medical and Interventional Radiology. Radiol Med. 2020;125(5):505–8. 
https://​doi.​org/​10.​1007/​s11547-​020-​01197-9.

	42.	 Kanne JP, Bai H, Bernheim A, et al. COVID-19 imaging: what we know now 
and what remains unknown. Radiology. 2021;299(3):E262–79. https://​doi.​
org/​10.​1148/​radiol.​20212​04522.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1148/ryct.2020200322
https://doi.org/10.1148/ryct.2020200322
https://doi.org/10.1007/s11604-020-00956-y
https://doi.org/10.1007/s11604-020-00956-y
https://doi.org/10.1016/j.ijid.2020.10.095
https://doi.org/10.5152/dir.2020.20451
https://doi.org/10.5152/dir.2020.20451
https://doi.org/10.1016/j.ejrad.2021.109552
https://doi.org/10.1016/j.ejrad.2021.109552
https://doi.org/10.1007/s11547-020-01197-9
https://doi.org/10.1148/radiol.2021204522
https://doi.org/10.1148/radiol.2021204522

	Evaluation of the models generated from clinical features and deep learning-based segmentations: Can thoracic CT on admission help us to predict hospitalized COVID-19 patients who will require intensive care?
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Study population
	CT protocol
	Deep learning segmentation and radiomics feature calculation
	Statistical analysis

	Results
	Group features, demographics, symptoms and findings
	Laboratory findings
	DL segmentation findings and radiomics
	Predictive logit-fit models
	Test set features and test set results of logit-fit models
	Synthetic data generation and random forest algorithm
	Power analysis

	Discussion
	Conclusion
	Acknowledgements
	References


