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Abstract 

Background:  Melanoma is the most dangerous and aggressive form among skin cancers, exhibiting a high mor-
tality rate worldwide. Biopsy and histopathological analysis are standard procedures for skin cancer detection and 
prevention in clinical settings. A significant step in the diagnosis process is the deep understanding of the patterns, 
size, color, and structure of lesions based on images obtained through dermatoscopes for the infected area. However, 
the manual segmentation of the lesion region is time-consuming because the lesion evolves and changes its shape 
over time, making its prediction challenging. Moreover, it is challenging to predict melanoma at the initial stage as it 
closely resembles other skin cancer types that are not malignant as melanoma; thus, automatic segmentation tech-
niques are required to design a computer-aided system for accurate and timely detection.

Methods:  As deep learning approaches have gained significant attention in recent years due to their remarkable 
performance, therefore, in this work, we proposed a novel design of a convolutional neural network (CNN) framework 
based on atrous convolutions for automatic lesion segmentation. This architecture is built based on the concept of 
atrous/dilated convolutions which are effective for semantic segmentation. A deep neural network is designed from 
scratch employing several building blocks consisting of convolutional, batch normalization, leakyReLU layer, and fine-
tuned hyperparameters contributing altogether towards higher performance.

Conclusion:  The network was tested on three benchmark datasets provided by International Skin Imaging Col-
laboration (ISIC), i.e., ISIC 2016, ISIC 2017, and ISIC 2018. The experimental results showed that the proposed network 
achieved an average Jaccard index of 90.4% on ISIC 2016, 81.8% on ISIC 2017, and 89.1% on ISIC 2018 datasets, 
respectively which is recorded as higher than the top three winners of the ISIC challenge and other state-of-the-art 
methods. Also, the model successfully extracts lesions from the whole image in one pass in less time, requiring no 
pre-processing step. The conclusions yielded that network is accurate in performing lesion segmentation on adopted 
datasets.
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Introduction
Skin cancer is caused by the growth of cancerous cells 
that proliferate in an abnormal and uncontrolled man-
ner in the topmost layer of the skin called the epidermis. 
The primary reason for the occurrence of skin cancer is 
direct exposure to ultraviolet sun rays for longer hours 
producing a pigment known as melanin in the upper skin 
layer [1]. Moreover, fair complexion, sunburn, genetic 
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history, and weak immune system are other risk factors 
that contribute to the formation of skin cancer [2]. There 
are different types of skin cancer, such as squamous cell 
carcinoma, basal cell carcinoma, and melanoma [3], 
where melanoma is the most aggressive form of cancer 
comparatively. According to the statistics reported by the 
American skin cancer society [4], melanoma is the 19th 
most commonly found problem worldwide, and 100,350 
new cases of melanoma were anticipated in the USA, 
16221 in Australia, and 2500 in New Zealand in 2020 [5]. 
In terms of pricing, it has been estimated that the cost of 
treating skin cancer is 3.3 billion per year [6, 7]; thus, it is 
the most expensive procedure for the health systems.

Moreover, melanoma has become a critical pub-
lic health concern for clinicians and researchers who 
emphasize reducing the mortality rate with early diag-
nosis. Detecting melanoma early can increase the sur-
vival rate. In clinical settings, trained specialists such 
as dermatologists commonly diagnose melanoma from 
dermoscopic lesion images based on Asymmetry, Bor-
der, Color, Diameter, and Evolution (ABCDE) [8] char-
acteristics which is a very time-consuming process. 
Other methods used by dermatologists for perform-
ing visual examination are biopsy and histopathologi-
cal analysis. The major problem in these traditional 
diagnostic procedures is time, high cost, and variation 
inaccuracy. Thus, computer-aided design (CAD) sys-
tems are widely adopted for the timely detection of 
melanoma, where cancer image segmentation is the 
most crucial process in CAD for the detailed analysis of 
lesion structure. The heterogeneous appearance of the 
lesion area in terms of color, size, shape, location, and 
texture makes the segmentation task very challenging, 

as shown in image samples of Fig.  1. Therefore, there 
is a need for an automatic segmentation approach to 
assist dermatologists in understanding the nature and 
pattern of the lesion area. Also, this method is sig-
nificant for automatically generating the ground truth 
images which were previously annotated manually by 
dermatologists.

Recent advances in artificial intelligence, particularly 
deep learning, offered numerous automatic and accurate 
identification advantages. Therefore, for extracting accu-
rate lesion patterns in skin cancer images, a novel deep 
neural framework is proposed that proved to be a suita-
ble segmentation approach based on the obtained results 
for the given datasets. We also embedded the atrous con-
volutions [9] in the feature extraction layers of the net-
work, which improved performance and maintained the 
spatial resolution of the segmented images. In addition to 
this, the design of a deeper network allows the extraction 
of shallow features and in-depth features for performing 
more accurate segmentation. The designed network was 
evaluated on a benchmark dataset collected from the last 
three years (2016, 2017 and 2018) by ISIC [10–13].

Our contributions are listed as: (a) a new design of 
the CNN network organized into five building blocks 
for extracting low-level features to high-level features to 
allow auto segmentation on the whole image rather than 
processing a patch or subset, (b) incorporating an atrous 
dilation rate in each convolution feature layer to capture 
lesion and image at different scales, (c) a careful place-
ment of many leakyReLU activation functions in each 
block instead of standard ReLU because the former has 
a small slope for negative values that makes the network 
learns faster and is more balanced.

Fig. 1  Examples of noise artifacts. a Irregular boundaries, b blood vessels, c hairlines, d color illumination, e bubbles, f low contrast
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This framework is designed to meet two main chal-
lenges: (a) lesion segmentation with high performance on 
images containing irregularities and non-uniform bor-
ders, (b) achieving low inference time, making the net-
work faster.

Background
Researchers have made several attempts to develop image 
segmentation techniques for accurate lesion extraction. 
In the literature, segmentation approaches have been 
categorized into six categories: Edge-based methods 
[14], Thresholding-based methods [15], Clustering [16], 
Active contour [17], and Supervised approaches such as 
ANN [18]. Deep learning has been widely used for clas-
sification and object detection, where the idea of apply-
ing it to semantic segmentation has been an active area of 
research over the past few years.

Deep neural networks are effectively applied in seman-
tic segmentation tasks to label each pixel with a class of 
object or non-object region. Some of the most popular 
CNNs proposed by the researchers to attempt segmenta-
tion task were fully convolutional neural network (FCN) 
[19], deconvolution networks (DeconvNet) [20] as an 
extension to FCN networks, SegNet [21], and UNet [22]. 
They are purely data-dependent, so their performance 
differs depending on the problem domain. A few limita-
tions exist in the design of these networks, such as FCN 
uses pooling layers that reduce resolution and discards 
essential image information. However, semantic segmen-
tation requires exact knowledge of class maps and needs 
to preserve ’where’ information. Similarly, the encoder-
decoder networks (SegNet and UNet) are efficient in 
maintaining output image resolution for some problem 
domains; however, networks become heavy and take high 
execution time due to many sampling and downsampling 
layers. In contrast, the concept of atrous convolutions 
introduced by Chen et  al. [23] allows direct control of 
the resolution to preserve feature map information com-
puted in the deep convolutional layers but have a high 
computation time due to its large network design.

Many studies proposed an extended version of these 
networks to perform segmentation of melanoma. For 
example, Kawahara et al. [24] extended VGG16 architec-
ture to perform lesion segmentation by eliminating its 
fully connected layers and resizing the final feature map 
so that it matches with the output size. Bi et al. [25] pro-
posed an FCN based ResNet model that learns the visual 
features of the lesion corresponding to each class based 
on their probability. This network is significantly differ-
ent from other networks as it segments images accord-
ing to their category and learns more in-depth features. 
Another work of Yu et  al. [26] presented a very deep 
residual network having 50 layers to calculate rich and 

more significant features for accurate recognition. Resid-
ual learning was applied to prevent overfitting and deg-
radation problems of the convolutional neural networks. 
For lesion segmentation using a convolutional network, 
Al-Masni et al. [27] presented the full resolution convo-
lutional network (FRCN) without any preprocessing. The 
VGG16 layers inspired the network by removing their 
subsampling layers to preserve pixels in their full resolu-
tion. According to work presented in [28] a convolutional 
multistage segmentation network is highly efficient in 
obtaining lesions from skin cancer images. In this, mul-
tiple stages of the network integrated outputs from dif-
ferent blocks combined with other steps. To create a fine 
segmentation mask, the network used pixel classification. 
In a study by Hassan et al. [29] dermoscopic skin network 
(DSNet) was used to segment lesions. A deeper view of 
the feature maps was obtained by using depth-wise sep-
arable convolutions instead of standard convolutions. 
A similar type of lesion segmentation work can be seen 
in the [30–33] that given different approaches for lesion 
segmentation either inspired by existing networks or 
extending them using transfer learning.

Recent developments have heightened the need for a 
melanoma detection system, and considerable literature 
has grown up around the theme of lesion segmentation. 
It has been analyzed that the most popular network’s 
choices for semantic segmentation are U-Net, FCN, and 
SegNet, containing sampling and upsampling layers to 
maintain the spatial resolution of the output. The major 
problem in these networks is that they suffer from a low 
spatial resolution output due to the repetitive use of max-
pooling and striding at consecutive layers. Moreover, 
the optimized, extended, and customized frameworks 
proposed in the literature for lesion segmentation tasks 
still exhibit difficulties such as low performance or high 
execution time due to complex architectures. These 
networks have not given satisfactory performance on 
the adopted skin cancer dataset. Hence, there is prob-
ably room for further improvement in performance by 
designing a new architecture. In the proposed work, we 
employ atrous convolutions that effectively maintain the 
segmented image’s resolution. The network is designed 
from scratch by organizing different layers of the net-
work, fine-tuning hyperparameters, and using a suitable 
loss function. This network has the advantage of being a 
small network with low execution time, minimal learning 
parameters, and high performance.

Methods and materials
This section explains the preparation of the dataset used 
for training, validation, and test, architectural details of 
the atrous convolution-based deep neural network, and 
discussion of metrics used for performance evaluation.
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Datasets
In this study, three benchmark datasets were acquired 
from open-access dermatology repositories, ISIC archive 
[10–13], containing dermoscopic images of different skin 
cancer types such as Basal cell carcinoma (BCC), Mela-
noma, Squamous, and Nevus, including their ground 
truths which were used for training, validation, and test-
ing purposes. The ISIC 2016 dataset contains 900 train-
ing and 379 testing images, ISIC 2017 has 2000 training, 
150 validation, 366 testing images, and ISIC 2018 consist 
of 2594 training and 100 validation. The ISIC 2016 chal-
lenge has not provided external validation data; hence, 
the training set was divided in the ratio of 7:3 into train-
ing (630 images) and validation sets (270 images). Simi-
larly, in ISIC 2018 challenge, the ground truth for test 
data was not provided; hence, the 30% of training data 
was used for testing purposes. The details of data avail-
able based on three years divided into different sets are 
given in Table 1.

The proposed approach targets dermoscopic images, 
which were produced by dermatoscopes. Available 
images are 8-bit with size ranges from 540× 722 to 

4499× 6748 pixels. These images cannot be used directly 
for the network’s training due to their large size; thus, 
images are downsized to 192× 256× 3 dimensions 
using the nearest-neighbor interpolation technique. The 
principle idea used in this resizing method is to have an 
original image as a reference image based on which a new 
rescaled image is constructed. The constructed image 
results in a smaller size maintaining the aspect ratio and 
resolution as the original image. Different image sizes 
were taken into consideration during experiments, such 
as 224 × 224 , 227× 227 , 256× 297 but 192× 256× 3 
had given the best performance for the proposed net-
work. Data augmentation with rotation at an angle 
between [15◦, 20◦] , scaling, and translation with factors 
[−6, 5] is applied to enlarge the training dataset and to 
overcome the problem of underfitting or overfitting that 
occurs in neural networks owing to the insufficient avail-
ability of data.

Proposed DilatedSkinNet architecture
With the invention of atrous convolutions in CNN archi-
tecture by Chen et al. [9, 23] to achieve a wider field of 
view, research on the development of dilated CNN 
networks continued for different applications, and a 
high execution time is one of the significant challenges 
required to achieve. In this paper, we designed an end-
to-end trainable deep neural network architecture having 
16 convolutional layers with different dilation factors, as 
shown in Fig. 2. The structure of DilatedSkinNet is inter-
preted in two primary steps: feature extraction and pixel 
classification. Using multiple scaling rates, the network 

Table 1  Details of the ISIC challenge data

Dataset name Training Validation Test

ISIC 2016 630 270 379

ISIC 2017 2000 150 366

ISIC 2018 1816 100 780

Total 4446 520 1525

Fig. 2  DilatedSkinNet architecture. An overall layered structure of the proposed method
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used atrous convolutions to enlarge the filter’s view. 
The pooling operation used in other semantic networks 
reduces the dimensional size of output feature vectors 
and the loss of information. In contrast, dilated con-
volutions expand the receptive field’s view to obtain in-
depth information without using pooling operation and 
are suitable for maintaining the spatial resolution of the 
segmented image. This section discusses the working of 
networks divided among various layers such as feature 
extraction, use of atrous convolutions, normalization, 
activation function, and classification.

Feature extraction
The convolutional layer in the network is responsible for 
performing the feature calculation process. The initial 
image is divided into multiple sub-blocks based on a cer-
tain size and those sub-blocks compute features of the 
input image. The feature calculation is a process where a 
small matrix called kernel or filter slides over an image 
and transforms the image pixel’s values as:

Here mh is the height, mw is width, and mc is the number 
of channels of an input image I. The number of channels 
of a kernel needs to be the same as the channels of an 
input image. The other parameters that we set artificially 
in the convolution layer are stride and padding. However, 
the dilation rate is set in each convolutional layer, so the 
stride and padding are zero in the network. Multiple fil-
ters are used in each convolutional layer to generate fea-
ture maps (see Table 2). The advantage of using multiple 
filters is that each filter convolves over the whole image 
separately to calculate many different features and pro-
duces the rich feature map used by the next layers.

(1)C(I,K)x,y =

mh
∑

i=1

mw
∑

j=1

mc
∑

k=1

Ix+i−1,y+j−1,k ∗ Ki,j

Atrous/dilation CNN model
The use of atrous convolutions with different dilation 
rates at each convolutional layer helps extract a rich 
feature map. It allows increasing the view of the filter’s 
field (the space of the input vector that a layer can see) 
to assimilate a larger context. Therefore, it provides an 
efficient methodology to determine the best trade-off 
between correct localization and context absorption 
without increasing the computational parameters.

In the convolutional layers, the convolution opera-
tion is performed by sliding a template over an image 
for extracting features. We used atrous convolutions 
instead of general convolutions, which are decisive for 
extracting more contextual information. The standard 
convolutional operation is described in  (2) with the 
dilation rate always ‘1’.

whereas,  (3) describes the atrous convolution operation 
when the dilation rate is more than ‘1’.

We used two kernel sizes, 3× 3 and 1× 1 , in the atrous 
convolutional layers with different dilation rates at each 
layer to overcome the ‘gridding effect’ that occurs due 
to the use of the same dilation rate. The dilation factor 
increased at a rate of ‘2’ at each successive 2-dimensional 
convolutional layer. Figure  3 represents the impact of 
using dilation rate ‘2’, ‘2’ and ‘4’ on filter’s view over an 
input image.

(2)C[i] =

S
∑

s=1

I[i + s] ∗ K[i]

(3)C[i] =

S
∑

s=1

I[i + s.r] ∗ K[i], r ≥ 2

Fig. 3  Standard convolution. a Rate = 1, Atrous convolution, b rate = 2, c rate = 4
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Data normalization
The batch normalization is used to speed up the process of 
network learning using internal normalization values. The 
word ‘batch’ refers to the group or set of data processed at 
a time, where mini-batch size is a variation of the gradient 
descent algorithm that splits the training dataset into small 
batches to calculate network error and update network 
coefficients. This layer in the network is used to normal-
ize each input according to the mini-batch size. The batch 
normalization layer performs a series of operations to nor-
malize the data. Firstly, the standardization process con-
verts the batch of input data so that their mean is zero and 
the standard deviation is one. The mean (µ) is computed 
using (4) by summing up all inputs (xi) of the batch (B) and 
divided by the total number of inputs (n). The resultant 
vector contains each input sample’s mean value. The vari-
ance (σ 2

B
) (5) is obtained by squaring the standard deviation 

of the input. It is computed by taking the square of each 
input sample (xi) in the current batch (B) subtracted from 
the mean (µB).

(4)mean,µB =
1

N

N
∑

i=1

xi

(5)variance, σ 2
B =

1

N

N
∑

i=1

(xi − µB)
2

In the following operation (6), the mean value of the cur-
rent batch is subtracted from each input instance and 
divided by the square root of addition between stand-
ard deviation and smoothing term ǫ . This term is set 
as ‘0.00005’ to avoid division by a zero number in the 
calculations.

Finally, the output of the batch normalization process 
is obtained by re-scaling γ and offsetting β of the input 
values using (7). These two parameters were learned dur-
ing the training process and optimized to ensure accurate 
normalization.

The batch normalization is generally placed between the 
convolutional and ReLU layers to stabilize the learning 
process and reduce the number of epochs. After each 
convolutional layer, the batch normalization is to reduce 
the internal covariate shift, which significantly improves 
the network’s learning efficiency.

Activation function
The activation function used in the network is leakyReLU, 
which applies the threshold function to each element in 
the input and multiplies all negative values by a fixed scalar 

(6)x̂i =
xi − µB
√

σ 2
B + ǫ

(7)BNγβ(xi) or yi = γ x̂i + β

Table 2  Architecture details of the DilatedSkinNet

Block Layer Kernel size, Atrous dilation Output size
Feature maps Rate

Input layer 192× 256× 3 – – 192× 256× 3

Block 1 Conv1 3× 3 , 8 1 192× 256× 8

Block 2 Conv2_1 3× 3 , 16 2 192× 256× 16

Conv2_2 3× 3 , 16 4 192× 256× 16

Block 3 Conv3_1 3× 3 , 32 4 192× 256× 32

Conv3_2 1× 1 , 16 6 192× 256× 16

Conv3_3 3× 3 , 32 8 192× 256× 32

Block 4 Conv4_1 3× 3 , 64 8 192× 256× 64

Conv4_2 1× 1 , 32 10 192× 256× 32

Conv4_3 3× 3 , 64 10 192× 256× 64

Conv4_4 3× 3 , 64 12 192× 256× 64

Block 5 Conv5_1 3× 3 , 128 12 192× 256× 128

Conv5_2 1× 1 , 64 12 192× 256× 64

Conv5_3 3× 3 , 128 14 192× 256× 128

Conv5_4 1× 1 , 64 14 192× 256× 64

Conv5_5 3× 3 , 128 14 192× 256× 128

final_Conv 1× 1 , 2 – 192× 256× 2

Softmax – – 192× 256× 2

OutPutMap Pixel classification Cross entropy Loss function 192× 256× 2
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‘a’. This layer passes the output element as the input to the 
next layer directly if it is positive; otherwise, it outputs to a 
value multiplied by ‘a’ as given:

In the proposed CNN, the scalar ‘a’ value is set as ‘0.1’. 
The activation function is responsible for transform-
ing the summed weighted input from the node into the 
node’s activation.

Classification
In the second part of the proposed network, instead of fully 
connected layers, a 1× 1 convolutional layer was created 
to flatten the feature maps and minimize the number of 
channels. Then, the SoftMax layer was used, accepting the 
sparse feature sets as input for classifying each pixel of the 
image into two defined classes, i.e., lesion and background. 
The SoftMax function normalizes the weighted sum feature 
values to probability scores between 0 and 1. The output of 
this layer was the probability of each pixel mapped to each 
class. The last layer of the network was the pixel classifica-
tion layer that produces a categorical label (background or 
lesion) for each pixel based on the probability score gener-
ated by the SoftMax layer. This layer also uses a loss func-
tion to calculate the network’s prediction error rate. Over 
several iterations, the network’s training is repeated to min-
imize the loss function’s value. The structural details of the 
network illustrating a design of layers, kernel size, number 
of filters, and dilation rate are explained in Table 2.

Model training
The network is trained and optimised depending upon the 
loss function that measures the error between the predic-
tion score P and target T. In this paper, the weighted cross-
entropy loss [34] function was employed to measure the 
error as:

Here, N is the number of observations, K is the number 
of classes, and w is a vector of weights determined by the 
network for each class. The stochastic gradient descent 
algorithm is used to update the network weights and 
biases to reduce the loss value by applying small changes 
in the direction of optimization.

Here i is the number of iterations, α > 0 is the learn-
ing parameter (set as ‘0.01’), θ is a parameter vector, and �
L(θi) is the gradient of the loss function. The algorithm 

(8)leakyReLU =

{

a*x, x < 0,
x, x ≥ 0

(9)Loss =
1

N

K
∑

i=1

N
∑

n=1

wiTni log(Pni)

(10)θi+1 = θi − α
�

L(θi)

evaluates the gradient at each iteration and updates 
parameters over a mini-batch set. The larger weight 
values can cause a network to be stuck into the local 
minima; thus momentum term is added in the gradi-
ent descent algorithm to reduce the oscillations as given 
in  (11). The values of these hyperparameters set for the 
network’s training are shown in Table 3.

Evaluation metrics
The performance of the proposed DilatedSkinNet is 
evaluated quantitatively using performance metrics such 
as accuracy (ACC), Jaccard index (JAC), and Dice-coef-
ficient (DICE). The value of these parameters was calcu-
lated for the test dataset and is expected to be higher for 
good segmentation results. The ACC parameter indicates 
the number of corrected pixels identified over the total 
number of pixels. A statistical measure to determine the 
similarity ratio between the ground truth and predicted 
label is known as the JAC index. The DICE computes the 
boundary contour matching index between the predicted 
and accurate segmentation in the ground truth.

The parameters TP, TN, FP, and FN, denotes the true pos-
itives, true negatives, false positives, and false negatives, 
respectively, which are elements of the confusion matrix. 
TP represents those pixels that are segmented correctly, 
whereas incorrectly segmented pixels are considered FN. 

(11)θi+1 = θi − α
�

L(θi)+ γ (θi − θi+1)

(12)ACC =
TP + TN

TP+ TN + FP+ FN

(13)JAC =
TP

TP+ FP+ FN

(14)DICE =
2 ∗ TP

2 ∗ TP + FP + FN

Table 3  Optimised hyperparameters during training

Parameter Values

Input Image size 192× 256× 3

Batch size 16

Learning parameter,   α 0.01

L2Regularization 0.005

Momentum,   γ 0.9

Loss function,   E(θ) Weighted 
cross entropy 
loss

Optimiser SGDM
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On the other hand, non-lesion pixels, if classified cor-
rectly then considered TN; otherwise, FP.

Results and discussion
The proposed network is trained for three years’ data-
sets (ISIC 2016–2018) separately, having 4446 training 
images, 520 validation, and 1525 test images. The pro-
posed network is implemented in Matlab 2020a with 
GeForce GTX 1080 Ti hardware configuration with a 
computation capacity ‘7.5’. To show the impact of using 
data augmentation, atrous convolutions, leakyReLU acti-
vation function, and use of sigmoid layer on the perfor-
mance of the model are displayed in Table 4. It illustrated 
that the proposed model with augmentation, atrous con-
volutions, leakyReLU, and softmax achieved higher ACC, 
JAC, and DICE index with low training time than the 
network without them.

In order to illustrate the generalization of the proposed 
model, we trained the network on the ISIC 2018 set and 
evaluated it on the PH2 dataset, ISIC 2016, and ISIC 2017 
test sets as illustrated in Table  5. The network trained 
on ISIC 2018 and tested on ISIC 2016 and 2017 test sets 
showed higher performance with a margin of ( ±1% ) than 
the network trained individually on ISIC 2016–2018 
datasets and evaluated on their respective test sets. For 
example, the ACC increased from 94.0 to 95.0%, 87.9 to 
88.8% on ISIC 2016 and 2017 test sets, respectively. Addi-
tionally, a dataset PH2 [35] which is widely used in liter-
ature studies is included and evaluated using ISIC 2018 
trained network.

The visual outputs predicted by the proposed model 
for a few samples are shown in Fig. 4 that closely resem-
bles the expected ground truths. Further, in Table 6, the 
results of the given model are demonstrated in com-
parison to the existing semantic segmentation networks 
named UNet, SegNet, and DeepLabv3+. The proposed 
network showed better performance as compared to the 
existing segmentation frameworks. The networks were 
trained by fine-tuning them on the same datasets for 

conducting a fair comparison. The pixel classification 
block of these networks was replaced by the new layers 
segmenting an image into two classes; lesion and back-
ground. The same hyperparameter configuration is used, 
and networks are trained from end to end for training 
these networks.

The performance of these networks is recorded on the 
individual test sets of three years. The proposed network 
achieved an average ACC 95.0%, JAC 90.4%, and DICE 
94.9% on ISIC 2016, ACC 88.8%, JAC 81.8%, DICE 88.4% 
on ISIC 2017, and ACC 94.2%, JAC 89.1%, DICE 94.2% 
on ISIC 2018 dataset. In contrast to this, the JAC index 
computed by the UNet was 79.8%, 68.7%, and 79.3%, 
SegNet computed JAC of 81.3%, 67.9%, 73.0%, and Dee-
pLabv3+ gained JAC of 89.2%, 73.0%, and 88.8% on ISIC 
2016, 2017 and 2018 datasets respectively. The results 
show that the proposed network generalized well on the 
test sets compared to the state-of-the-art semantic seg-
mentation networks. Moreover, the primary advantage of 
the proposed networks is that it yields high performance 
in less inference time comparatively. The graphs in Figs. 5 
and  6 shows higher accuracy achieved by the Dilated-
SkinNet on ISIC 2016–2018 test and validation sets, 
respectively, in comparison to the SegNet, UNet, and 
DeepLabv3+ networks. Moreover, the box plots in Fig. 7 
demonstrate that DilatedSkinNet is efficient in extracting 
lesion information with a high JAC score as compared to 
the other models.

To prove the robustness of the network, we compared 
our model with the top winners of the ISIC challenge 

Table 4  Performance comparison of the DilatedSkinNet with its modified architectures

Time is in seconds on test sets

 The higher values are marked in bold

Methods ISIC 2016 ISIC 2017 ISIC 2018

ACC​ JAC DICE Time (s) ACC​ JAC DICE Time (s) ACC​ JAC DICE Time (s)

DilatedSkinNet 0.940 0.887 0.940 10 0.879 0.817 0.874 9 0.942 0.891 0.942 14
Without atrous 0.853 0.735 0.513 12 0.758 0.556 0.460 16 0.825 0.635 0.510 21

Without leakyReLU 0.935 0.855 0.622 11 0.874 0.784 0.578 14 0.863 0.736 0.556 19

Without augmentation 0.945 0.884 0.679 11.8 0.885 0.788 0.559 12.6 0.942 0.854 0.643 16.5

Sigmoid layer 0.450 0.329 0.496 27 0.465 0.338 0.506 27 0.499 0.331 0.498 51

Table 5  Evaluation of DilatedSkinNet trained with ISIC 2018 and 
tested on PH2 , ISIC 2016 and 2017 tests sets

Datatset ACC​ JAC DICE

PH
2 0.900 0.891 0.708

ISIC 2016 test set 0.950 0.904 0.949

ISIC 2017 test set 0.888 0.818 0.884
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Fig. 4  Exemplary pairs of the segmentation result using DilatedSkinNet. The first row shows original images, second row are gold images and the 
last row are segmented images a irregular boundaries, b blood vessels, c hairlines, d color illumination, e bubbles, f low contrast

Table 6  Performance comparison of the DilatedSkinNet with UNet, SegNet, and DeepLabv3+ on ISIC 2016–2018 test sets

Time is in seconds on test sets

 The higher values are marked in bold

Methods ISIC 2016 ISIC 2017 ISIC 2018

ACC​ JAC DICE Time (s) ACC​ JAC DICE Time (s) ACC​ JAC DICE Time (s)

U-Net [22] 0.854 0.798 0.832 11 0.764 0.687 0.696 10 0.842 0.793 0.815 24

SegNet [21] 0.908 0.813 0.907 16 0.822 0.679 0.818 16 0.880 0.730 0.879 33

DeepLabv3+ [23] 0.952 0.892 0.952 16 0.878 0.730 0.881 19 0.939 0.888 0.941 20

DilatedSkinNet 0.950 0.904 0.949 10 0.888 0.818 0.884 9 0.942 0.891 0.942 14

Fig. 5  Comparison of networks. Accuracy versus test samples on the ISIC a 2016, b 2017, c 2018 test sets
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2016–2018, as given in Table  7. The critical parameter 
used by the ISIC challenge to announce the winner was 
the JAC index, for which DilatedSkinNet achieved the 
highest value of 90.4% on ISIC 2016, 81.8% on ISIC 2017, 
and 89.1% on the ISIC 2018 dataset. Moreover, the last 
two rows displayed the comparison of DilatedSkinNet 
with the recent studies published in the years 2019–2021. 
It is presented that DilatedSkinNet outperformed all 
given studies by offering higher JAC scores.

The experimental results proved that the proposed 
lightweight network could calculate the expected infor-
mation efficiently rather than designing a heavy net-
work such as DeepLabV3+. The number of learnable 
parameters for SegNet, UNet, and DeepLabV3+ is 29M, 
31M, 20M, respectively, whereas, for DilatedSkinNet, 

Fig. 6  Comparison of networks. Accuracy versus iterations on the ISIC a 2016, b 2017, c 2018 validation sets

Fig. 7  Comparison of networks. Box plots based on Jaccard index of test sets: a ISIC 2016, b ISIC 2017, c ISIC 2018

Table 7  Performance comparison of the DilatedSkinNet with 
winners of ISIC 2016–2018 challenge and some recent studies

ISIC 2016 ISIC 2017 ISIC 2018

References JAC References JAC References JAC

DilatedSkinNet 0.904 DilatedSkinNet 0.818 DilatedSkinNet 0.891
U. Sanchez [36] 0.843 Yuan [37] 0.765 Qian [38] 0.802

Yu [26] 0.829 Berseth [39] 0.762 Hao [40] 0.799

Rahman [41] 0.822 Bi [42] 0.760 Ji [43] 0.799

Huang [44] 0.811 Menegola [45] 0.754 Yuan [46] 0.798

Xie [47] 0.858 Zafar [48] 0.772 Ali [49] 0.735

Hassan [29] 0.859 Pour [30] 0.782 Lei [50] 0.824

Ashraf [51] 0.859 Liu [33] 0.794 Chu [52] 0.835

Tong [53] 0.845 Ashraf [51] 0.800 – –

– – Tong [53] 0.742 – –
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the number is 3.27K. Additionally, the inferencing time 
of DilatedSkinNet is also less than others, as shown in 
Table 6.

Due to the structural dissimilarities, it was challenging 
to obtain an accurate border of the lesion region. There 
were some challenging samples, as given in Fig. 8 which 
were not properly segmented by the given method. The 
reason for this failure is the presence of noise elements 
such as dense hairlines and dark ink projections that 
cause impediments in extracting an accurate region of 
interest. The network partially segmented these images 
but was not as accurate as of the ground truth images. 
Thus, in the future, the design of any pre-processing 
technique will be taken into consideration for removing 
noisy elements, primarily hairlines, from images.

Conclusion
This paper presented a method for the segmentation 
of lesions in dermoscopic skin cancer images. The 
proposed network design is a CNN method based on 
the use of atrous convolutions to replace pooling lay-
ers. The atrous dilations can expand the receptive field 
of the input vector without using pooling layers. These 
allow each convolution output to contain a wide range 
of information without extra computations and lose the 
image’s resolution. The network achieved higher per-
formance by minimizing the cross-entropy loss across 
mini-batches. The network successfully extracted rel-
evant features from the different dermoscopic skin 
cancer images and generated segmented image maps. 
We observed through the experimental results that 
the proposed network successfully segmented accurate 

lesion areas that would aid future research work to 
develop a highly efficient CAD system to classify mela-
noma and non-melanoma. The network was successful 
in segmenting the majority of challenging cases, such 
as irregular boundaries, gel bubbles, low contrast, and 
color illumination, as given in Fig.  4. However, a few 
challenging samples, mainly containing dense hair-
lines, were not accurately segmented illustrated in 
Fig. 8, which will be considered in the future scope of 
this research. Based on the higher performance of the 
DilatedSkinNet, we will focus on its application areas 
to make it a more general approach, including auto-
matic segmentation and tracking over multiple image 
sequences.
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