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Abstract 

Objective:  To investigate the value of monochromatic dual-energy CT (DECT) images based on radiomics in differ‑
entiating benign from malignant solitary pulmonary nodules.

Materials and methods:  This retrospective study was approved by the institutional review board, and informed 
consent was waived. Pathologically confirmed lung nodules smaller than 3 cm with integrated arterial phase and 
venous phase (AP and VP) gemstone spectral imaging were retrospectively identified. After extracting the radiomic 
features of each case, principal component analysis (PCA) was used for feature selection, and after training with the 
logistic regression method, three classification models (ModelAP, ModelVP and ModelCombination) were constructed. The 
performance was assessed by the area under the receiver operating curve (AUC), and the efficacy of the models was 
validated using an independent cohort.

Results:  A total of 153 patients were included and divided into a training cohort (n = 107) and a validation 
cohort (n = 46). A total of 1130 radiomic features were extracted from each case. The PCA method selected 22, 25 
and 35 principal components to construct the three models. The diagnostic accuracy of ModelAP, ModelVP and 
ModelCombination was 0.8043, 0.6739, and 0.7826 in the validation set, with AUCs of 0.8148 (95% CI 0.682–0.948), 
0.7485 (95% CI 0.602–0.895), and 0.8772 (95% CI 0.780–0.974), respectively. The DeLong test showed that there were 
significant differences in the AUCs between ModelAP and ModelCombination (P = 0.0396) and between ModelVP and 
ModelCombination (P = 0.0465). However, the difference in AUCs between ModelAP and ModelVP was not significant 
(P = 0.5061). These results demonstrate that ModelCombination shows a better performance than the other models. Deci‑
sion curve analysis proved the clinical utility of this model.

Conclusions:  We developed a radiomics model based on monochromatic DECT images to identify solitary pulmo‑
nary nodules. This model could serve as an effective tool for discriminating benign from malignant pulmonary nod‑
ules in patients. The combination of arterial phase and venous phase imaging could significantly improve the model 
performance.
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Introduction
The detection rate of pulmonary nodules has increased 
in recent years with the development of computed 
tomography (CT) scanning, imaging reconstruction 
and artificial intelligence technologies [1]. Solitary pul-
monary nodules are usually classified as malignant or 
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benign nodules. However, both types of nodules share 
similar imaging features, such as signs of lobulated and 
spiculated margins [2, 3]. Thus, it is difficult to differen-
tiate malignant from benign nodules using conventional 
imaging methods alone. Radiomics can extract a large 
quantity of imaging features from CT, MRI, PET-CT, or 
other databases via high-through put extraction and can 
be used to analyse the correlation between these features 
and underlying pathological changes of disease [4–6]. 
Radiomics therefore not only plays an important role in 
the differentiation of malignant from benign tumours 
but also in metastasis prediction, pathological grading, 
malignancy staging, and therapeutic effect monitoring 
[7–10], as it can reflect the heterogeneity within tumours 
and improve the diagnostic accuracy.

Gemstone spectral imaging (GSI) allows for the simul-
taneous acquisition of data at two different energy levels; 
the concept of GSI is based on the fact that tissues of dif-
ferent compositions exhibit variable attenuation char-
acteristics under different X-ray energy irradiation [11]. 
Compared to conventional CT, with GSI, the original sin-
gle-parameter image is transformed into a multiparam-
eter image, and the mixed-energy image is transformed 
into a single-energy image [12]. GSI is thus one of the 
most promising imaging modes in clinical practice [13], 
as it can realize accurate material decomposition images, 
such as water- and iodine-based material decomposition 
[14].

In this study, the differences in GSI features between 
malignant and benign pulmonary nodules were analysed 
based on spectral CT. Additionally, prediction models 
were constructed and trained with the logistic regression 
method to differentiate malignant from benign pulmo-
nary nodules, and the performance of the classifier was 
quantitatively assessed.

Materials and methods
Patients
The review board at our institution (Hospital of Chengdu 
University of Traditional Chinese Medicine Research 
Ethics Committee) approved this retrospective study 
and waived informed consent. All methods were per-
formed in accordance with the relevant guidelines and 
regulations.

We collected images of patients who had a solitary pul-
monary nodule and underwent dual-energy CT scans of 
the thorax from September 2013 to April 2014. Two radi-
ologists re-evaluated the quality of the GSI and assessed 
the lesions for inclusion. The criteria for inclusion were 
as follows: (1) The pulmonary nodule was a single, solid 
(without pure ground-glass pulmonary nodules), well-
circumscribed lesion no more than 30  mm in diam-
eter, which was surrounded by pulmonary parenchyma 

without atelectasis, pleural nodules or mediastinal lym-
phadenopathy. (2) The patients underwent dual-period 
and dual-energy CT examination. (3) The pulmonary 
nodules were surgically removed or biopsied, and an 
accurate pathological diagnosis was obtained. The exclu-
sion criteria were as follows: (2) the GSI quality was 
greatly disturbed by artefacts; and (2) pure ground-glass 
pulmonary nodules were detected. Eligible patients were 
randomly assigned to the training cohort and validation 
cohort at a ratio of 7:3.

Image acquisition and radiomic feature extraction
Image acquisition and radiomic feature extraction are 
the basis for subsequent data analysis. Dual-energy CT 
scans were obtained using a Discovery CT 750HD scan-
ner (GE, Healthcare, 64-detector-row). Dual-energy CT 
images were acquired at 96 mA for a 120-kVp tube and at 
408 mA for an 80-kVp tube and then reconstructed using 
enhanced monochromatic imaging (70  keV, slice thick-
ness/interval 1.25  mm). An 80–100  ml (2.00  ml/kg of 
body weight) nonionic iodinated contrast material (Iopa-
midol, 300  mg/ml, Shanghai Bracco Sine Pharmaceuti-
cal Co. Ltd, China) was injected into the vein at a rate of 
4.0 ml/s. Dual-phasic (arterial and venous phase) images 
were obtained at 30 s and 60 s after contrast injection.

Then, the segmentation and extraction of radiomic 
features from each pulmonary nodule were realized by 
3D Slicer software (www.​slicer.​org). Nodule segmenta-
tion was performed by two radiologists with more than 
5 years of experience in chest CT imaging. We chose lung 
window levels of 1500 HU and -500 HU during nodule 
segmentation and drew the region of interest layer by 
layer. After nodule segmentation with 3D Slicer, radiomic 
features were calculated automatically by the software for 
each included case. These features are important for the 
prediction or diagnosis of disease and can be described 
as first-order features, shape and shape 2D features, tex-
ture features and wavelet features. Among them, textural 
features have been widely used in computer science and 
radiomics and can be used to represent the spatial distri-
bution of areas with different intensities and can reflect 
tumour heterogeneity [15, 16]. Advanced algorithms can 
manage large feature quantities and select the most sta-
ble, reproducible ones to improve the efficacy of feature 
selection and the accuracy of classification. To guarantee 
the robustness of the above features, an intraclass corre-
lation coefficient (ICC) cut-off was set for the test–retest 
analysis. An ICC greater than 0.80 was considered to 
indicate good interobserver consistency.

Principal component analysis
We extracted 1130 radiomic features from each case. To 
avoid overfitting, principal component analysis (PCA) 
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was used to select the optimal radiomic features and 
develop the prediction models by Python (version 3.6.5, 
www.​python.​org). The mechanism of PCA is to reduce 
the dimensionality of the data by identifying new vari-
ables, which are considered principal components (linear 
combinations of the original features). We selected prin-
cipal components representing a cumulative contribution 
of 90% to construct the radiomics model.

Histological evaluation
In this study, all of the included patients underwent 
resection of the lesions or biopsy. Samples were stained 
with haematoxylin and eosin (HE). The results of patho-
logical lesions were re-evaluated by two experienced 
pathologists. If there was any disagreement, they dis-
cussed their findings with each other until a consensus 
was reached.

Machine learning and model construction
The samples were randomly divided into a train-
ing cohort and validation cohort at a ratio of 7:3. We 
selected optimal radiomic features with the PCA method. 
After training with the logistic regression method, we 
constructed models of AP, VP and their combination 
(ModelAP, ModelVP, ModelCombination). Then, ten-fold 

cross validation was applied in the validation cohort to 
test the performance of the models. Accuracy, preci-
sion and recall values were calculated. We compared the 
predictive performance of ten-fold cross validation by 
using the Wilcoxon signed-rank test. The area under the 
receiver operator curve (AUC) was used to evaluate the 
performance of the models.

Statistical analysis
The clinical data and features were analysed by SPSS 19.0 
(SPSS, Chicago, IL, USA). The Wilcoxon rank sum test 
was used to compare normally and abnormally distrib-
uted continuous variables between the two groups. We 
calculated AUCs to assess the performance of the models 
in the primary and validation cohorts. The DeLong test 
was used for the comparison of AUCs in the validation 
set, and a difference was considered significant when 
P < 0.05 [17]. Decision curve analysis was used to assess 
the clinical utility of the model. The radiomics methods 
are included in Fig. 1.

Results
Patient features
In this study, all 153 patients had available pathological 
results. The histopathological examination revealed 53 

Fig. 1  Flow chart of the radiomics analysis steps. Two radiologists manually segmented the region of interest (ROI) of pulmonary nodules. For 
model construction, the radiomic features were extracted, and principal component analysis was performed. The area under the curve (AUC) of the 
review operating characteristic was used to assess the diagnostic accuracy of the models. Decision curve analysis was used to assess the clinical 
utility of the models

http://www.python.org
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cases of benign nodules (37 cases of chronic inflamma-
tory pulmonary nodules, 5 cases of hamartoma, 2 cases 
of sclerosing haemangioma, 1 case of haemangioma, 
and 8 cases of granulomatous inflammation). The 100 
malignant solitary pulmonary nodules included cases 
of 33 minimally invasive adenocarcinomas, 23 cases of 
squamous carcinoma, 19 cases of atypical adenoma-
tous hyperplasia, 18 cases of adenocarcinoma in  situ, 
and 7 cases of small-cell carcinoma. The included 
patients were divided into the training and valida-
tion cohorts (107 in the training cohort and 46 in the 
validation cohort). The baseline characteristics of the 
whole cohort are listed in Table  1. The average age of 
the patients was 47.97 years (range 23–68 years) in the 
whole cohort. A total of 70% of patients with malig-
nant/benign (73/34) pulmonary nodules were assigned 
to the primary cohort, and 30% with malignant/benign 
(27/19) pulmonary nodules were assigned to the valida-
tion cohort. No significant difference in age was noted 
between the benign and malignant pulmonary nodule 
groups (P = 0.611). The size of the malignant nodules 
was significantly larger than that of the benign nodules 
(P = 0.006).

Radiomic features
In this work, the first-order features, shape and shape 
2D features, texture features and wavelet features were 
extracted for each case. In total, 1130 radiomic features 
were extracted. Good interobserver consistency was 
achieved by the two independent experienced radiolo-
gists, with an interobserver coefficient greater than 0.80. 
For the radiomic features extracted from AP, the median 
ICC was 0.957 (interquartile range 0.904–0.976); 1081 
of the 1130 features (95.7%) were robust. For the VP 
features, the median ICC was 0.914 (interquartile range 
0.871–0.968); 1001 of the 1130 features (88.6%) were 
robust, with an ICC > 0.80, suggesting good consistency 
of feature extraction. The PCA method selected 22, 25, 
and 35 components in the arterial phase, venous phase 
and in the combination AP and VP, respectively, as 
shown in Fig. 2.

Performance of the radiomics models
After training with the logistic regression method, 
ModelAP, ModelVP and ModelCombination showed good 
performance in the validation cohort, with AUCs of 
0.8148 (95% CI 0.682–0.948), 0.7485 (0.602–0.895) 
and 0.8772 (0.780–0.974), respectively, and diagnostic 

Table 1  The clinical characteristics of the patients

Benign nodules (n = 53) Malignant nodules 
(n = 100)

Whole set (n = 153) P value

Age (years) 47.36 ± 11.125 48.30 ± 10.737 47.97 ± 10.846 0.611

Gender

 Male 32 (60.4%) 64 (64.0%) 96

 Female 21 (39.6%) 36 (36.0%) 57

Nodule size (mm) 15.04 ± 5.248 17.58 ± 5.416 16.78 ± 5.477 0.006

Fig. 2  Line graph of the cumulative contribution rates of various principal components after selection from primary radiomic features. A ModelAP, 
B ModelVP, C ModelCombination
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accuracies of 0.8043, 0.6739 and 0.7826, respectively. 
Details are presented in Table 2. Receiver operator char-
acteristic (ROC) curves are plotted in Fig. 3. To evalu-
ate the difference in performance among the models in 
the validation cohort, the DeLong test was performed, 
and the results demonstrated that ModelCombination had 
better performance for discriminating benign from 
malignant pulmonary nodules (AUC = 0.8772, P < 0.05), 
with precision and recall of 75.76% and 92.59% in the 
validation cohort, respectively. Additionally, the Wil-
coxon signed-rank test showed that the performance of 
Modelcombination was significantly higher than the other 
models in ten-fold cross validation (P < 0.05). A total of 
36 of 46 (78%) cases in the validation set were correctly 
predicted at the best cut-off value on the ROC curve. 
Decision curve analysis showed that when the thresh-
old probability was within 0.06–0.50, the net benefit of 
ModelCombination was greater than that of the “all” and 
“none” schemes (Fig. 4).

Discussion
The advantage of radiomics in discriminating benign 
from malignant pulmonary nodules is the ability to iden-
tify quantities of characteristic features, which can help 
to depict the detailed imaging differences between them 
[18]. Some reports have described radiomics as an addi-
tional critical technique for comprehensively detecting 
tumour heterogeneity. It can also compensate for the 
shortcomings of traditional imaging diagnosis [19, 20]. 
Radiomics could be a valuable additional tool in cases 
where there is overlap in the results of morphological 
and perfusional analyses of malignant and benign fea-
tures. The internal heterogeneity of malignant lesions is 
more commonly captured on contrast-enhanced scans, 
which can enhance the diagnostic accuracy for malignant 
nodules.

In recent years, many studies have been conducted to 
explore the use of conventional CT based on radiomic 
methods to distinguish benign and malignant pulmonary 
nodules [21–23], but few studies have focused on distin-
guishing pulmonary nodules using dual-energy CT based 
on radiomics. Xu et al. [24] developed a radiomic model 
based on conventional CT to differentiate benign from 
malignant lesions, different types of malignant nodules, 
and benign from non-invasive malignant nodules. The 

Table 2  ROC analysis of the models in the validation set

P value*: DeLong test between the AP radiomics model and the combined model and between the VP radiomics model and the combined model

AUC (95% CI) Accuracy Precision Recall P value*

AP radiomics model 0.8148 (0.682–0.948) 0.8043 0.7647 0.9630 0.0396

VP radiomics model 0.7485 (0.602–0.895) 0.6739 0.6875 0.8148 0.0465

Combined AP and VP model 0.8772(0.780–0.974) 0.7826 0.7576 0.9259 /

Fig. 3  ROC curves of the AP radiomics model (blue line), VP 
radiomics model (red dotted line), and combined AP and VP 
radiomics model (purple line) in the discrimination of benign and 
malignant pulmonary nodules

Fig. 4  Decision curve analysis of the combined AP and VP model. 
The value of the y-axis represents the net benefit, and the x-axis 
represents the probability threshold. The results showed that when 
the threshold probability was within 0.06–0.50, the net benefit of 
the combined model was greater than that of the “all” and “none” 
schemes
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AUCs ranged from 0.84 to 0.89 in the test sets. Yao et al. 
[25] developed an LR model based on nonenhanced CT 
to predict malignant and benign nodules, with an AUC 
of 0.681. Meanwhile, the 70-keV monochromatic images 
have an advantage over the traditional CT in terms of 
beam-hardening artefact reduction and quantitative CT 
number accuracy. Furthermore, monochromatic images 
have less pattern noise [26, 27]. Thus, the quality of the 
obtained images is better, allowing for detailed imag-
ing radiomic features to be extracted. In many studies 
exploring the use of DECT for identifying pulmonary 
nodules, most scholars selected 70-keV monochromatic 
images as the research object to achieve the best balance 
of image quality and radiation dose [3, 28]. The results 
of some recent studies have shown that DECT (70-keV 
monochromatic images) has better performance than 
conventional CT in discriminating benign from malig-
nant pulmonary nodules and masses [3, 29].

Therefore, we constructed prediction models and 
trained them with the logistic regression method based 
on DECT monochromatic images (AP and VP) to further 
improve the accuracy of pulmonary nodule classification. 
The results of the present study demonstrated that these 
models could be used as an effective and non-invasive 
approach for discriminating benign from malignant pul-
monary nodules before surgery. The best discrimination 
capability was found for the Modelcombination rather than 
the ModelAP and ModelVP, yielding an AUC of 0.8772 
(95% CI 0.780–0.974). A recent study [30] showed that 
imaging at an energy level of 65  keV yielded the best 
diagnostic accuracy in identifying malignant solitary pul-
monary nodules on AP and VP monochromatic images, 
with AUCs of 0.855 and 0.858, respectively. Compared 
with this study, the combination radiomics model (AUC 
of 0.8772) may show better performance at an energy 
level of 70  keV. In our study, the arterial phase and 
venous phase of dual-energy CT images were analysed 
based on the radiomic method used, with richer radiom-
ics features being extracted and a larger amount of infor-
mation being obtained from inside the lesion, making it 
highly valuable for model construction. The difference 
in intratumoral microvessel density between benign and 
malignant nodules, namely, the difference in capillary 
perfusion and permeability, will more prominent after 
contrast administration.

However, there are several limitations in this study 
that should be mentioned. First, this is a retrospective 
study with a small sample size, so selection bias is inevi-
table. Therefore, the generalizability and reliability of the 
results may be limited. In the future, large-sample pro-
spective studies are needed to confirm these findings. 
Second, personal clinical experience impacted radiomic 
feature extraction, as the ROI was marked by manual 

segmentation. Third, there is higher radiation dose when 
performing AP and VP images for nodule detection 
compared with nonenhanced CT, However, contrast-
enhanced CT provided additonal perfusion infromation, 
and homogenous enhancement may suggest the possibil-
ity of a benign vascular tumor. Finally, the clinical value 
of only the models constructed by principal compo-
nent analysis was explored in distinguishing benign and 
malignant pulmonary nodules; clinical features were not 
included in this research. Therefore, we aim to further 
explore the performance of the radiomics model in com-
bination with clinical features in the future.

Conclusion
In conclusion, we developed a model based on mono-
chromatic DECT images to identify solitary pulmonary 
nodules. The proposed model may serve as an effective 
tool for discriminating between benign and malignant 
pulmonary nodules. The combination of arterial phase 
and venous phase imaging could significantly improve 
the performance of the models.
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