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Abstract 

Background:  Only few studies have focused on differentiating focal pneumonia-like lung cancer (F-PLC) from focal 
pulmonary inflammatory lesion (F-PIL). This exploratory study aimed to evaluate the clinical value of a combined 
model incorporating computed tomography (CT)-based radiomics signatures, clinical factors, and CT morphological 
features for distinguishing F-PLC and F-PIL.

Methods:  In total, 396 patients pathologically diagnosed with F-PLC and F-PIL from two medical institutions 
between January 2015 and May 2021 were retrospectively analyzed. Patients from center 1 were included in the 
training (n = 242) and internal validation (n = 104) cohorts. Moreover, patients from center 2 were classified under the 
external validation cohort (n = 50). The clinical and CT morphological characteristics of both groups were compared 
first. And then, a clinical model incorporating clinical and CT morphological features, a radiomics model reflecting the 
radiomics signature of lung lesions, and a combined model were developed and validated, respectively.

Results:  Age, gender, smoking history, respiratory symptoms, air bronchogram, necrosis, and pleural attachment 
differed significantly between the F-PLC and F-PIL groups (all P < 0.05). For the clinical model, age, necrosis, and 
pleural attachment were the most effective factors to differentiate F-PIL from F-PLC, with the area under the curves 
(AUCs) of 0.838, 0.819, and 0.717 in the training and internal and external validation cohorts, respectively. For the 
radiomics model, five radiomics features were found to be significantly related to the identification of F-PLC and F-PIL 
(all P < 0.001), with the AUCs of 0.804, 0.877, and 0.734 in the training and internal and external validation cohorts, 
respectively. For the combined model, five radiomics features, age, necrosis, and pleural attachment were independ‑
ent predictors for distinguishing between F-PLC and F-PIL, with the AUCs of 0.915, 0.899, and 0.805 in the training and 
internal and external validation cohorts, respectively. The combined model exhibited a better performance than had 
the clinical and radiomics models.

Conclusions:  The combined model, which incorporates CT-based radiomics signatures, clinical factors, and CT mor‑
phological characteristics, is effective in differentiating F-PLC from F-PIL.
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Background
In recent years, the diagnosis and treatment of lung can-
cer have improved significantly [1, 2]. However, it remains 
the leading cause of cancer-related deaths globally [3]. 
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Computed tomography (CT) scan is an indispensable 
tool for the diagnosis of lung cancer. The condition has 
different appearances on CT scan. That is, it can present 
as a solitary nodule/mass, localized or diffuse parenchy-
mal consolidation, or multifocal lesions. In clinical prac-
tice, if lung cancer manifests as focal consolidation, it is 
easily misdiagnosed as pulmonary inflammatory lesions 
due to the poor comprehension of its imaging findings 
[4, 5]. The results of histopathological examination such 
as bronchoscopy and CT-guided percutaneous lung 
biopsy can help physicians obtain an accurate diagnosis 
and select the best treatment strategy [6]. However, these 
methods are invasive, and they may occasionally obtain 
an incorrect pathological diagnosis due to insufficient 
histological samples [7, 8]. Therefore, a noninvasive and 
reproducible quantitative method is highly preferred in 
determining whether the lesions are benign or malignant.

Radiomics is a computerized quantitative image analy-
sis method that uses computational algorithms to extract 
a large number of features from radiological medi-
cal images [9, 10]. It can quantify the heterogeneity of 
tumors and has advantages including reproducibility and 
noninvasiveness without time and space limitations [11, 
12]. Unlike some histopathological methods that can only 
provide information about a part of the lesion, radiomics 
can obtain more information about the whole lesion [13, 
14]. In recent years, radiomics has played an increasingly 
important role in differentiating benign and malignant 
lesions and in evaluating the curative effect and progno-
sis of tumors [15, 16]. However, to the best of our knowl-
edge, only few studies have focused on the differential 
diagnosis of focal pneumonia-like lung cancer (F-PLC) 
and focal pulmonary inflammatory lesion (F-PIL) using 
radiomics.

Therefore, the current exploratory study aimed to 
develop a model incorporating CT-based radiomics sig-
natures, clinical factors, and CT morphological charac-
teristics to differentiate F-PLC from F-PIL. Moreover, its 
efficacy was validated.

Material and methods
Patients
The ethics committee of the First Affiliated Hospital of 
Chongqing Medical University approved this retrospec-
tive study. All methods were carried out in accordance 
with relevant guidelines and regulations. Informed con-
sent (written consent) was obtained from all individ-
ual participants included in the study. In this research, 
F-PLC was defined as a special type of lung cancer pre-
senting as focal consolidation involving less than half 
of the lobe. Meanwhile, F-PIL refers to focal inflamma-
tory consolidation affecting less than half of the lobe. 
The inclusion criteria were as follows: (1) patients with a 

pathological diagnosis confirmed via surgical resection; 
(2) patients who underwent chest CT scan at our insti-
tutes; (3) CT results indicated a solitary and focal con-
solidation, characterized by an increased density of lung 
parenchyma with obscuration of the underlying vessels, 
with a polygonal shape (e.g., triangular, rectangular, or 
trapezoidal) and the largest slice involving less than half 
the area of a lobe on axial CT images; (4) patients with 
interval of < 1  month between CT imaging and subse-
quent pathological analysis. Meanwhile, the exclusion 
criteria were as follows: (1) patients who did not undergo 
chest contrast-enhanced CT scan; (2) patients with 
unsatisfactory imaging quality due to respiratory motion 
artifact; (3) patients who received any anti-tumor or anti-
inflammatory therapy before initial chest CT scanning; 
(4) patients with incomplete clinical data. In total, 346 
(193 men and 153 women; mean age: 61.5 ± 14 [range: 
22–86] years) patients diagnosed between January 2015 
and May 2021 at center 1 were included. Among them, 
209 presented with F-PLC and 137 with F-PIL. We ran-
domized the patients into two groups, with a ratio of 
7:3 (242 patients in the training cohort and 104 patients 
in the internal validation cohort) (Fig.  1). Moreover, we 
included 50 consecutive patients (29 men and 21 women; 
mean age: 64 ± 13.5 [range: 38–87] years) diagnosed at 
center 2 in the external validation cohort. Among them, 
27 presented with F-PLC and 23 with F-PIL.

CT image acquisition and morphological features analysis
All chest contrast-enhanced CT examinations were per-
formed using Discovery CT750HD (GE Healthcare) and 
Optima CT660 (GE Healthcare). All patients underwent 
CT scan in a supine position at the end of inspiration dur-
ing a single breath hold to prevent respiratory motion arti-
facts. The CT scanning parameters were as follows: tube 
voltage, 100–130  kVp; tube current, 100–250  mA; slice 
thickness, 5.0  mm; and slice interval, 5.0  mm. Nonionic 
iodinated contrast medium (iohexol 300  mg iodine/mL; 
Omnipaque, GE Healthcare) at a dose of 1.5 mL/kg was 
administered at a flow rate of 3.0 mL/s using a dual-high-
pressure injector via the antecubital vein. Then, 50  mL 
of saline solution was injected. The arterial and delayed 
phases were triggered at 30 and 120 s, respectively.

Two thoracic radiologists (with 13 and 6 years of expe-
rience in chest imaging, respectively) reviewed all CT 
images in a PACS workstation (Vue PACS, Carestream) 
together. In cases of disagreement, a consensus was 
reached via discussion. The lung window (window width, 
1600 HU; window level, − 600 HU) and mediastinal win-
dow (window width, 450 HU;  window level, 50 HU) of 
CT images were used for assessment.  CT morphologi-
cal features including lesion size (maximum diameter 
of the lesion on axial CT images), margin (well-defined, 
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with a clear border definition; ill-defined, with a partial 
or completely blurred border), spiculation (linear strands 
extending from the nodule or mass margin into the lung 
parenchyma without reaching the pleural surface), air 
bronchogram (tubelike or branched air structure within 
the lesion), pleural attachment (lesion attaching to the 
pleura including the fissure and lesion margin obscured by 
the pleura), necrosis (unenhanced areas with clear bound-
aries within the lesion), calcification, lymphadenopathy 
(hilar or mediastinal lymph nodes with short-axis diam-
eter larger than 1 cm), and pleural effusion were evaluated.

Comparison of clinical and CT features between 
both groups
The  clinical and CT morphological features  includ-
ing age, gender, smoking history, respiratory symp-
toms, lesion size, margin, spiculation, air bronchogram, 
necrosis, calcification, lymphadenopathy, pleural attach-
ment, and pleural effusion between the F-PLC and F-PIL 
groups in center 1 were compared.

Model establishment and performance evaluation

Establishment of clinical model
The clinical model was constructed by incorporating 
clinical and CT morphological features that differed 

significantly between the F-PLC and F-PIL groups  in 
center 1 using the multivariate logistic regression 
analysis.

Establishment of radiomics model
The region of interest (ROI) on non-contrast-enhanced 
CT  images with lung window was manually segmented 
by one radiologist (with 6  years of work experience in 
thoracic imaging) who did not know the clinical and 
pathological information of patients using the ITK soft-
ware (version 2.2.0, http://​www.​itksn​ap.​org/​pmwiki/​
pmwiki.​php).  Three ROIs were cautiously drawn along 
the margin of the lesion in the largest layer and the adja-
cent upper and lower layers from axial CT images, cov-
ering the whole contour of the solid component of the 
lesion. Figure  2 shows the radiomics analysis flowchart. 
To ensure consistency, these delineations were conducted 
three times. To evaluate intra observer repeatability, the 
observer repeated the ROI delineation 4 weeks after the 
first assessment. Thereafter, the intra-class correlation 
coefficients (ICCs) were calculated to evaluate the stabil-
ity and reproducibility of feature extraction. These fea-
tures with ICC values > 0.75 were included in this study.

Radiomics feature extraction was performed using 
Pyradiomic implemented in Python (https://​pyrad​iomic.​
readt​hedocs.​io/​en/​latest/), which can extract radiomics 

Fig. 1  Flow chart of patient selection

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://pyradiomic.readthedocs.io/en/latest/
https://pyradiomic.readthedocs.io/en/latest/
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features from CT images with a large panel of engineered 
hard-coded feature algorithm. As shown in Fig.  2, the 
steps for selecting radiomics features and signature build-
ing were as follows: first, we imported the CT images into 
the software with Digital Imaging and Communications 
in Medicine files (planning CT images with GTV ring). 
The images were preprocessed and segmented, and the 
resolution feature matrix was normalized. Second, we 
compared the similarity of each feature pair. If the Pear-
son correlation coefficient of a feature pair was > 0.90, one 
of them will be deleted. Third, the optimal subset method 
with the Akaike information criterion  (AIC) informa-
tion criteria were combined to select features. Finally, 
we established the logistic regression radiomics model 
using a combination of features under the minimum AIC 
correspondence.

Establishment of combined model
The combined model, which integrated CT-based radi-
omics signatures, clinical factors, and CT morphological 
features, for differentiating F-PLC from F-PIL was devel-
oped via a multivariate logistic regression analysis.

Performance evaluation of the three models
The receiver operating characteristic curve (ROC) and 
the area under the curve (AUC), accuracy, sensitivity, 
and specificity were used to evaluate the performance 
of three models in the training and internal and external 
validation cohorts, respectively.

Statistical analysis
Statistical analysis was performed using the Statisti-
cal Package for the Social Sciences software for Win-
dows (version 19.0, IBM, Armonk, NY, USA) and R 

Fig. 2  Flow chart of radiomics implementation in this study
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software (version 3.6.1; http://​www.​Rproj​ect.​org). Quan-
titative data with a normal distribution were expressed 
as mean ± standard deviation, whereas those with a non-
normal distribution were presented as medians ± inter-
quartile ranges. Meanwhile, categorical variables were 
expressed as numbers and percentages. The Chi-square 
test, Two-independent-samples Student’s t-test, and 
Mann–Whitney U test were used in the univariate anal-
ysis. DeLong test was performed to compare the AUCs 
of three models in the internal and external validation 
cohorts. A two-sided P-value of < 0.05 was considered 
statistically significant.

Results

Clinical and CT morphological features between the F‑PLC 
and F‑PIL groups
This study enrolled 346 (193 men and 153 women) 
patients from center 1, including 209 with F-PLC and 

137 with F-PIL. The F-PLC group included 185 patients 
with adenocarcinoma, 21 with squamous cell carci-
noma, and 3 with adeno-squamous carcinoma. The 
F-PIL group comprised 45 patients with nonspecific 
pulmonary inflammation, 44 with inflammatory pseu-
dotumor, 32 with tuberculosis, 9 with organizing pneu-
monia, 6 with aspergillus infection, and 1 with lung 
abscess. For surgical resection methods, 209 patients 
with F-PLC and 84 patients with F-PIL underwent 
lobectomy, while 53 patients with F-PIL underwent 
sub-lobectomy. The patients with F-PLC were older 
than those with F-PIL (P < 0.001). Compared to patients 
with F-PIL, those with F-PLC were more frequently 
females, non-smokers and presented without respira-
tory symptoms (all P < 0.05). In total, the two groups 
were compared on the basis of 9 CT morphological 
features. Among them, air bronchogram was more fre-
quently observed in the F-PLC than in the F-PIL group 
(P < 0.05, Fig.  3). The F-PIL group more commonly 

Fig. 3  A 68-year-old woman with invasive adenocarcinoma. A–C Air bronchogram was observed in the lung window (red arrow). D, E The uneven 
enhancement of the lesion in the largest layer was found in the mediastinal window. F Photomicrograph (hematoxylin and eosin staining, × 200) 
confirming invasive adenocarcinoma with an acinar-predominant pattern

http://www.Rproject.org
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Fig. 4  A 53-year-old woman with inflammatory pseudotumor. A–C Pleural attachment was observed in the lung window (red arrow). D, E Lesion 
necrosis in the largest layer was found in the mediastinal window (blue arrow). F Photomicrograph (hematoxylin and eosin staining, × 100) 
confirming inflammatory pseudotumor

Fig. 5  The receiver operating characteristic curve analyses in the training cohort (A), internal validation cohort (B), and external validation cohort 
(C)
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presented with necrosis and pleural attachment than 
did the F-PLC group (all P < 0.001, Fig. 4). However, the 
two groups did not significantly differ in terms of lesion 
size, margin, spiculation, calcification, lymphadenopa-
thy, and pleural effusion (all P > 0.05) (Table 1).

Performance of clinical model
The clinical model showed that age, necrosis, and pleural 
attachment were the most effective factors for differenti-
ating F-PIL from F-PLC with the AUCs of 0.838, 0.819, 
and 0.717 in the training and internal and external valida-
tion cohorts, respectively. The accuracy, sensitivity, and 
specificity were 0.785, 0.801, and 0.760 in the training 
cohort, 0.731, 0.603, and 0.902 in the internal validation 
cohort, and 0.720, 0.852, and 0.609 in the external valida-
tion cohort, respectively (Table 2, Fig. 5).

Performance of radiomics model
In total, 1583 radiomics features were selected from 
patients with F-PLC and F-PIL. After ranking these 

features, the five best-performing significant radiomics 
features were square first-order robust mean absolute 
deviation, logarithm gldm large dependence high gray 
level emphasis, wavelet HLL first-order median, square 
root glszm low gray level zone emphasis, and logarithm 
glcm lmc1. They were found to be significantly associ-
ated with the identification of both F-PLC and F-PIL (all 
P < 0.001). The AUC, accuracy, sensitivity, and specificity 
were 0.804, 0.740, 0.733, and 0.750 in the training cohort, 
0.877, 0.833, 0.790, and 0.900 in the internal validation 
cohort, and 0.734, 0.720, 0.704, and 0.739 in the external 
validation cohort, respectively (Table 2, Fig. 5).

Performance of combined model
The combined model indicated that the five best-per-
forming significant radiomics features, age, necrosis, and 
pleural attachment were independent predictors for dif-
ferentiating F-PLC form F-PIL. The AUC, accuracy, sen-
sitivity, and specificity were 0.915, 0.847, 0.815, and 0.896 
in the training cohort, 0.899, 0.833, 0.758, and 0.950 in 
the internal validation cohort, and 0.805, 0.760, 0.889, 

Table 1  Clinical and CT morphological features between the F-PLC and F-PIL groups

CT computed tomography, F-PLC focal pneumonia-like lung cancer, F-PIL focal pulmonary inflammatory lesion
a Mann–Whitney U test
b Chi-square test
c Two-independent-samples Student’s t-test
d Respiratory symptoms including fever, cough, sputum, blood in sputum, hemoptysis, and chest pain

Characteristics F-PLC group (n = 209) F-PIL group (n = 137) p-Value

Age (years)  < 0.001a

 Median ± interquartile range 64 ± 12 55 ± 16

Gender  < 0.001b

 Male 100 (47.85%) 93 (67.88%)

 Female 109 (52.15%) 44 (32.12%)

Smoking history 0.024b

 Smokers 84 (40.19%) 72 (52.55%)

 Non-smokers 125 (59.81%) 65 (47.45%)

Respiratory symptomsd  < 0.001b

 With symptoms 126 (60.29%) 113 (82.48%)

 Without symptoms 83 (39.71%) 24 (17.52%)

Lesion size (mm) 0.067c

 Mean ± standard deviation 43.17 ± 18.47 46.75 ± 16.57

Margin 0.302b

 Well-defined 138 (66.03%) 83 (60.58%)

 Ill-defined 71 (33.97%) 54 (39.42%)

Spiculation 14 (6.70%) 9 (6.57%) 0.962b

Air bronchogram 59 (28.23%) 19 (13.87%) 0.002b

Necrosis 17 (8.13%) 61 (44.53%)  < 0.001b

Calcification 13 (6.22%) 15 (10.95%) 0.115b

Lymphadenopathy 66 (31.58%) 35 (25.55%) 0.227b

Pleural attachment 103 (49.28%) 118 (86.13%)  < 0.001b

Pleural effusion 13 (6.22%) 6 (4.38%) 0.462b
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and 0.609 in the external validation cohort, respectively 
(Table 2, Fig. 5).

Comparation of the AUCs of three models in the validation 
cohorts
For the internal validation cohort, the AUC of combined 
model was significantly larger than that of clinical model 
(P < 0.05); however, no significant difference in the AUC 
was observed between combined and radiomics mod-
els (P > 0.05). For the external validation cohort, no sig-
nificant differences in the AUC were observed among the 
three models (P > 0.05).

Discussion
Similar to F-PIL, F-PLC manifests as a localized consoli-
dation on CT images. Therefore, differentiating F-PLC 
from F-PIL via CT scan is often challenging particularly 
if patients with F-PIL do not present with typical clini-
cal symptoms or if the lesions are not absorbed after anti-
inflammatory therapy. In the current study, 68 (32.5%) of 
209 patients with F-PLC were misdiagnosed with inflam-
matory lesions on initial CT scan, while 56 (40.9%) of 
137 patients with F-PIL were misdiagnosed with cancers. 
Radiomics focuses on the extraction of sub-visual, yet 
quantitative, imaging features from radiological images 
[10, 17]. In recent years, numerous studies have shown 
that radiomics can distinguish the pathological types 
of lung cancer [18–20], reflect the association between 
intra-tumoral heterogeneity and underlying gene expres-
sion patterns [21], and distinguish adenocarcinomas 
from granulomas [22, 23]. Therefore, this research devel-
oped and validated a combined model incorporating 
CT-based radiomics signatures, clinical factors, and CT 
morphological features for differentiating F-PLC from 
F-PIL.

This study first compared the clinical and CT morpho-
logical features of the F-PLC and F-PIL groups. Results 
showed that age, gender, smoking history, clinical symp-
toms, and three CT morphological features including air 
bronchogram, necrosis, and pleural attachment differed 
significantly between the two groups. Then, we further 
established a clinical model based on aforementioned 
differential features with the AUCs of 0.838, 0.819, and 
0.717 in the training and internal and external valida-
tion cohorts, respectively. This model suggested that 
age, necrosis, and pleural attachment were the most 
effective factors for differentiating F-PIL from F-PLC. 
Next, we extracted radiomics features from CT images. 
The five best-performing significant radiomics signa-
tures were used to establish the radiomics model. The 
AUCs in the training and internal and external valida-
tion cohorts were 0.804, 0.877, and 0.734, respectively, 

thereby indicating radiomics can distinguish F-PLC from 
F-PIL. Previous studies [24, 25] have shown that radiom-
ics signatures play an important role in differentiating 
lung cancer from inflammatory lesions, and our study 
had similar results. Finally, we incorporated CT-based 
radiomics signatures, clinical factors, and CT morpho-
logical features to establish a combined model. In this 
model, five best-performing radiomics features, age, 
necrosis, and pleural attachment were found to be inde-
pendent predictors for distinguishing between F-PLC 
and F-PIL. A previous study [26] has shown that patients 
with lung cancers were older than those with inflamma-
tory lesions, which is similar to our findings. Regarding 
radiological features, we found that necrosis and pleu-
ral attachment were highly indicative of F-PIL, and this 
finding can be supported by the results of prior studies 
[5, 26, 27]. Generally, necrotizing infectious lung lesions 
are closely correlated with inflammatory response caused 
by microbial infection. Meanwhile, necrotizing cancer 
is associated with continuous angiogenesis and chronic 
ischemic injury, which likely occur in large tumors and, 
accordingly, are seldom observed in F-PLC with a local-
ized range [28, 29]. Inflammatory exudation can easily 

Table 2  Performance of the clinical, radiomics, and combined 
models

AUC​ area under the ROC curve, CI confidence interval

Group AUC (95% CI) Cut-
off

AccuracySensitivity Specificity

Training cohort (n = 242)

 Clinical 
model

0.838 (0.788–0.889) 0.626 0.785 0.801 0.760

 Radi‑
omics 
model

0.804 (0.75–0.858) 0.526 0.740 0.733 0.750

 Com‑
bined 
model

0.915 (0.88–0.95) 0.639 0.847 0.815 0.896

Internal validation cohort (n = 104)

 Clinical 
model

0.819 (0.738–0.901) 0.740 0.731 0.603 0.902

 Radi‑
omics 
model

0.877 (0.812–0.942) 0.525 0.833 0.790 0.900

 Com‑
bined 
model

0.899 (0.839–0.96) 0.653 0.833 0.758 0.950

External validation cohort (n = 50)

 Clinical 
model

0.717 (0.562–0.871) 0.439 0.720 0.852 0.609

 Radi‑
omics 
model

0.734 (0.59–0.879) 0.364 0.720 0.704 0.739

 Com‑
bined 
model

0.805 (0.681–0.929) 0.283 0.760 0.889 0.609
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spread to the subpleural area via the alveolus if the lesion 
is located in the lung periphery, causing the lesion to 
attach to the pleura. This phenomenon may be associated 
with the high occurrence of pleural attachment in F-PIL. 
However, lung cancer seldom attaches to the pleura due 
to tumor mesenchymal contraction, which may result in 
pleural retraction [30]. This model was effective in differ-
entiating F-PLC from F-PIL, with AUCs of 0.915, 0.889, 
and 0.805 in the training and internal and external vali-
dation cohorts, respectively. Zhang et  al. [27] showed 
that the sensitivity, specificity, and AUC of thin-section 
CT-based radiomics in differentiating focal organizing 
pneumonia from peripheral adenocarcinoma were 85.3%, 
89.7%, and 0.956, respectively. This finding was consist-
ent with our results. Furthermore, we found a relative 
drop in performance in the external validation cohort. 
We think the small number of patients in the external 
validation cohort and lacking evaluation of the heteroge-
neity of patients in each cohort due to the small sample 
size may attribute to this result. Future studies with larger 
sample sizes are needed to substantiate our findings.

The current study had several limitations. First, the 
usefulness of the combined model is limited to the differ-
entiation of F-PLC and F-PIL which manifested as local-
ized consolidation involving < 50% of the area of a lobe on 
CT and not applicable to that of all benign and malignant 
lung lesions. Second, all data were collected from two 
institutions. Nevertheless, we will perform a multicenter 
study with larger sample sizes to improve the perfor-
mance of the model.

Conclusions
The combined model, which incorporates CT-based radi-
omics signatures, clinical factors, and CT morphological 
features, is effective in differentiating F-PLC from F-PIL.
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