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Abstract 

Purpose: To compare the diagnostic performance of deep learning models using convolutional neural networks 
(CNN) with that of radiologists in diagnosing endometrial cancer and to verify suitable imaging conditions.

Methods: This retrospective study included patients with endometrial cancer or non-cancerous lesions who under-
went MRI between 2015 and 2020. In Experiment 1, single and combined image sets of several sequences from 204 
patients with cancer and 184 patients with non-cancerous lesions were used to train CNNs. Subsequently, testing was 
performed using 97 images from 51 patients with cancer and 46 patients with non-cancerous lesions. The test image 
sets were independently interpreted by three blinded radiologists. Experiment 2 investigated whether the addition of 
different types of images for training using the single image sets improved the diagnostic performance of CNNs.

Results: The AUC of the CNNs pertaining to the single and combined image sets were 0.88–0.95 and 0.87–0.93, 
respectively, indicating non-inferior diagnostic performance than the radiologists. The AUC of the CNNs trained with 
the addition of other types of single images to the single image sets was 0.88–0.95.

Conclusion: CNNs demonstrated high diagnostic performance for the diagnosis of endometrial cancer using MRI. 
Although there were no significant differences, adding other types of images improved the diagnostic performance 
for some single image sets.
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Background
Endometrial cancer is the sixth most common malignant 
disorder in women worldwide [1]. About 417,000 new 
cases of endometrial cancer were diagnosed worldwide 
in 2020, and about 97,000 people died from this disease 
[1]. The incidence of endometrial cancer is on the rise 

[2]. Surgery and biopsy are the standards for staging 
endometrial cancer, and MRI can assist in preoperative 
evaluation and surgical planning by accurately predict-
ing the depth of invasion into the myometrium, inva-
sion of the cervical stroma and surrounding organs, and 
the presence of lymph node metastases [3, 4]. Recently, 
multi-parametric MRI has been introduced to improve 
diagnosis [5]. In case the biopsy is not possible due to 
closure of the internal uterine ostium or no experience 
of sexual intercourse, MRI is also used to diagnose the 
presence of endometrial cancer [3]. Although MRI has 
not been formally incorporated into the FIGO staging 
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system, it is already widely accepted as the most reliable 
imaging technique for diagnosing, staging, treatment 
planning, and follow-up of endometrial cancer. Moreo-
ver, MRI is said to minimize costs by eliminating the need 
for expensive diagnostic and surgical procedures [3].

In recent years, deep learning methods based on 
convolutional neural networks (CNN) have achieved 
remarkable performance in image pattern recognition 
[6, 7]. Moreover, a wide variety of computer vision tasks 
have been reported in the literature including deep learn-
ing-based segmentation [8–10], lesion detection [11, 12], 
and classification [13, 14]. The diagnostic modalities that 
were investigated include ultrasound, radiograph, CT, 
and MRI. The application of CNN to tumor images has 
the potential to be applied not only to image interpreta-
tion assistance but also to screening, prognosis estima-
tion, and selection of optimal treatment methods, and we 
believe that tumor detection is the first step. However, to 
the best of our knowledge, no previous study has devel-
oped a CNN for diagnosing the presence of endometrial 
cancer. In addition, few studies have investigated optimal 
image conditions for MRI with multiple sequences and 
cross-sections in image classification using deep learning.

The present study constructed CNNs for diagnosing 
endometrial cancer using several sequences and cross-
sections and its combination to validate for optimal CNN 
imaging conditions, and compared their diagnostic per-
formance with that of experienced radiologists. Further-
more, we verified whether the diagnostic performance 
could be improved by the addition of sequences and 

cross-sections, other than the same type as the test image 
set, to the training data.

Materials and methods
This retrospective study was approved by the Ethics 
Committee of University of Tsukuba Hospital (approval 
number: R02-054) and the requirement for written 
informed consent was waived. All methods were car-
ried out in accordance with relevant guidelines and 
regulations.

Study design
The inclusion criteria are stated as follows: (A) woman 
above 20  years of age, (B) pelvic MRI scan obtained as 
per the protocol followed at our hospital during the time 
period from January 2015 to May 2020, (C) hysterecto-
mized and pathologically confirmed as endometrial can-
cer (cancer group), and (D) pathologically or clinically 
benign lesions (non-cancer group). The exclusion criteria 
are stated as follows: (A) history of treatment for uterine 
diseases and (B) macroscopically non-mass-forming can-
cers according to pathological reports. A flowchart for 
the patient selection process is presented in Fig. 1.

Figure 2 shows a flow diagram of the study design. As 
shown in Fig.  2a, Experiment 1 constructed CNNs for 
diagnosing the presence of endometrial cancer. Single 
and combined image sets of T2-weighted image (T2WI), 
apparent diffusion coefficient of water (ADC) map, and 
contrast-enhanced T1-weighted image (CE-T1WI) were 
used to validate optimal imaging conditions for CNN, 

Fig. 1 Flowchart of the patient selection process
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and we compared their diagnostic performance with 
those of experienced radiologists. As shown in Fig.  2b, 
Experiment 2 verified whether the diagnostic perfor-
mance could be improved by the addition of sequences 

and cross-sections, other than the same type as the test 
image set, to the training data.

Fig. 2 a Schematic diagrams of Experiment 1. b Schematic diagrams of Experiment 2. T2WI, T2 weighted image; ADC, Apparent Diffusion 
Coefficient; CE-T1WI, contrast-enhanced T1 weighted image
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MRI acquisition
The MRI scan was performed using 3 T or 1.5 T equip-
ment (Ingenia®, Achieva®; Philips Medical Systems, 
Netherlands) with a 32-channel phased-array body coil. 
The protocol employed to obtain the image of the entire 
uterus along the uterine axis included T2WIs, Diffu-
sion-weighted images (DWIs) (b-value: 0, 1000), and 
CE-T1WIs of the equilibrium phase (Table  1). Gado-
pentetate dimeglumine 5  mmol (Magnevist® 0.5  mol/L 
or Gadovist® 1.0  mol/L; Bayer, Germany) was used for 
CE-T1WIs. The gadolinium dose varied according to 
the patient’s weight, as recommended (0.2 ml/kg). Bolus 
intravenous contrast injection rate was 4 mL (2 mmol)/
sec (in case of Gadovist, dilute with saline solution and 
inject at 4 ml/sec).

Data set
The image slices comprising the endometrium were 
extracted to create a dataset. In the cancer group, the 
sequences and pathological findings were considered and 
only the image slices depicting the tumor were visual-
ized and extracted, as per the consensus of two radiolo-
gists (A.U., T.S.). The same cross-sectional images were 
extracted for all the sequences.

A total of 485 patients were randomly assigned to the 
training and testing groups. In the training phase, images 
obtained from 388 patients (204 and 184 patients in the 
cancer and non-cancer groups, respectively) were used; 
2,905 axial images (1,471 and 1,434 images in the can-
cer and non-cancer groups, respectively) were used in 
each T2WI, ADC map, and CE-T1WI; 1,105 sagittal 
images (624 and 481 images in the cancer and non-can-
cer groups, respectively) were used in both T2WI and 
CE-T1WI. In the testing phase, only one central image of 
the stack was extracted, and 97 images (51 and 46 images 

from the cancer and non-cancer groups, respectively) 
were used in each sequence and cross-section.

The digital imaging and communications in medicine 
(DICOM) images were converted to joint photographic 
experts group (JPEG) images using the viewing soft-
ware Centricity Universal Viewer (GE Healthcare, Chi-
cago, Illinois, United States) because the graphical deep 
learning software we used could not handle the DICOM 
data itself. Subsequently, the JPEG images were resized 
to 240 × 240 pixels by trimming the margins using 
the XnConvert (Gougelet Pierre-Emmanuel in Reims, 
France), in order to perform the analysis. Along with the 
five single image sets, four combined image sets, includ-
ing axial T2WI + ADC map, axial T2WI + CE-T1WI, 
sagittal T2WI + CE-T1WI, and axial T2WI + ADC 
map + CE-T1WI, were created for training and testing. 
The axial images were vertically combined (240 × 480 or 
240 × 720 pixels) and the sagittal images were horizon-
tally combined (480 × 240 pixels) using ImageMagick 
[15].

Experiment 1: diagnostic performance for the single 
and combined image sets: CNN vs. radiologists
The current study compared the diagnostic performance 
of the CNNs and three board certificated radiologists 
with 27, 26, and 9 years of experience in pelvic MRI inter-
pretation (T.M., K.M., and T.I.) using five single image 
sets and four combined image sets. The same types of 
single or combined image sets were used for training 
and testing. The radiologists were blinded to the clinical 
and pathological findings and independently reviewed 
the 97 randomly ordered test images in each image set, 
and reported the confidence levels in the presence of 
cancer using a 6-point scale (0, definitely absent; 0.2, 
probably absent; 0.4, possibly absent; 0.6, possibly pre-
sent; 0.8, probably present;1.0, definitely present). The 

Table 1 MRI acquisition parameters

T2WI, T2 weighted image; DWI, Diffusion-weighted image; CE-T1WI, contrast-enhanced T1 weighted image; TR, repetition time; TE, echo time; FA, flip angle; FOV, field 
of view; Sg, sagittal; Ax, axial; TSE, turbo-spin echo;.EPI, echo planar imaging; GRE SPIR, gradient echo spectral pre-saturation with inversion recovery

Scanner Sequence Cross-section Type TR/TE (ms) FA (degree) Slice/Gap (mm) FOV (mm) Matrix

Ingenia® 3.0 T T2WI Sg 2D-TSE 1400/110 90 3–5/0.3–0.5 280 640 × 640

T2WI Ax 2D-TSE 4955–5789/100–110 90 3–5/0.3–0.5 280 704 × 704

DWI Ax EPI 6500–7500/77–79 90 3–5/0.3–0.5 280 224 × 224

CE-T1WI Sg 3D-GRE SPIR 4/2 10 3.3/1.6 280 576 × 576

CE-T1WI Ax 3D-GRE SPIR 4/2 10 3.3/1.6 280 576 × 576

Achiva® 1.5 T T2WI Sg 2D-TSE 1400/100–110 90 3–5/0.3–0.5 280 512 × 512–640 × 640

T2WI Ax 2D-TSE 1400–6013/100–110 90 3–5/0.3–0.5 280 512 × 512–704 × 704

DWI Ax EPI 3963–7500/70–77 90 3–5/0.3–0.5 280 224 × 224–256 × 256

CE-T1WI Sg 3D-GRE SPIR 4–5/2 15 4.4/2.2 280 336 × 336–576 × 576

CE-T1WI Ax 3D-GRE SPIR 5/2 15 2/1 250–280 320 × 320–576 × 576
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interpretation commenced with the single image sets 
(ADC map first), followed by the combined image sets. 
A time interval of one week was maintained between the 
sessions of interpretation.

Experiment 2: CNN in testing the single image sets using 
different image sets for training
Experiment 2 investigated whether the addition of differ-
ent types of image sets for training improved the diagnos-
tic performance of CNNs. The CNN was trained using 
images of the same sequence regardless of the cross-
sections, same cross-sectional images regardless of the 
sequences, and all images regardless of the sequences and 
cross-sections, in order to test five single image sets; only 
the single image sets were used for training and testing.

Deep learning with convolutional neural networks
Deep learning was conducted on Deep Station Entry 
(UEI, Tokyo, Japan) with a GeForce RTX 2080Ti graph-
ics processing unit (NVIDIA, Calif, USA), a Core i7-8700 
central processing unit (Intel, Calif, USA), and the 
graphical deep learning software Deep Analyzer (GHE-
LIA, Tokyo, Japan). The conditions optimized based on 
the ablation and comparative studies of the previous 
research were as follows: Xception [16], which is charac-
terized as depth-wise separable convolutions that enable 
the use of model parameters more efficiently than the 
previous CNN architecture was used for deep learning, 
and ImageNet [17] which consists of natural images was 
used as pre-training. The parameters of optimization are 
stated as follows: optimizer algorithm = Adam (learning 
rate = 0.0001, β1 = 0.9, β2 = 0.999, eps = le-7, decay = 0, 
AMSGrad = false). The batch size was automatically 
selected. Horizontal flip, rotation (± 4.5°), shearing (0.05), 
and zooming (0.05) were automatically used as the data 
augmentation techniques. The CNNs were generated by 
setting the training/validation split ratio to 9:1, 8:2, or 7:3, 
and the epochs to 50, 100, 200, 500 or 1000 and the diag-
nostic results of each were validated. The training/valida-
tion split ratio and epochs were selected for each image 
set on the basis of the best performance among the CNNs 
with sensitivity and specificity above 0.75 (Table 2).

Statistical analysis
Statistical analyses were conducted using EZR (Saitama 
Medical Center, Jichi Medical University, Saitama, Japan), 
a graphical user interface for R (The R Foundation for 
Statistical Computing, Vienna, Austria), and SPSS soft-
ware (SPSS Statistics 27.0; IBM, New York, NY, USA). 
The clinical values for each group were compared using 
the Mann–Whitney U test and the chi-square test. For 
the evaluation of the test data, in radiologists, 0.0–0.4 
was treated as non-cancer and 0.6–1.0 was treated 

cancer. In CNN, the classification into cancer and non-
cancer groups was output as a continuous number from 0 
to 1, 0–0.49 was considered as non-cancer, and 0.50–1.0 
was considered as cancer. The results were used to evalu-
ate the sensitivity, specificity, and accuracy in cancer 
diagnosis. The receiver operating characteristic (ROC) 
analysis was performed to evaluate the diagnostic perfor-
mance [18]. For statistics, 95% confidence intervals (CIs) 
and significant differences were estimated. Interobserver 
agreement was assessed with Kappa (κ) statistics [19]. 
P < 0.05 was considered to be significant.

Results
Patients and tumor characteristics from the training 
and test cohort
A total of 485 women (mean age, 52  years; age range, 
21–91 years) were evaluated across the datasets. Table 3 
shows the characteristics pertaining to the patients, 
the pathological types, and the number of each image. 
Although the patients in the cancer group were substan-
tially older compared to the non-cancer group (P < 0.001), 
the present study did not observe any significant differ-
ence between the training and test data with respect to 
the age of the patients (P = 0.817). In the cancer group, 
194 patients (train; 153, test; 41) were scanned with 3 T 
equipment, and 61 patients (train; 51, test; 10) were 
scanned with 1.5  T equipment. Also, in the non-cancer 
group, 166 patients (train; 131, test; 35) were scanned 
with 3  T equipment and 64 patients (train; 53, test; 11) 
were scanned with 1.5  T equipment. There was no sig-
nificant difference in imaging equipment between the 
cancer group and the non-cancer group (train; P = 0.465, 
test; P = 0.789), and there was no significant difference in 
imaging equipment between training and testing (can-
cer; P = 0.533, non-cancer; P = 0.633). Of all, 55 patients 
in the non-cancer group (train; 47, test; 8) were clinically 
confirmed including imaging findings rather than patho-
logical, and all others were pathologically confirmed.

Experiment 1
The results of Experiment 1 are presented in Table  4 
and Fig.  3. Table  4 shows the diagnostic performance 
of the CNNs and radiologists for the single and com-
bined image sets. Figure 3 shows the ROC curve com-
paring the performance of the CNNs for the single and 
combined image sets with the area under the receiver 
operating characteristic curve (AUC) pertaining to the 
radiologists. The sensitivity, specificity, accuracy, and 
AUC of the CNNs using the single and combined image 
sets were comparable to those displayed by the three 
radiologists. The AUC of the CNN was significantly 
higher for the single image sets of axial ADC map and 
axial CE-T1WI, compared to the three radiologists, 
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and on the single image set of axial T2WI, compared 
to reader 2, and the combined image set of axial 
T2WI + ADC map, compared to reader 1. The pre-
sent study did not observe any other significant differ-
ence between the CNNs and the three radiologists. The 
CNN showed the highest diagnostic performance with 
the single image set of axial ADC map with an AUC 
of 0.95. The graphs of accuracy and loss of the train-
ing data of the single image set of ADC map are shown 
in Fig. 4. The AUC of the CNNs for the combined axial 
T2WI + ADC map + CE-T1WI was 0.87, which was the 
lowest among the CNNs’ results for all the single and 
combined image sets.

Figure  5 shows three false-negative cases reported by 
the radiologists (Fig. 5a), the CNN (Fig. 5b), and both the 
radiologists and the CNN (Fig. 5c) in the interpretation 
of the single iamge set of axial ADC map. Figure 6 shows 
three false-negative cases reported by the radiologists 
(Fig. 6a), the CNN (Fig. 6b), and both the radiologists and 
the CNN (Fig. 6c) in the interpretation of the combined 
image set of axial T2WI + ADC map + CE-T1WI. The 

confidence levels of the CNN in the diagnosis of endome-
trial cancer are shown in the figure legends for each case.

Table  5 shows the inter-observer agreement between 
the CNNs and the three radiologists. The ks between 
the CNN and radiologists ranged from 0.32–0.81, vary-
ing widely and were less consistent than those among the 
radiologists.

Experiment 2
The results of Experiment 2 are presented in Table 6 and 
Fig. 7. Table 6 shows the diagnostic performance of the 
CNNs in testing using the single image sets and the addi-
tion of various types of image sets of different sequences 
and/or cross-sections to the training data. In this study, 
the AUC showed an increase when any types of image 
sets were added for training in the image set of sagittal 
T2WI and sagittal CE-T1WI, and all T2WI and all image 
sets were used for training in the image set of axial T2WI, 
although the difference was not significant. Conversely, 
for the image set of axial ADC map and axial CE-T1WI, 

Table 2 The best settings for training/validation split ratio and epoch in Experiment 1 and 2

ADC, Apparent diffusion coefficient; T2WI, T2 weighted image; CE-T1WI, contrast-enhanced T1 weighted image

Test image set Training image set Training/validation split 
ratio

Epoch

Experiment 1
Axial ADC map Axial ADC map 9:1 100

Axial T2WI Axial T2WI 9:1 50

Sagittal T2WI Sagittal T2WI 8:2 50

Axial CE-T1WI Axial CE-T1WI 8:2 200

Sagittal CE-T1WI Sagittal CE-T1WI 8:2 100

Combined axial T2WI + ADC map Combined axial T2WI + ADC map 9:1 100

Combined axial T2WI + CE-T1WI Combined axial T2WI + CE-T1WI 9:1 100

Combined sagittal T2WI + CE-T1WI Combined sagittal T2WI + CE-T1WI 9:1 50

Combined axial T2WI + ADC map + CE-T1WI Combined axial T2WI + ADC map + CE-T1WI 9:1 200

Experiment 2
Axial ADC map All axial 8:2 50

Axial ADC map All 9:1 50

Axial T2WI All T2WI 8:2 100

Axial T2WI All axial 9:1 50

Axial T2WI All 9:1 50

Sagittal T2WI All T2WI 8:2 200

Sagittal T2WI All sagittal 8:2 200

Sagittal T2WI All 8:2 100

Axial CE-T1WI All CE-T1WI 8:2 50

Axial CE-T1WI All axial 8:2 100

Axial CE-T1WI All 8:2 100

Sagittal CE-T1WI All CE-T1WI 9:1 100

Sagittal CE-T1WI All sagittal 9:1 50

Sagittal CE-T1WI All 9:1 100
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the addition of any image set for training did not improve 
the AUC.

Discussion
Compared to the radiologists, the CNNs displayed non-
inferior diagnostic performance in interpreting all five 
single image sets and significantly better results with 
the single image set of axial ADC map and axial CE-
T1WI. Although there were no significant differences, 
the diagnostic performance improved by adding other 
types of image sets to the training data, except for the 
single image set of axial ADC map and axial CE-T1WI. 
The improvement in the interpretation of the combined 
image sets was not equivalent to that of the radiologists.

Several CNNs using MRI have been constructed to 
diagnose uterine tumors to date [20, 21]. Urushibara et al. 
recently developed a CNN that can differentiate between 
cervical cancer and non-cancerous lesions on T2WI [22]. 
Chen et  al. and Dong et  al. evaluated the myometrial 
infiltration of endometrial cancer using CNN and T2WI 
[23], and T2WI + CE-T1WI [24]. As far as we know, this 
is the first study to diagnose the presence of endometrial 
cancer and to assess the effects of adding other types of 

images to the training data and the conditions suitable 
for the application of deep learning in tumor classifica-
tion. It is also noteworthy that the entire pelvic images 
were used, not just the cropped images of the uterus.

CE-T1WI and DWI are important sequences that allow 
the functional evaluation of endometrial cancer, and 
are clinically used as an adjunct to T2WI. The degree of 
tumor enhancement depends on the tumor vascularity; 
most endometrial cancers are hypovascular, while quite 
a few are isovascular or hypervascular, compared to the 
myometrium [25]. ADC values are inversely correlated to 
the tumor cellularity [26], and ADC values of endometrial 
cancer are significantly lower than endometrial polyps 
and normal endometrium [27, 28]. Hence, referencing 
CE-T1WI and ADC maps with T2WI improves cancer 
diagnosis. The present study observed that the CNNs dis-
played the best performance with the single image set of 
axial ADC map in Experiment 1, which is consistent with 
a previous study regarding the diagnosis of prostate can-
cer. The perception of anatomical structures using ADC 
maps alone is challenging for the radiologists. In con-
trast, ADC maps are considered to be suitable for can-
cer detection using CNN, and showing high diagnostic 

Table 3 Characteristics of the patients and lesions

SD, standard deviation; EC, Endometrioid carcinoma; T2WI, T2 weighted image; ADC, Apparent Diffusion Coefficient; CE-T1WI, contrast-enhanced T1 weighted image

Training data Test data

Cancer Non-cancer All Cancer Non-cancer All

Patients (n) 204 184 388 51 46 97

 Age

 Mean (y ± SD) 58 ± 11.50 46 ± 12.00 52 ± 13.00 60 ± 13.74 44 ± 12.53 53 ± 15.44

 Range (y) 28–83 22–81 22–83 30–91 21–71 21–91

Pathological type (n)
 Benign (n)
  Benign ovarian tumor 93 16

  Leiomyoma 71 24

  Endometrial hyperplasia 25 6

  Nabothian cyst 17 3

  Other 40 7

 Malignant (n)
  EC grade 1 118 30

  EC grade 2 51 11

  EC grade 3 20 9

  Other ECs 15 1

  Stage I 130 37

  Stage II 23 4

  Stage III 33 5

  Stage IV 18 5

Images (n)
 Axial (T2WI, ADC map, CE-T1WI) 1,471 1,434 2,905 51 46 97

 Sagittal (T2WI, CE-T1WI) 619 480 1,099 51 46 97
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performance on ADC maps with low spatial resolution 
alone may be one of the CNN’s strengths. Conversely, it 
may be possible to improve the diagnostic performance 
of CNNs by increasing the number of training images 
even when using high-resolution images such as T2WI. 
Contrary to the current results, Aldoj et  al. reported 
that the best diagnostic performance of the CNN was 

attained by combining ADC map + DWI + perfu-
sion + T2WI [29]. This research differs from the present 
study in that a large number of (approximately 120,000) 
images were used for training. As the number of images 
to be combined increases, the variation in information 
also increases. Consequently, increasing the number of 
images used for training may be warranted.

Table 4 Experiment 1- Diagnostic performance of the CNNs and radiologists

Diagnostic performance of the CNNs and radiologists in the test using the single and combined image sets

T2WI, T2 weighted image; ADC, Apparent Diffusion Coefficient; CE-T1WI, contrast-enhanced T1 weighted image, AUC, area under the receiver operating characteristic 
curve; Data in parentheses are 95% confidence interval. *P < 0.05

Image set Interpreter Sensitivity Specificity Accuracy AUC P-value for 
AUC (vs. 
CNN)

Axial ADC map CNN 0.94 (0.87–0.98) 0.87 (0.79–0.91) 0.91 (0.83–0.95) 0.95 (0.91–1.00) –

Reader1 0.71 (0.56–0.83) 0.85 (0.71–0.94) 0.77 (0.68–0.85) 0.78 (0.70–0.86)  < 0.001*

Reader2 0.67 (0.52–0.79) 0.87 (0.74–0.95) 0.76 (0.67–0.84) 0.77 (0.69–0.85)  < 0.001*

Reader3 0.77 (0.63–0.87) 0.78 (0.63–0.87) 0.77 (0.68–0.85) 0.77 (0.69–0.86)  < 0.001*

Axial T2WI CNN 0.90 (0.83–0.95) 0.83 (0.74–0.88) 0.87 (0.79–0.92) 0.90 (0.84–0.96) –

Reader1 0.73 (0.58–0.84) 0.96 (0.85–1.00) 0.84 (0.75–0.90) 0.84 (0.77–0.91) 0.220

Reader2 0.61 (0.46–0.74) 0.94 (0.82–0.99) 0.76 (0.67–0.84) 0.77 (0.70–0.85) 0.015*

Reader3 0.73 (0.58–0.84) 0.91 (0.79–0.98) 0.81 (0.72–0.89) 0.82 (0.75–0.89) 0.100

Sagittal T2WI CNN 0.90 (0.82–0.95) 0.80 (0.72–0.86) 0.86 (0.77–0.91) 0.88 (0.81–0.95) –

Reader1 0.69 (0.54–0.81) 1.00 (0.89–1.00) 0.84 (0.75–0.90) 0.84 (0.78–0.91) 0.457

Reader2 0.77 (0.63–0.87) 0.94 (0.82–0.99) 0.85 (0.76–0.91) 0.85 (0.78–0.92) 0.574

Reader3 0.75 (0.60–0.86) 0.87 (0.74–0.95) 0.80 (0.71–0.88) 0.81 (0.73–0.89) 0.167

Axial CE-T1WI CNN 0.84 (0.71–0.93) 0.89 (0.76–0.96) 0.87 (0.78–0.93) 0.93 (0.87–0.98) –

Reader1 0.75 (0.60–0.86) 0.94 (0.82–0.99) 0.84 (0.75–0.90) 0.84 (0.77–0.91) 0.006*

Reader2 0.77 (0.63–0.87) 0.91 (0.79–0.98) 0.84 (0.75–0.90) 0.84 (0.77–0.91) 0.002*

Reader3 0.77 (0.63–0.87) 0.91 (0.79–0.98) 0.84 (0.75–0.90) 0.84 (0.77–0.91) 0.014*

Sagittal CE-T1WI CNN 0.90 (0.83–0.95) 0.83 (0.74–0.88) 0.87 (0.79–0.92) 0.90 (0.84–0.97) –

Reader1 0.78 (0.65–0.89) 0.94 (0.82–0.99) 0.86 (0.77–0.92) 0.86 (0.79–0.93) 0.336

Reader2 0.73 (0.58–0.84) 0.96 (0.85–1.00) 0.84 (0.75–0.90) 0.84 (0.77–0.91) 0.173

Reader3 0.84 (0.71–0.93) 0.87 (0.74–0.95) 0.86 (0.77–0.92) 0.86 (0.79–0.93) 0.341

Combined axial T2WI + ADC map CNN 0.82 (0.69–0.92) 0.87 (0.74–0.95) 0.85 (0.76–0.91) 0.93 (0.88–0.98) –

Reader1 0.73 (0.58–0.84) 0.96 (0.85–1.00) 0.84 (0.75–0.90) 0.58 (0.48–0.68)  < 0.001*

Reader2 0.84 (0.71–0.93) 0.98 (0.89–1.00) 0.91 (0.83–0.96) 0.91 (0.86–0.97) 0.598

Reader3 0.88 (0.76–0.96) 0.87 (0.74–0.95) 0.88 (0.79–0.93) 0.88 (0.81–0.94) 0.196

Combined axial T2WI + CE-T1WI CNN 0.84 (0.71–0.93) 0.91 (0.79–0.98) 0.88 (0.79–0.93) 0.89 (0.83–0.96) –

Reader1 0.80 (0.67–0.90) 0.98 (0.89–1.00) 0.89 (0.81–0.94) 0.89 (0.83–0.95) 0.943

Reader2 0.80 (0.67–0.90) 0.96 (0.85–1.00) 0.88 (0.79–0.93) 0.88 (0.82–0.94) 0.720

Reader3 0.92 (0.81–0.98) 0.85 (0.71–0.94) 0.89 (0.81–0.94) 0.89 (0.82–0.95) 0.839

Combined sagittal T2WI + CE-T1WI CNN 0.94 (0.84–0.99) 0.74 (0.59–0.86) 0.85 (0.76–0.91) 0.89 (0.82–0.95) –

Reader1 0.80 (0.67–0.90) 0.98 (0.89–1.00) 0.89 (0.81–0.94) 0.89 (0.83–0.95) 0.890

Reader2 0.69 (0.54–0.81) 1.00 (0.89–1.00) 0.84 (0.75–0.90) 0.84 (0.78–0.91) 0.375

Reader3 0.86 (0.74–0.94) 0.87 (0.74–0.95) 0.87 (0.78–0.93) 0.87 (0.80–0.94) 0.667

Combined axial T2WI + ADC map + CE-T1WI CNN 0.80 (0.67–0.90) 0.80 (0.66–0.91) 0.80 (0.71–0.88) 0.87 (0.80–0.94) –

Reader1 0.71(0.56–0.83) 1.00 (0.89–1.00) 0.85 (0.76–0.91) 0.85 (0.79–0.92) 0.675

Reader2 0.67 (0.52–0.79) 1.00 (0.89–1.00) 0.83 (0.73–0.89) 0.83 (0.77–0.90) 0.406

Reader3 0.78 (0.65–0.89) 0.94 (0.82–0.99) 0.86 (0.77–0.92) 0.86 (0.79–0.93) 0.813
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Fig. 3 Experiment 1-The ROC curves for the CNNs. The ROC curves for the CNNs pertaining to the testing of the single and combined image sets 
with the AUC plots for the radiologists. T2WI, T2 weighted image; ADC, Apparent Diffusion Coefficient; CE-T1WI, contrast-enhanced T1 weighted 
image

Fig. 4 Accuracy and loss of the training data of the single image set of axial ADC map. Accuracy and loss of the training data of the single image set 
of axial ADC map with the training/validation split ratio 9:1 and epoch 100 in Experiment 1. Acc., accuracy
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Fig. 5 Three cases of false negatives were observed in the single image set of axial ADC: a A 55-year-old woman with grade 1 endometrioid 
carcinoma, in which the CNN was able to diagnose cancer, but the readers 1, 2, and 3 were not (the CNN confidence; cancer = 99.9%). The image 
shows a tiny tumor filling the uterine cavity (arrow); b A 34-year-old woman with grade 1 endometrioid carcinoma, in which all the three readers 
could diagnose cancer, but the CNN could not (the CNN confidence; cancer = 18.8%). The image shows a massive tumor protruding into the 
myometrium of the posterior wall of the uterus (arrow); c A 31-year-old woman with grade 2 endometrioid carcinoma, in which neither the CNN 
nor the three readers could diagnose the presence of cancer (the CNN confidence; cancer = 22.5%). The image shows the tumor filling the uterine 
cavity (arrow). A slight decrease in the single image of ADC map might have made the diagnosis of tumor difficult with a single image without 
considering the other images for radiologists

Table 5 Interobserver agreement between the CNN and the radiologists

ADC, Apparent Diffusion Coefficient; T2WI, T2 weighted image; CE-T1WI, contrast-enhanced T1 weighted image; SD, standard deviations

Reader 1 Reader 2 Reader 3

Axial ADC CNN 0.410 (SD0.090) 0.515 (SD0.083) 0.443 (SD0.091)

Reader2 0.558 (SD0.085) – –

Reader3 0.629 (SD0.078) 0.609 (SD0.079) –

Axial T2WI CNN 0.496 (SD0.083) 0.322 (SD0.087) 0.493 (SD0.084)

Reader2 0.584 (SD0.085) – –

Reader3 0.702 (SD0.073) 0.546 (SD0.086) –

Sagittal T2WI CNN 0.483 (SD0.080) 0.453 (SD0.087) 0.450 (SD0.088)

Reader2 0.722 (SD0.071) – –

Reader3 0.598 (SD0.081) 0.624 (SD0.080) –

Axial CE-T1WI CNN 0.690 (SD0.073) 0.773 (SD0.064) 0.690 (SD0.073)

Reader2 0.874 (SD0.050) – –

Reader3 0.832 (SD0.057) 0.833 (SD0.057) –

Sagittal CE-T1WI CNN 0.654 (SD0.074) 0.576 (SD0.078) 0.567 (SD0.083)

Reader2 0.831 (SD0.057) – –

Reader3 0.794 (SD0.061) 0.712 (SD0.070) –

Combined axial T2WI + ADC CNN 0.335 (SD0.055) 0.412 (SD0.054) 0.339 (SD0.055)

Reader2 0.727 (SD0.070) – –

Reader3 0.714 (SD0.069) 0.774 (SD0.063) –

Combined axial T2WI + CE-T1WI CNN 0.814 (SD0.059) 0.752 (SD0.067) 0.651 (SD0.076)

Reader2 0.853 (SD0.053) – –

Reader3 0.756 (SD0.064) 0.695 (SD0.071) –

Combined sagittal T2WI + CE-T1WI CNN 0.604 (SD0.081) 0.453 (SD0.089) 0.609 (SD0.080)

Reader2 0.807 (SD0.060) – –

Reader3 0.836 (SD0.055) 0.693 (SD0.069) –

Combined axial T2WI + ADC + CE-T1WI CNN 0.550(SD0.081) 0.469 (SD0.084) 0.486 (SD0.088)

Reader2 0.777 (SD0.067) – –

Reader3 0.724 (SD0.070) 0.765 (SD0.065) –
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The interobserver agreement between the CNNs and 
the radiologists tended to be lower than among the radi-
ologists, and CNN may have used a different perspec-
tive than the radiologists and, therefore, may have made 
a completely different assessment. For the single image 
set of CE-T1WI or the combined image sets including 

CE-T1WI, interobserver agreement was high both 
between the radiologists and between the CNNs and the 
radiologists. The finding that the contrast effect of endo-
metrial cancer on CE-T1WI is lower than the contrast 
effect of the myometrium is thought to make it easier for 

Fig. 6 Three cases of false negatives were observed in the combined image set of axial T2WI + ADC + CE-T1WI: a A 56-year-old woman with grade 
1 endometrioid carcinoma, in which the CNN was able to detect the cancer, but the three readers were not (the CNN confidence; cancer = 100%); b 
A 30-year-old woman with grade 1 endometrioid carcinoma, in which the three readers could diagnose the presence of cancer, but the CNN could 
not (the CNN confidence; cancer = 0.5%). The image shows a tumor displaying the typical appearance of endometrial cancer and filling the right 
side of the uterine cavity (arrow); c A 45-year-old woman with grade 1 endometrioid carcinoma, in which neither the CNN nor the three readers 
could diagnose the presence of cancer (the CNN confidence; cancer = 0.5%). The image shows a massive tumor filling the uterine cavity (arrow) and 
a hemorrhage at the center of the lesion. Non-uniform signal intensities of the tumor mass may have made the diagnosis difficult for radiologists
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Table 6 Experiment 2-diagnostic performance of the CNNs

Diagnostic performance of the CNNs in the testing using single image sets with the addition of other image sets for training

ADC, Apparent Diffusion Coefficient; T2WI, T2 weighted image; CE-T1WI, contrast-enhanced T1 weighted image
†  vs. the CNN trained with the single image set

Test image set Training image set Sensitivity Specificity Accuracy AUC P-value for AUC †

Axial ADC map Axial ADC map 0.94 (0.87–0.98) 0.87 (0.79–0.91) 0.91 (0.83–0.95) 0.95 (0.91–1.00) –

All axial 0.84 (0.76–0.90) 0.87 (0.78–0.93) 0.86 (0.77–0.91) 0.93 (0.87–0.98) 0.345

All 0.90 (0.82–0.95) 0.80 (0.72–0.86) 0.86 (0.77–0.91) 0.89 (0.81–0.96) 0.069

Axial T2WI Axial T2WI 0.90 (0.83–0.95) 0.83 (0.74–0.88) 0.87 (0.79–0.92) 0.90 (0.84–0.96) –

All T2WI 0.92 (0.85–0.96) 0.89 (0.81–0.94) 0.91 (0.83–0.95) 0.94† (0.88–0.99) 0.218

All axial 0.86 (0.79–0.91) 0.87 (0.78–0.93) 0.87 (0.78–0.92) 0.90 (0.84–0.97) 0.934

All 0.90 (0.83–0.95) 0.85 (0.76–0.90) 0.88 (0.80–0.93) 0.91† (0.85–0.98) 0.627

Sagittal T2WI Sagittal T2WI 0.90 (0.82–0.95) 0.80 (0.72–0.86) 0.86 (0.77–0.91) 0.88 (0.81–0.95) –

All T2WI 0.94 (0.87–0.98) 0.80 (0.72–0.85) 0.88 (0.80–0.92) 0.92† (0.86–0.98) 0.188

All sagittal 0.90 (0.83–0.95) 0.83 (0.74–0.88) 0.87 (0.79–0.92) 0.91† (0.84–0.97) 0.507

All 0.86 (0.79–0.91) 0.87 (0.78–0.93) 0.87 (0.78–0.92) 0.92† (0.85–0.98) 0.424

Axial CE-T1WI Axial CE-T1WI 0.84 (0.71–0.93) 0.89 (0.76–0.96) 0.87 (0.78–0.93) 0.93 (0.87–0.98) –

All CE-T1WI 0.84 (0.77–0.89) 0.91 (0.83–0.96) 0.88 (0.80–0.92) 0.93 (0.89–0.98) 0.716

All axial 0.92 (0.85–0.97) 0.78 (0.70–0.83) 0.86 (0.78–0.90) 0.88 (0.80–0.95) 0.086

All 0.86 (0.78–0.92) 0.84 (0.76–0.91) 0.86 (0.77–0.91) 0.91 (0.85–0.97) 0.589

Sagittal CE-T1WI SagittalCE-T1WI 0.90 (0.83–0.95) 0.83 (0.74–0.88) 0.87 (0.79–0.92) 0.90 (0.84–0.97) –

All CE-T1WI 0.86 (0.79–0.91) 0.87 (0.78–0.93) 0.87 (0.78–0.92) 0.92† (0.87–0.98) 0.524

All sagittal 0.90 (0.83–0.95) 0.85 (0.76–0.90) 0.88 (0.80–0.93) 0.91† (0.85–0.98) 0.696

All 0.98 (0.92–1.00) 0.83 (0.76–0.84) 0.91 (0.84–0.92) 0.95† (0.89–1.00) 0.156

Fig. 7 Experiment 2—The ROC curves for the CNNs. The ROC curves for the CNNs pertaining to testing the single image sets with various types of 
image sets for training. ADC, Apparent Diffusion Coefficient; T2WI, T2 weighted image; CE-T1WI, contrast-enhanced T1 weighted image
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both radiologists and CNN to diagnose the presence of 
cancer.

Adding other types of image sets to the training data 
improved the diagnostic performance, except for the single 
image set of axial ADC map and axial CE-T1WI in Experi-
ment 2. This result is similar to the recent report by Lee 
et al. that training with all available MRI sequences of the 
same cross-section improves the diagnostic performance 
of CNNs in distinguishing between pseudo and true 
tumor progression [30]. The present study observed that 
the addition of other cross-sections of the same sequence 
was especially beneficial. The amount of training data for 
the sagittal sections was smaller than the axial sections. 
Hence, the impact of the improvement may be greater. It 
is presumed that similar signal information is included in 
the same sequence even in different cross-sections, and 
similar morphological information is included in the same 
cross-section, even in different sequences. The potential 
for improved diagnostic performance by adding differ-
ent sequences and cross-sections is an important result 
concerning the deep learning studies of tumor diagnosis, 
which involve difficulties in obtaining a large number of 
images. In order to establish the optimum image condi-
tions in deep learning using MRI with various sequences 
and cross-sections, it is necessary to verify further using 
various combinations of various images in various regions.

The current study has several limitations. First, only one 
selected image was evaluated, which differs from the clini-
cal practice of diagnosis using a series of images. It also 
differs from a clinical setting in that the JPEG images, 
which contain less information than DICOM images, 
were used. Second, the non-cancer group included 
lesions that were not pathologically confirmed. However, 
we considered it important to distinguish cancer from 
benign lesions that do not warrant treatment. Third, it is 
controversial whether atypical endometrial hyperplasia 
should be classified as benign because it is not cancerous 
or malignant because it is a precursor lesion. However, it 
would be unreasonable to exclude only atypical endome-
trial hyperplasia from this study. Therefore, in this study, 
we classified atypical endometrial hyperplasia as benign 
because the purpose was to detect endometrial cancer. 
Fourth, we have not examined dynamic studies to avoid 
study complexity. Although the dynamic study is useful 
to determine the degree of myometrial invasion, the con-
trast between the tumor and the myometrium is greatest 
during the equilibrium phase [3]. This study targeted the 
presence of cancer, so only the images of the equilibrium 
phase were used as contrast images. The following can 
be considered future improvements: the superiority of 
combined images may be demonstrated using more train-
ing data. The performance can be improved using three-
dimensional images instead of two-dimensional images, 

as reported by Mehrtash et  al., who used three-dimen-
sional prostate images for convolutional neural networks 
[31]. Evaluation with DICOM data and learning with clin-
ical data such as tumor markers can also improve diag-
nostic performance. Further versatility can be achieved 
using the images obtained with other MRI equipment.

Conclusions
In conclusion, deep learning demonstrated high diagnos-
tic performance in diagnosing the presence of endome-
trial cancer on MRI. In particular, a deep learning model 
using convolutional neural networks showed significantly 
better results with the single image set of axial apparent 
diffusion coefficient of water maps and axial contrast-
enhanced T1-weighted images compared to expert radi-
ologists. Moreover, although there were no significant 
differences, the addition of other types of images to the 
training data improved the diagnostic performance for 
some of the single image sets.
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