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Abstract 

Purpose:  To develop a clinical-radiomics nomogram by incorporating radiomics score and clinical predictors for 
preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Methods:  A total of 97 HCC patients were retrospectively enrolled from Shanghai Universal Medical Imaging Diag-
nostic Center and Changhai Hospital Affiliated to the Second Military Medical University. 909 CT and 909 PET slicers 
from 97 HCC patients were divided into a training cohort (N = 637) and a validation cohort (N = 272). Radiomics 
features were extracted from each CT or PET slicer, and features selection was performed with least absolute shrink-
age and selection operator regression and radiomics score was also generated. The clinical-radiomics nomogram was 
established by integrating radiomics score and clinical predictors, and the performance of the models were evaluated 
from its discrimination ability, calibration ability, and clinical usefulness.

Results:  The radiomics score consisted of 45 selected features, and age, the ratio of maximum to minimum tumor 
diameter, and 18F-FDG uptake status were independent predictors of microvascular invasion. The clinical-radiomics 
nomogram showed better performance for MVI detection (0.890 [0.854, 0.927]) than the clinical nomogram (0.849 
[0.804, 0.893]) ( p < 0.05 ). Both nomograms showed good calibration and the clinical-radiomics nomogram’s clinical 
practicability outperformed the clinical nomogram.

Conclusions:  With the combination of radiomics score and clinical predictors, the clinical-radiomics nomogram can 
significantly improve the predictive efficacy of microvascular invasion in hepatocellular carcinoma ( p < 0.05 ) com-
pared with clinical nomogram.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most com-
mon malignancy and the fourth leading cause of cancer-
related death worldwide [1]. Liver resection and liver 

transplantation are two universally acknowledged treat-
ments with relatively good prognosis, but the high prob-
ability of postoperative tumor recurrence still threatens 
patients’ long-term survival [2–4]. Therefore, accurate 
detection of high-risk factors for HCC recurrence pre-
operatively would play an important role in choosing 
surgical techniques so as to reduce the chance of HCC 
recurrence and potentially improve overall survival 
outcomes.
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Microvascular invasion (MVI) refers to the invasion of 
HCC cells to the peritoneal peritumor tissues. It is one 
of the pathological features that reflect the aggressiveness 
of the tumor which can only be seen on the pathological 
sections under the postoperative microscope. The pres-
ence of MVI in HCC patients generally indicates poor 
survival prognosis, and HCC with MVI also has a much 
shorter disease-free survival [5]. Therefore, MVI is seen 
as an important prognostic factor for HCC [6–8]. Due 
to the extreme heterogeneity of HCC, no stable serologi-
cal or genomic predictor of MVI has been found so far 
[9–11]. Recently, preoperative prediction of MVI in HCC 
using noninvasive imaging modalities has attracted clini-
cal interest. Valuable microscopic features by definition 
can only be imaged by postoperative biopsy and hence 
effectively characterizations of the tumor heterogeneity 
are hard to achieve. Therefore, the preoperative predic-
tion of MVI in HCC remains an urgent problem.

18FDG PET/CT examination is an important method 
in molecular imaging, in which PET examination pro-
vides molecular information such as the function and 
metabolism of the lesions and CT examination provides 
precise anatomical localization of the lesions. It can be 
used for staging and predicting prognosis in patients with 
malignancy [12]. The maximum standardized uptake 
value and tumor-to-liver ratio on PET images may be 
positively correlated with MVI and the prognosis of HCC 
patients [12, 13]. For HCC patients, primary-tumor FDG 
avidity is a prognostic indicator of ag-gressive tumor bio-
logical behavior and correlates with tumor recurrence 
[14, 15].

As a new technology, radiomics can improve the 
assessment and quantification of spatial heterogeneity of 
tumors by converting medical imaging information into 
thousands of quantitative features through computer 
algorithms [16]. At present, some scholars have success-
fully predicted MVI in HCC preoperatively using radi-
omics [17–20]. In this study, we used 18F-FDG PET/CT 
images for the assessment of MVI of HCC and applied 
radiomics techniques to establish a radiomics score (Rad-
score) from PET/CT images, and we subsequently estab-
lished a nomogram for the prediction of preoperative 
MVI. If potential predictors can be identified, 18F-FDG 
PET/ CT may become an alternative technique that can 
provide additional information for MVI detection.

Materials and methods
Patients
In this study, 223 HCC patients’ PET/CT images (from 
September 2012 to November 2020) from Shanghai Uni-
versal Medical Imaging Diagnostic Center and Changhai 
Hospital Affiliated to the Second Military Medical Uni-
versity were retrospectively analyzed. Among them, the 

inclusion criteria were as follows: (1) HCC was confirmed 
by postoperative pathological examination, (2) 18F-FDG 
PET/CT was performed preoperatively, (3) no invasive 
examination was performed before 18F-FDG PET/CT 
examination, (4) imaging studies did not suggest venous 
tumor thrombus and distant metastasis, and (5) the clin-
icopathological data were complete. Exclusion criteria 
were as follows: (1) liver cancer with other pathology, 
(2) patients with HCC recurrence, (3) previous history 
of malignancy in the liver or other sites, (4) pathological 
diagnosis with macroscopic intravascular, and (5) missing 
clinicopathological data. Figure 1 displays the flow chart 
of the study population.

After screening, a total of 97 eligible patients were 
enrolled, 38 had MVI and 59 had no MVI (confirmed by 
postoperative pathological examination). Depending on 
the size of the tumor, each patient has a different number 
of slices. In this paper we obtained 909 PET slicers and 
909 CT slicers from 97 cases (including 485 with MVI 
and 424 without MVI). Each case’s baseline clinical data 
including age, sex, 18F-FDG uptake status, ratio of maxi-
mum to minimum tumor diameter (Max/Min-TD), and 
tumor location were collected by clinicians with more 
than 5 years of clinical experience. Clinical information 
was shown in Table 1. The slicers were randomly divided 
into a training cohort (N = 637) and a validation cohort 
(N =  272) at a 7:3 ratio. In a subsequent paper we will 
deal with a slice as a case for experimentation.

18F‑FDG PET/CT examination
Biograph 64 PET/CT imager we used was made by Sie-
mens (Germany). 18F-FDG was provided by Shanghai 
atomic science and technology, Ltd. The radiochemical 
pu-rity was more than 95%. Patients were fasted more 
than 6 h before examination, and their blood glucose were 
controlled under 11.1 mmol/l. Patients received intrave-
nous 3.70–5.55 mbq/kg 18F-FDG according to their body 
mass and underwent PET/CT after lying still for 60 min. 
The patient firstly underwent CT scan with the follow-
ing scanning parameters: tube voltage 120 kV, tube cur-
rent 170 Ma; slice thickness 3.0 mm. Then, imaging with 
PET was performed, and a three-dimensional acquisition 
mode with 5–6 beds and 2.5 min/bed was used. Delayed 
imaging was performed in the case of diagnostic difficul-
ties, which was performed within (120 ±  15) min after 
injection of 18F-FDG in 1-2 bed positions with identical 
scanning parameters. Attenuation correction was per-
formed on the CT data and reconstructed by an iterative 
method to finally obtain transverse, sagittal, coronal CT, 
PET, and PET/CT fusion images. Both hospitals used the 
same model of PET/CT equipment for image acquisi-
tion. And we selected transverse images of PET and CT 
images for subsequent experiments.
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Fig. 1  Flow chart of enrolling the study population

Table 1  Clinical characteristics in the training and validation cohorts

MVI+ : MVI positive, MVI−: MVI negative

Variables Training cohort (n = 637) Validation cohort (n = 272) p

MVI+ (N = 340) MVI− (N = 297) MVI+ (N = 145) MVI− (N = 127) 1.000

Sex, no. (%) 1.000

 Male 313 (92.1) 257 (86.5) 130 (89.7) 114 (89.8)

 Female 27 (7.9) 40 (13.5) 15 (10.3) 13 (10.2)

Age (years), mean ± SD 55.21 ± 11.3 52.68 ± 10.82 54.50 ± 10.80 51.61 ± 10.17 0.270

Max/Min-TD, mean ± SD 3.26 ± 0.82 1.90 ± 0.54 3.07 ± 0.81 2.10 ± 0.67 0.901

18F-FDG uptake status, no. (%) 0.607

 Negative 3 (0.9) 108 (36.4) 8 (5.5) 44 (33.6)

 Positive 337 (99.1) 189 (63.6) 137 (94.5) 83 (65.4)

Tumor location, no. (%) 0.152

 Right lobe of liver 278 (81.8) 241 (81.1) 125 (86.2) 108 (85.0)

 Left lobe of liver 62 (18.2) 56 (18.9) 20 (13.8) 19 (15.0)
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Regions of interest segmentation
The tumor regions of interest (ROI) of each patient 
were manually drawn slice by slice by two radiolo-
gists with 5-year experience using ITK-SNAP software 
(available for download at http://​www.​itksn​ap.​org/). As 
shown in Fig.  2, these were annotated schematic dia-
grams of ROI using ITK-SNAP software. Both radiolo-
gists were blind to the pathological results. The original 
image and segmentation files were stored in the format 
of the Neuroimaging Informatics Technology Initiative.

In order to evaluate the radiomics features extracted 
from the ROIs delineated by two radiologists, we cal-
culated intraclass correlation coefficients (ICC). 150 
images were randomly chosen to evaluate the inter-
observer reproducibility of the radiomics feature. The 
ICC is a statistical measure between 0 and 1, where 0 
indicates no and 1 indicates perfect reliability. Only fea-
tures with ICC values equal to or higher than 0.70 were 
considered to be good for the subsequent research pro-
cess in this study.

Radiomics feature extraction
We extracted 465 CT radiomics features and 465 PET 
radiomics features from the ROI for each case, and all 
radiomics features were extracted by the pyradiom-
ics package (https://​pyrad​iomics.​readt​hedocs.​io/). The 
feature pool comprised 18 first-order features, 75 raw 
texture features, 372 wavelet-based texture features. 
Raw texture features included gray level co-occurrence 
matrix (GLCM), gray level run-length matrix (GLRLM), 
gray level size zone matrix (GLSZM), gray level depend-
ence matrix (GLDM), neighbouring gray tone difference 
matrix (NGTDM). Numbers of GLCM-based, GLRLM-
based, GLSZM-based, GLDM-based and NGTDM-
based features were 24, 16, 16, 14 and 5, respectively. 
The features were also recomputed after different wave-
let decomposition in two directions (x, y) of the original 
images. Performing low-pass or high-pass wavelet filter 
along x or y directions resulted in 4 decomposition of the 
original image. Consequently, we extracted 372 features 
by wavelet transformation of the tumor region.

Fig. 2  Annotation schematics of ROI were performed using ITK-SNAP software with the red portion of the figure as the manually outlined ROI. 
In the first row, CT (A) and PET (B) images of a 65-years-old male patient with coarse beam HCC with MVI. In the second row, CT (C) and PET (D) 
images for a 53-year-old male with coarse beam HCC without MVI

http://www.itksnap.org/
https://pyradiomics.readthedocs.io/
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Radiomics feature selection and construction 
of the radiomics score
First, normalize each radiomics feature to eliminate influ-
ence caused by the numerical range differences between 
features. To prevent overfitting of the results, we used the 
least absolute shrinkage and selection operator (LASSO) 
regression algorithm to select the optimal contributing 
features group. Features with corresponding coefficients 
that were not-zero in the LASSO regression results were 
retained. Radiomics score (Rad-score) was calculated for 
each patient via a linear combination of selected features 
that were weighted by their respective coefficients.

Development and validation of MVI‑predicting 
nomograms
In order to analyze the significant factors affecting the 
prediction of MVI, univariate and multivariate logistic 
regression analyses were used. To identify independent 
clinical factors that influence the prediction of MVI, the 
factors with a p value of 0.05 or less in univariate analy-
sis will be further analyzed using multivariate logistic 
regression. To prove the added value of Rad-score in MVI 
assessment, we established a clinical nomogram (Clin-
nom) that only contains independent clinical predictors 
and a clinical-radiomics nomogram (C-Rad-nom) com-
bining Rad-score with clinical predictors. We assessed 
and compared the performance of the established nomo-
grams in terms of discrimination ability, calibration abil-
ity, and clinical usefulness.

Statistical analysis
In this study, all the statistical analysis was conducted 
with R software (available for download https://​www.r-​
proje​ct.​org/). Categorical variables were statistically ana-
lyzed using the χ2 test and continuous variables were 
analyzed using the t test. And p values less than 0.05 were 
considered statistically significant. In addition, predictive 
models were also established and evaluated using R soft-
ware. The features selection method of LASSO was per-
formed using the “glmnet” package. The univariate and 
multivariate logistic regression analyses were performed 
using the “glm” function. Nomograms and calibration 
curves were plotted used the “rms” package. The receiver 
operating characteristic (ROC) curves plotting and area 
under curve (AUC) calculation was performed using the 
“pROC” package. The decision curve analysis was per-
formed with the “rmda” package.

Results
Clinical characteristics
Detailed clinical characteristics of cases are shown in 
Table  1. In 909 cases, 53.4% (485/909) were MVI posi-
tive (MVI+ : patients were confirmed to have MVI by 

postoperative pathological examination) and 46.6% 
(424/909) were MVI negative (MVI−: patients were 
confirmed to have no MVI by postoperative pathologi-
cal examination). MVI positivity was found in 53.4% 
(340/637) of tumors in the training cohort, similar to 
54.3% (145/272) seen in the validation cohort (p = 1.000). 
In addition, there were no signif1icant differences 
between the two cohorts in other clinical characteristics. 
These results justified the use of the training and valida-
tion cohorts ( p > 0.05 , Table 1).

Features extraction and radiomics scores construction
We cascaded the features extracted from the CT image 
(465 radiomics features) and PET image (465 radiomics 
features) and our features group contained 930 radiomics 
features for each case. The reproducibility of radiomics 
feature extraction was good (ICC  >  0.70). These results 
suggested that our radiomics feature values were highly 
reproducible. As shown in Fig. 3, we performed features 
selection using the LASSO regression model. The left 
figure represents the distribution of coefficients for each 
feature, where the coefficient profile was plotted against 
the log ( � ) sequence. The right showed the adjustment 
of parameters in the LASSO model using 10-fold cross-
validation to obtain a minimum standard. The binomial 
deviance was plotted versus log ( � ). As shown in Fig. 3B, 
dotted vertical lines were drawn at the optimal values by 
using the minimum criteria (the left) and the 1 stand-
ard error of the minimum criteria (the right). Finally, we 
obtained 45 (12 features from CT and 33 features from 
PET) as the most significant radiomics features from the 
feature groups to construct Rad-score. Individual case’s 
Rad-score was computed through a linear combina-
tion of the selected features weighted by their respective 
coefficients.

Development of MVI‑predicting nomograms
Univariate and multivariate logistic regression were used 
to determine the relationship between the factors and 
MVI in HCC. As shown in Table  2, age, sex, 18F-FDG 
uptake status and Max/Min-TD were significantly associ-
ated with the prediction of MVI (p < 0.05) according to 
univariate logistic regression analysis. And according to 
multivariate logistic regression analysis, we found age, 18
F-FDG uptake status and Max/Min-TD were independ-
ent predictors of MVI (p < 0.05).

In this study, the Clin-nom was established by com-
bining age, 18F-FDG uptake statues and Max/Min-TD. 
In order to verify the incremental value of Rad-score in 
predicting MVI status, we combined four clinical predic-
tors with Rad-score to establish C-Rad-nom. As shown in 
Fig. 4A, B, Clin-nom and C-Rad-nom were established in 
this study.

https://www.r-project.org/
https://www.r-project.org/
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Validation of MVI‑predicting nomograms
Discrimination ability
In this study, the AUC was used to identify the perfor-
mance of the nomograms and Rad-score in discrimi-
nating between MVI negative and MVI positive cases 
(Table 3). The performance of Rad-score, Clin-nom, and 
C-Rad-nom in MVI prediction, AUCs were 0.903 (95% 
CI, 0.881–0.926), 0.941 (0.923–0.959), 0.962 (0.949–
0.976) in the training cohort, and 0.806 (0.756–0.856), 
0.849 (0.804–0.893), 0.890 (0.854–0.927) in the validation 
cohort. We performed a DeLong test to verify whether 
there was a significant difference among the Rad-score, 
Clin-nom and C-Rad-nom in MVI prediction.

According to Table 3, when Rad-score was included in 
Clin-nom, the performance of the Clin-nom was signifi-
cantly improved in the training cohort (p < 0.05), and this 
significant improvement was also confirmed in the vali-
dation cohort, which indicates that Rad-score has incre-
mental value in MVI prediction. The ROC curves of the 
Rad-score, Clin-nom, and C-Rad-nom in MVI prediction 

performance in the training cohort and validation cohort 
were depicted in Fig. 5.

Calibration ability and clinical usefulness
The calibration curves of Clin-nom and C-Rad-nom 
in the validation cohort were shown in Fig.  6. The cali-
bration curve was used to estimate the consistentency 
between the nomogram-predicted probability of MVI 
and the actual outcomes. In Fig.  6, both nomograms 
showed good calibration. In contrast, the C-Rad-nom 
predicted probability of MVI status was consistent with 
the actual MVI probability, whereas Clin-nom performed 
worse than C-Rad-nom, with some deviation from the 
actual predicted probability.

The decision curve analysis (DCA) evaluated the per-
formance for the Clin-nom and C-Rad-nom in terms of 
clinic-pathologic application, thereby, reflecting its clini-
cal usefulness. As the decision curve analysis shown in 
Fig. 7, within the probability of predicting MVI ranges of 
0.1 to 0.8, there was more benefit from the Clin-nom and 

Fig. 3  Features selection used the LASSO regression model in the features group. A LASSO coefficients produced by the regression analysis. 
As shown in B, � = 0.0240 with log ( �) = − 3.728 was chosen according to 10-fold cross-validation, where optimal � resulted in 45 non-zero 
coefficients in the features group

Table 2  Results of the univariate and multivariate logistic regression analyses based on the training cohort

Univariate logistic regression analysis Multivariate logistic regression analysis

OR (95% CI) p OR (95% CI) p

Sex 1.804 (1.083, 3.048) 0.025 0.510 (0.204, 1.492) 0.2371

Age 1.021 (1.007, 1.035) 0.004 1.083 (1.053, 1.116) < 0.05

18F-FDG uptake status 64.190 (23.771, 263.248) < 0.05 53.021 (13.579, 314.040) < 0.05

Max/Min-TD 3.529 (2.111, 6.109) < 0.05 19.655 (12.008, 34.197) < 0.05

Tumor location 0.960 (0.643, 1.435) 0.841 – –
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C-Rad-nom compared with the treat-all-patients scheme 
or the treat-none scheme. And if the threshold probabil-
ity is greater than 0.18, the use of C-Rad-nom predicted 
MVI in the vast majority of cases to be more beneficial in 
patients using Clin-nom.

Discussion
We have established and verified nomogram based on 
Rad-score for preoperative MVI prediction of HCC 
patients. When the Rad-score were combined with 
the clinical predictors in the Clin-nom, the Clin-nom 

performance is significantly improved (p  <  0.05), which 
indicates the incremental value of the Rad-score for the 
prediction of individualized MVI of HCC. In addition, we 
combined the extracted PET and CT radiomics features 
to build a C-Rad-nom to facilitate the individualized pre-
diction of preoperative MVI. The predicted calibration 
curve of the validation cohort was consistent with the 
ideal curves, and the DCA indicated that the C-Rad-nom 
had clinical usefulness in this study.

Tumor heterogeneity can be difficult to identify or 
quantify through traditional imaging tools or subjective 
image evaluation. Radiomics may be a useful imaging 
marker to improve the assessment and quantification of 
tumor spatial heterogeneity. The radiomics features are 
extracted and calculated by computer, and it is very chal-
lenging to explain the radiomics features. It is difficult 
for us to select biomarkers from thousands of radiomics 
features. The common way is to develop a multi-features 
parameter for outcome estimation using the radiom-
ics technique [17, 21, 22]. In our research, we extract 
the radiomics features from PET/CT images, screen 
out the most representative radiomics features through 
LASSO regression, and linearly combine the correspond-
ing coefficients to establish Rad-score, these features are 
indicators of tumor texture characteristics. This article 
confirms that Rad-score in MVI assessment has incre-
mental value and proves that radiomics can reflect intra-

tumoral heterogeneity.
There hasn’t reached a consensus on whether tumor 

size is an independent predictor in the HCC MVI assess-
ment model. Previous studies [23–26] have reported that 
the tumor size of HCC was significantly different in MVI 
positive and MVI negative groups. The results of the 
previous research [27] showed that tumor diameter was 
only an independent factor of MVI in univariate analy-
sis, but this result doesn’t suit multivariate analysis. In 
order to better describe the effect of tumor size on MVI, 
we proposed the clinical index of Max/Min-TD for MVI 

Fig. 4  Nomograms were established to predict MVI for HCC patients. 
Clin-nom (A) and C-Rad-nom (B) developed from the training cohort. 
“Points” refers to point for the individual risk factor and add together 
to the “Total points”. “HCC MVI risk” was calculated according to the 
“Total points”

Table 3  The AUC of Rad-score and nomograms for predicting MVI

*Indicated p < 0.0001

Models Training cohort (N = 637) p Validation cohort (N = 272) p

AUC​ (95% CI) AUC​ (95% CI)

Lower Upper Lower Upper

Rad-score 0.903 0.881 0.926 0.806 0.756 0.856

Clin-nom 0.941 0.923 0.959 0.849 0.804 0.893

C-Rad-nom 0.962 0.949 0.976 0.890 0.854 0.927

Rad-score versus Clin-nom 0.002 0.133

Rad-score versus C-Rad-nom 0.000* 0.000*

Clin-nom versus C-Rad-nom 0.000* 0.000*
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prediction. In our experiment, the diameter of the tumor 
was determined based on the integrated measurement of 
CT and PET examination images. In addition, we verified 
that Max/Min-TD was also significant for the prediction 
of MVI.

Some studies [28, 29] have shown that there is a 
certain correlation between the positive PET scan 
and MVI. The higher the malignant degree of tumor 
cells, the lower the degree of dephosphorylation, and 

more 18F-FDG deposits in the cells. Therefore, mod-
erately and poorly differentiated HCC can usually 
show increased 18F-FDG uptake. In this study, 87.24% 
(793/909) of patients had been grade III–IV HCC, and 
82.84% (753/909) of HCC showed increased 18F-FDG 
uptake. Additionally, research [13] has proved that 
18F-FDG PET/CT positive is an independent predic-
tor of MVI, and the specificity and sensitivity to pre-
dict MVI was 73% and 62%, respectively. In this study, 

Fig. 5  ROC curves of the Clin-nom, Rad-score and C-Rad-nom derived from the training (A) and validation (B) cohorts. The x-axis is the 
“1-Specifificity”, and the y-axis is “Sensitivity”. The AUCs were also presented in Table 3, respectively

Fig. 6  Calibration curves of the Clin-nom and C-Rad-nom 
generated from the validation cohort. The ordinate represents 
the actual probability of MVI while the abscissa represents the 
nomogram-predicted probability of MVI. The diagonal dashed line 
means that the predicted probability is equal to the actual probability 
and the more deviation from the diagonal indicates the greater the 
error of prediction

Fig. 7  Decision curve analysis for Clin-nom and C-Rad-nom was 
established in the validation cohort. The abscissa shows the threshold 
probability, while the ordinate shows the net benefit. The gray line 
represents the assumption of all MVI positive cases, and the black line 
represents the assumption of all MVI negative cases
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18F-FDG uptake status is an independent factor to 
predict MVI in HCC, which is consistent with previ-
ous research.

Nomograms incorporating multiple risk factors 
have been widely used to predict medical outcomes 
and prognosis. In this study, age, Max/Min-TD and 
18F-FDG uptake status were independently related to 
MVI. When Rad-score was included in the Clin-nom, 
the Clin-nom AUC in the validation cohort was sig-
nificantly increased from 0.849 to 0.890 (p < 0.05). In 
addition, the DCA shows that more patients will ben-
efit from the C-Rad-nom rather than the Clin-nom, 
suggesting that the Rad-score add incremental value to 
the clinical usefulness of clinical predictors. Currently, 
models constructed with radiomics features such as 
ultrasound, contrast-enhanced CT, and MRI had been 
used to predict MVI status [17, 20, 30]. When com-
pared with other reported models, our study dem-
onstrated that the C-Rad-nom (0.890 [0.854, 0.927]) 
showed the best performance. The article by Li et  al. 
[31] also used 18F-FDG PET/CT images for the pre-
diction of preoperative MVI, and a predictive model 
for MVI status was developed using only radiomics 
features with an AUC of 0.692 (95% CI: 0.497–0.887) 
in the validation set. However, in our experiment, the 
MVI prediction model built using only the radiomics 
signature had an AUC of 0.806 (95% CI: 0.756–0.856) 
in the validation set. It shows that our model performs 
better in MVI prediction, probably because the cases 
they choose were at the early stage and early-stage 
HCC patients’ MVI status might be more difficult to 
predict. However, we didn’t specifically choose early-
stage HCC patients in our case selection process. In 
conclusion, both ours and Li et al’s experimental mod-
els based on the radiomics features of 18F-FDG PET/
CT images can assist physicians in preoperative HCC 
MVI diagnosis.

Our study has several limitations. Firstly, because of 
the relatively small sample size, we used each slicer of 
the patient as a single subject in the study. Since we are 
using 2D slices, we may lose some 3D features (such as 
volume of the tumor). Secondly, our research lacked 
multi-center validation. Although the C-Rad-nom pro-
posed in this paper has been evaluated in an internal 
validation cohort with good results, further validation 
from other centers is needed to evaluate the reliabil-
ity of our predicted nomograms. And the experiment 
was completely retrospective, so it needs to be verified 
by a prospective study. Finally, our clinical data were 
incomplete and lacked some important preoperative 
clinical predictors (incomplete tumor capsule, high 
serum α-fetoprotein level), which may account for our 
decreased model performance.

Conclusions
In conclusion, we established Rad-score based on PET/
CT images of HCC patients, which can be an impor-
tant factor for predicting MVI. The C-Rad-nom, which 
combines the Rad-score and clinical predictors, showed 
better performance in MVI detection compared with 
the Clin-nom. Thus, the C-Rad-nom had the potential 
to predict MVI preoperatively, enabling a more appro-
priate surgical plan.
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