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Abstract 

Purpose:  Positron emission tomography (PET)/ computed tomography (CT) has been extensively used to quantify 
metabolically active tumors in various oncology indications. However, FDG-PET/CT often encounters false positives 
in tumor detection due to 18fluorodeoxyglucose (FDG) accumulation from the heart and bladder that often exhibit 
similar FDG uptake as tumors. Thus, it is necessary to eliminate this source of physiological noise. Major challenges for 
this task include: (1) large inter-patient variability in the appearance for the heart and bladder. (2) The size and shape 
of bladder or heart may appear different on PET and CT. (3) Tumors can be very close or connected to the heart or 
bladder.

Approach:  A deep learning based approach is proposed to segment the heart and bladder on whole body PET/
CT automatically. Two 3D U-Nets were developed separately to segment the heart and bladder, where each network 
receives the PET and CT as a multi-modal input. Data sets were obtained from retrospective clinical trials and include 
575 PET/CT for heart segmentation and 538 for bladder segmentation.

Results:  The models were evaluated on a test set from an independent trial and achieved a Dice Similarity Coef-
ficient (DSC) of 0.96 for heart segmentation and 0.95 for bladder segmentation, Average Surface Distance (ASD) of 
0.44 mm on heart and 0.90 mm on bladder.

Conclusions:  This methodology could be a valuable component to the FDG-PET/CT data processing chain by 
removing FDG physiological noise associated with heart and/or bladder accumulation prior to image analysis by 
manual, semi- or automated tumor analysis methods.
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Introduction
Whole body positron emission tomography (PET)/
computed tomography (CT) with 18fluorodeoxyglu-
cose (FDG) has been widely used in diagnosis, staging 
and re-staging for various cancers [1–5]. Baseline total 
metabolic tumor volume (TMTV) has been found to be 

prognostic, where TMTV correlates significantly with 
overall survival (OS); in addition, the change in TMTV 
for follow-up scans can be used to assess an early treat-
ment response [6–9]. Although PET is very sensitive to 
detect tumors with high metabolic activity, uptakes of 
FDG is not specific to tumors. FDG accumulation can 
occur at areas of inflammation or infection, in normal 
tissues with high metabolic activity such as brain and 
working muscles, and FDG can accumulate in excretory/
filtration organ systems. As such, this accumulation can 
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appear as false positives for tumor assessment in FDG-
PET images [10–13]. The uptake in the bladder and heart 
is most problematic since it often present and just varies 
by degree. More specifically, the urinary bladder usually 
contains a variable amount of contrast agent or radi-
otracer accumulation post contrast administration and 
can appear comparable in FDG uptake as tumors in the 
abdominal/pelvic region. Similarly, the heart is another 
potential source of false positive signal due to high blood 
pool signal and/or local FDG accumulation in heart 
muscle. If the bladder or heart uptake is identified as 
tumor by mistake, it can impact the utility of FDG-PET 
as a prognostic or efficacy assessment, especially in low 
tumor burden situations at baseline or post treatment.

The automatic image segmentation of FDG-PET 
images or co-segmentation of FDG-PET/CT images 
has been extensively studied[14–18]. Almost all of these 
segmentation approaches have been aimed at lesion or 
tumor delineation. Region growing[19, 20] and random-
walk[21, 22] based methods have also been introduced to 
utilize spatial information but the performance can suffer 
when the region of interest does not have good homoge-
neity. Often these approaches suffer from segmentation 
leakage to other surrounding objects or background 
regions. An enhanced random walk method[23, 24] was 
proposed to solve this issue on head and neck cancer by 
including k-means clustering to refine target seed and 
adaptive optimal threshold selection. Active contour 
algorithm combined with discriminant analysis[25] has 
been applied to deal with datasets with noise and weak 
boundaries. Deep learning methods using 2D U-Net[26] 
was also used to segment tumors on head and neck. It 
has shown superior performance than other classical 
machine learning approaches.

There are only a few published studies that describe 
bladder segmentation methods for FDG-PET/CT imag-
ing data[27, 28]. Gsaxner et al.[27] exploit FDG enhanced 
PET by simple thresholding to generate ground truth for 
bladder segmentation on CT. They assumed the blad-
der on PET and CT are exactly same and there are no 
tumors in the abdomen. Geoffrey et  al.[28] proposed a 
two-step clustering based method. Two manually-chosen 
seed points were selected within the bladder and tumor 
to serve as initial cluster means for K-Means clustering, 
which was applied to both the PET and CT images simul-
taneously to segment the bladder. Due to the need for 
manually selected seed points and a user-specified num-
ber of clusters, this method likely lacks the generalizabil-
ity to be applied to more heterogeneous cases. Fourcade 
et  al.[29] combined superpixels and deep learning 
approaches to segment organs such as brain, heart and 
bladder in FDG-PET images from a breast cancer patient. 
But, they only used FDG-PET image data alone, without 

CT, and they did not address the difficult situation where 
the tumors are in close proximity to the organs. Although 
bladder segmentation has been previously studied, to our 
knowledge, there is no reported studies regarding heart 
segmentation for FDG-PET/CT images.

In this study, we proposed a deep learning based 
method to automatically segment heart and bladder 
within FDG PET/CT images as a means to suppress this 
physiological FDG signal from contaminating the use 
of these scans for tumor characterization or other diag-
nostic purposes. The challenges in this work includes: 
(1) there is large inter-patient variability of heart and 
bladder appearance in these images in terms of inten-
sity, size, shape, position, etc. The automated segmenta-
tion approach needs to be generalizable when applied 
to highly heterogonous cases in practice. (2) FDG PET/
CT data are acquired at the same imaging session but 
not exactly the same time and are generated by differ-
ent image contrast mechanism. Accordingly, there is no 
guarantee of one-to-one correspondence [30] meaning 
the size and shape of bladder or heart can be different on 
PET and CT scans. Therefore, the segmentation should 
not be biased towards the CT feature in this setting since 
our goal is to minimize the FDG signal arising from these 
organs being erroneously contributing to tumor burden 
or other diagnostic assessments. (3) Most importantly, 
there are tumors very close or even connected to the 
bladder or heart especially in some cases with high tumor 
burden and it is challenging for conventional computer 
vision based methods to handle this properly. Figure  1 
provides an example where a tumor is in close proxim-
ity of the bladder (tumor is indicated by red arrows). The 
second and third challenges are not fully appreciated 
and have not been clearly addressed in nuclear imaging 
literature.

Materials and methods
Training and test data
The dataset used in this study was obtained from two 
clinical trials in Non-Hodgkin Lymphoma (NHL) and 
both trials received institutional review board (IRB) 
approval. The training set was from a clinical trial called 
GOYA (NCT01287741 [31]) and they were randomly 
selected to include case with low, medium and high treat-
ment burden. In total, 538 scans of co-registered FDG-
PET/CT pairs were obtained from 519 patients (256 
male, 263 female) with diffuse large B-cell lymphoma 
(DLBCL) were used in bladder segmentation training and 
575 scans from 547 patients (268 male, 279 female) were 
used for heart segmentation training. To ensure that the 
heart segmentation model is generalizable and also works 
on cases without signal in the heart (i.e. the model does 
not mistake tumor as heart), the training set also includes 
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35 scans (out of 575) that were negative samples, where 
FDG signal is not present in the heart. We also attempted 
to include similar negative samples for bladder segmenta-
tion but could not find such cases in our dataset.

The test set was extracted from an independent data set 
from the clinical trial GO29781 (NCT02500407 [32]) in 
B-cell NHL. 103 scans of different patients were used to 
evaluate bladder segmentation and 113 scans for heart 
segmentation evaluation (10 of them have no visible sig-
nal in the heart).

In total, 26 different scanners that differ based on model 
types from the three major manufacturers (SIEMENS, 
PHILIPS, GE) were used. The original matrix size of CT 
is from [512 × 512 × 137] to [512 × 512 × 671], with cor-
responding resolution in the range of (0.97 mm, 0.97 mm, 
1 mm) to (1.37 mm, 1.37 mm, 5 mm). The original matrix 
size of PET is [128 × 128 × 170] to [200 × 200 × 546], with 
corresponding resolution between (4 mm, 4 mm, 2 mm) 
and (5.47 mm, 5.47 mm, 4 mm).

The ground truth segmentation for both training and 
test sets were generated by intensity thresholding on PET 
image only and CT image was used for anatomical refer-
ence. Manual correction was applied by an image special-
ist when needed, e.g. there is tumor close or connected to 
the heart or bladder.

Pre‑processing
FDG-PET and CT scans were registered and resam-
pled (linear interpolation) to the same resolution of 
2 × 2 × 2 mm in pre-processing. Additionally, the training 

set was augmented by 8 times, including translation, rota-
tion and rescaling. The augmented data were randomly 
generated, where the amount of translation, rotation, and 
rescaling was restricted to range: translation (0–10% of 
image width/height to the left or right, anterior or pos-
terior), rotation (an angle between 0–15 degree with 
respect to the x–y plane), and rescaling (a factor between 
0.9–1.1 of original size).

Image segmentation
Due to computer memory constraints, it is impossible to 
fit the whole body FDG-PET/CT scan to build a multi-
class segmentation model for both heart and bladder. 
In addition, it is not necessary to provide all anatomi-
cal structure from head to feet to segment bladder and 
heart. As such, two 3D U-Nets[33] were built, one net-
work to segment heart FDG-uptake and one network to 
segment FDG-uptake in the bladder. Each network was 
applied separately and the resultant segmentations were 
combined into a single physiological FDG uptake mask. 
Based on the orientation of superior-inferior and slice 
location, automated image cropping or padding was 
applied to the thoracic region to focus on heart with a 
consistent size of 256 × 256 × 256. If the original image 
is larger than 256, then cropping is used to extract the 
central volume. For volumes small than 256 × 256 × 256, 
then padding with the edge value of the image was used 
to fill the remainder of the 3D volume. The same strategy 
was used on the abdominal region to target the bladder. 
In this manner, the field of view is sufficient to include 

Fig. 1  a, b Registered PET/CT showing cases where tumors are very close to the bladder. c, d Two cases with tumor connected to the bladder. 
Tumor is pointed out by red arrows
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reference landmarks, e.g. pelvic bone for bladder, tho-
racic aorta for heart.

As shown in Fig.  2, the input to the network is two 
modalities: one channel for the FDG-PET image data and 
the other channel for the CT image data and the output 
is the mask image for the bladder or the heart. Thus, the 
input size is 8 × 256 × 256 × 256 × 2, where 8 is the batch 
size. The encoder for the network includes 5 blocks of 
down-sampling from 256 × 256 × 256 to 8 × 8 × 8 and 
the decoder has a corresponding 5 up-sampling block 
to recover the original resolution. Each down-sampling 
includes 2 convolutional layers and 1 max-pooling layer. 
Each up-sampling block comprises 2 convolutional layers 
and 1 layer of 3D up-sampling. Same volumetric kernels 
of 3 × 3 × 3 were applied in each convolution and skip-
connections were used in between to incorporate fine 
grained details from early layers. Training loss was com-
posed of Dice loss and weighted cross-entropy[34] due to 
imbalanced classes. The model was trained on multiple 
NVIDIA Quadro P6000 with 24 GB GPU memory, using 
an optimizer of Adam with a learning rate of 0.001 and a 
decay rate of 1e-4.

Results
The segmentation models were assessed on test sets from 
an independent clinical trial GO29781 (MOSUN). Spe-
cifically, 103 scans (co-registered PET/CT pairs) were 
used on bladder segmentation and 113 scans on heart 
segmentation. They were collected from different vis-
its, from baseline scan to a scan at Month 9. Segmenta-
tion metrics including Dice Similarity Coefficient (DSC), 
Hausdorff Distance (HD), and Average Surface Distance 
(ASD) were used in quantitative evaluation. The blad-
der segmentation model achieved a mean Dice score of 
0.95, HD of 10.3 mm and ASD of 0.9 mm. The heart seg-
mentation model achieved a mean DSC over 0.96, HD of 
10.7 mm and ASD of 0.44 mm. Table 1 shows the results 

Fig. 2  3D U-Net architecture used in bladder and heart segmentation

Table 1  Quantitative evaluation results on heart and bladder 
segmentation on an independent trial GO29781

DSC HD (mm) ASD (mm)

Bladder 
segmentation 
(n = 103)

0.948 ± 0.025 10.292 ± 8.050 0.907 ± 0.447

Heart segmen-
tation (n = 113)

0.966 ± 0.024 10.730 ± 10.71 0.439 ± 0.279
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of heart segmentation and bladder segmentation on test 
set by the proposed approach.

Figure 3 shows a segmentation example of large blad-
der by coronal, axial and sagittal view. The size different 
can be easily seen between the CT and PET images. The 
model is able to capture the whole bladder based on the 
signal from the PET.

Figure 4 shows a very small bladder located slightly left 
of the pelvis. Figure  5 shows two examples with pelvic 
tumors very close to the bladder. The neighboring tumors 
are indicated with a red arrow on the original PET-CT 
image and threshold-based segmentation in the abdo-
men were also performed for comparison. For case A 
there is a tumor right above the bladder and two larger 

ones slightly superior. In case B, there are small tumors 
on the two lateral sides of the bladder. For both cases, 
the threshold-based segmentation approached extracted 
both the tumors and bladder, whereas the 3D U-Net 
extracted only the bladder.

Furthermore, Fig.  6 presents two cases where pel-
vic tumors are connected to the bladder. The intensity 
threshold approach is unable to separate the bladder 
from the tumor and will require manual intervention to 
provide the separation. The model succeeded to separate 
the bladder (blue mask) from the neighboring tumors in 
both scenarios.

Figure  7 provides two examples of heart segmenta-
tion with different levels of FDG activity within the 

Fig. 3  Example of a large bladder and it has a bigger bladder on PET than the one on CT. Automated segmentation is shown in purple and 
reference segmentation in cyan
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heart. The left case (Fig. 7a) has most of the left ventri-
cle filled with tracer, while the right (Fig.  7b) case has 
high metabolic activity in the majority of heart muscle. 
The 3D U-Net successfully segmented the heart in both 
cases.

Figure 8 contains a case where the apparent heart size is 
different on PET and CT. The difference can be observed 
by comparing the co-registered PET/CT (Fig. 8a) and CT 
(Fig.  8b) image alone. The model succeeded to capture 
the metabolic region of the heart and is in good agree-
ment with the reference image.

Two cases with tumors or gastric inflammation close 
or connected to the heart are shown in Fig. 9. The tumor 
below the heart is specified by a red arrow. The intensity 
threshold-based segmentation approach segments both 
the heart and tumors together and will require manual 
steps to remove the heart. In both cases, the elevated 
FDG regions within the heart were correctly segmented 
by the model.

Overall, the heart and bladder segmentation by 
the 3D-Unet exhibited strong agreement with the 
ground truth reference estimates. As shown in Fig.  10, 
the volume of the automatically segmented heart 
(155.57 ± 96.88 cm3) and bladder (148.84 ± 82.66 cm3) 
have a very strong correlation with the reference segmen-
tation (heart: 156.77 ± 95.50 cm3, bladder: 145.79 ± 82.32 

cm3). The spearman’s rank order correlation is 0.999 for 
heart and 0.989 for bladder respectively.

The heart segmentation test set includes 10 negative 
samples without FDG uptake in the heart, although posi-
tive FDG signal was present in neighboring tissue outside 
the heart (Fig.  11). As a result, no FDG positive voxels 
were identified as heart by the model although there is 
high metabolic tumor in the chest or abdomen. As shown 
in Table 2, the heart segmentation model achieved 100% 
sensitivity and specificity.

Discussion
Physiological noise arising from FDG accumulation in 
the heart and bladder complicates the analysis of FDG-
PET images. We develop two deep learning 3D models 
to perform heart and bladder segmentation in FDG 
PET/CT images to remove this physiological FDG accu-
mulation within these organs to simplify any further 
downstream analysis. This is the first application of DL 
methodology to address the suppression of FDG signal 
coming from the bladder and heart. We constructed 
large training and test sets from two independent trials 
that were used in model development and evaluation. 
There is no additional post-processing applied to the 
model output. In this application, FDG-PET data is pri-
marily providing the signal to identify high metabolic 

Fig. 4  Example of a small bladder in contrast with the large bladder in Fig. 3
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regions while the CT scan can assist with essential ana-
tomical landmarks to localize the heart and bladder. 
As such, the model likely takes greater advantage of 
the FDG-PET signal when the heart or bladder appear 
different on the CT to ensure the segmentation com-
pleteness. On the other hand, CT likely plays a more 

significant role when a tumor is close or attached to the 
heart or bladder by providing greater anatomical infor-
mation, and, thus, contributes to differentiating lesions 
from the surrounding physiological noise (normal blad-
der or heart uptake). This can be seen in Fig. 12, where 
no boundary exists between the organ and the lesion 

Fig. 5  Example of bladder segmentation with tumor nearby indicated by red arrows on PET/CT image. Threshold based segmentation (yellow), 
automated segmentation (blue) and reference segmentation (green) are present
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in the FDG image (Fig. 12b), and, thus the differentia-
tion is likely driven by the boundary visible in the CT 
(Fig.  12a, red arrow) leading to the successful bladder 
segmentation shown in Fig. 12c.

The complementary multi-modal inputs to the model 
contribute to the model’s ability to resolve the under-
investigated problem of FDG-PET false positives due 
to physiological noise in clinical practice. This meth-
odology could be a valuable component of an imaging 
pre-processing step prior to tumor characterization by 
manual, semi- or automated tumor analysis methods.

The heart segmentation model does not segment the 
entire heart but was trained to only identify areas with 
high FDG uptake within the heart. Full heart segmenta-
tion is actually unnecessary in this setting because the 
ultimate goal is to remove the FDG signal from the heart 
to minimize false positives in FDG-based tumor identifi-
cation. As such, this task may slightly differ from regular 
heart segmentation on CT [35, 36] or MR [37, 38], but, 
also requires both CT and FDG-PET data. The uptake of 
FDG in the heart muscle of patients undergoing chemo-
therapy has been investigated [39] and focal myocardial 

Fig. 6  Example of bladder segmentation with tumor attached that is indicated by the red arrow
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FDG uptake indicates a significant increased risk for 
multiple myocardial abnormalities. As such, this heart 
segmentation model could be used as an automated tool 
to assist the measurement of myocardial uptake.

The heart model was found to perform very well in 
cases where there was no visible FDG heart uptake and 
did not classify any heart voxels as positive for FDG 
uptake for the negative (no visible heart uptake) patients. 
This was accomplished by including patients in the train-
ing data set that did not exhibit cardiac FDG uptake in 
their FDG PET images. We also attempted to include 
negative cases (no FDG bladder uptake) for the blad-
der segmentation model development. But, all patients 
in the training and test data sets exhibited some level of 
FDG signal in their bladder. This may be a limitation to 

this study since the bladder algorithm was not evaluated 
on patients void of FDG signal in their bladder. It will be 
interesting to assess the robustness of the model if data 
becomes available where the bladder is completely empty 
at the time of the scan. An additional limitation of this 
study is fact that patients were not required to empty 
their bladders before entering the scanner. This likely led 
to the high inter-patient variability that was observed in 
the size of the bladder. Another potential limitation of 
this study is that these models were only developed and 
tested on NHL patients. It is possible that algorithm per-
formance could vary in diseases where lesion FDG avid-
ity and location is different.

FDG PET assessment of TMTV has been found to 
be a prognostic biomarker that can be used to identify 

Fig. 7  Example of heart segmentation with different degree of FDG uptake in heart: a medium uptake and b high uptake

Fig. 8  Example of heart segmentation on case where heart appears larger on PET than in the CT. a PET-CT, b CT, c heart segmentation by the 
model and d reference segmentation
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patients at high risk of early progression [6–8]. Tradi-
tional threshold based method could mistake heart or 
bladder as tumor and this could be especially problem-
atic for patients with low tumor burden. As a result, these 
errors could lead to erroneous conclusions on the effi-
cacy of drugs and cause unnecessary treatment burden 
on patients. The automatic elimination of physiological 
noise from heart and bladder by deep learning mod-
els will help to provide a more precise measurement of 
metabolic tumor burden and potentially lead to better 
management of patients. We will further investigate the 

robustness of the bladder and heart segmentation models 
in patients with other cancer types to improve the gener-
alizability of the models.

Conclusion
We present a deep learning approach to automatically 
segment heart and bladder on whole body FDG PET/
CT, as a means to minimize potential false positives 
from being included in tumor identification. The model 
demonstrated rigorous performance regardless of varied 

Fig. 9  Example of heart segmentation with tumor close by (a) and attached (b) that is pointed out with red arrow
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location, size and shape of the target organ, and confu-
sion of surrounding tumors.
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