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Abstract 

Background:  The aim of this study was to develop and evaluate a deep neural network model in the automated 
detection of pulmonary embolism (PE) from computed tomography pulmonary angiograms (CTPAs) using only 
weakly labelled training data.

Methods:  We developed a deep neural network model consisting of two parts: a convolutional neural network 
architecture called InceptionResNet V2 and a long-short term memory network to process whole CTPA stacks as 
sequences of slices. Two versions of the model were created using either chest X-rays (Model A) or natural images 
(Model B) as pre-training data. We retrospectively collected 600 CTPAs to use in training and validation and 200 CTPAs 
to use in testing. CTPAs were annotated only with binary labels on both stack- and slice-based levels. Performance of 
the models was evaluated with ROC and precision–recall curves, specificity, sensitivity, accuracy, as well as positive 
and negative predictive values.

Results:  Both models performed well on both stack- and slice-based levels. On the stack-based level, Model A 
reached specificity and sensitivity of 93.5% and 86.6%, respectively, outperforming Model B slightly (specificity 90.7% 
and sensitivity 83.5%). However, the difference between their ROC AUC scores was not statistically significant (0.94 vs 
0.91, p = 0.07).

Conclusions:  We show that a deep learning model trained with a relatively small, weakly annotated dataset can 
achieve excellent performance results in detecting PE from CTPAs.
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Background
Acute pulmonary embolism (PE) is a life-threatening 
condition and has an estimated incidence of 60 per 
100,000 [1–3]. Symptoms of PE are often non-specific, 
e.g., dyspnoea and chest pain, and clinical diagnosis can 
be challenging. Computed tomography pulmonary angi-
ography (CTPA) has become the golden standard in 
diagnosing PE [4], but accurate interpretation of CTPAs 

requires experience and time. However, the majority of 
CTPAs are negative, which might be attributed to clini-
cians not routinely using pre-test probability or rule-
out criteria, and to a generally increasing utilization of 
emergency CT imaging [5, 6]. In the published litera-
ture, the yield of positive studies varies from less than 
10 to 20–30% [5, 7–9]. Because increasing workload and 
fatigue related to after-hours work may cause more diag-
nostic errors in emergency radiology [10–12], an auto-
mated PE detection system could aid radiologists to avoid 
mistakes and prioritize the reading order of studies to 
ensure rapid evaluation of PE positive cases.
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The emergence of deep learning (DL), a subfield of arti-
ficial intelligence (AI), has increased interest in automa-
tized detection and diagnostic tools in radiology [13]. 
Before that, multiple different computer-aided detection 
(CAD) models for diagnosing PE had been developed 
using manually encoded methods like segmentation, 
detection of low-attenuated areas, and/or feature analy-
sis [14, 15]. Use of CAD as a concurrent reader has been 
shown to increase reader sensitivity [16], but high yield 
of false positives (FPs) has remained as a major drawback 
[17]. FPs can cause frustration to radiologists, but they 
can also increase the risk for false diagnoses due to auto-
mation bias—the tendency for humans to favor machine-
made decision [18, 19]. Implementation of DL to PE 
detection has led to models generating fewer FPs with-
out reducing sensitivity [20, 21]. The Radiological Society 
of North America (RSNA) chose PE detection as its AI 
challenge in 2020, and later published a public dataset of 
12 195 annotated CTPA studies to encourage the devel-
opment of PE detection models [22].

One limitation of the previous CAD systems and some 
of the newer DL-based models is the requirement for 
densely annotated training data, where each distinct 
embolus is marked or segmented manually. Weikert 
et al. tested a prototype commercial model (Aidoc Medi-
cal, Tel Aviv, Israel) based on fast region-based convo-
lutional neural network (CNN) and trained with 28,000 
segmented CTPAs. The model achieved sensitivity and 
specificity of 92.7% and 95.5%, respectively [23]. Buls 
et al. also tested the model (version 1.3) and achieved a 
similar specificity of 95% but a lower sensitivity of 73% 
[24]. However, creating an annotated training set of this 
magnitude for own model development may not be fea-
sible for single hospitals or research teams. Using small 
datasets can lead to overfitting, meaning the model 
learns the training data too well and generalizes poorly 
to new data. Overfitting can be tackled to some degree 
with different regularization techniques, like dropout and 
early stopping [25].

Weakly supervised learning with sparser annotations is 
another way to reduce the manual annotation work with-
out reducing the training set size too much. Rajan et al. 
proposed a sparse annotation method where emboli con-
tours were drawn only for every 10 mm of CTPA slices, 
reducing the required manual work considerably, yet 
achieving an area under the receiving operating charac-
teristics (ROC AUC) of 0.78 [26]. Feng et al. proposed a 
weakly supervised 3D CNN model for lung nodule seg-
mentation and detection requiring only single-coordinate 
nodule annotations, which could also be applied to PE 
detection in a similar fashion [27]. Huang et al. assigned 
only binary labels of PE present or PE absent to CT slices, 
and their model achieved sensitivity and specificity of 

73% and 82%, respectively [28]. Recent advancements 
with generative adversarial networks (GAN) have ena-
bled creating realistic synthetic data to increase the 
training set as well as completely unsupervised training 
of anomaly detection models, although these techniques 
have not been studied in PE detection yet [29–31].

We sought to develop a neural network model to aid 
in detecting PE from CTPAs. The model could be used 
to reduce mistakes or to pre-screen studies to prioritize 
reading order. Our aim was to study whether training 
a well-performing model is possible even with limited 
resources for collecting and annotating data. We used 
weakly labelled data with slice-based annotations instead 
of annotations for each distinct embolus. We also used a 
relatively small training set consisting of only 600 CTPAs, 
which is less than in many previous studies [23, 26, 28]. 
To handle the volumetric nature of CT images, we used 
both 2D convolutional neural network (CNN) to analyze 
individual slices, and long-short term memory network 
(LSTM) to process scans as sequences of slices, a combi-
nation previously shown to be useful with weakly anno-
tated CT data [32].

Materials and methods
For this retrospective cohort study, we obtained permis-
sion from The Hospital District of Southwest Finland. 
Waiver for written patient consent was not sought from 
the institutional review board (IRB, called the Ethics 
Committee of The Hospital District of Southwest Fin-
land), because it is not required by the national legisla-
ture for retrospective studies of existing data. The study 
was conducted in accordance with the Declaration of 
Helsinki.

Data selection and labelling
The PACS records of Turku University Hospital were 
searched for all CTPA examinations between January 
2016 and October 2018. Preliminary classification of the 
CTPAs was done automatically by assessing whether 
the patient had an ICD-10 code consistent with PE (I26) 
or not in the electronic health record. This first classifi-
cation was used only to collect enough positive cases 
among the large number of negative cases; subsequently, 
all final labels in both classes were manually assigned. 
First, a randomly sampled cohort was selected from 
the image archive which included data from multiple 
sources/scanners. With preliminary classification this 
produced 419 positive cases, which were used for collect-
ing the training set. Due to the small number of prelimi-
nary positive cases, another randomly sampled cohort 
consisting of preliminary positive cases was selected for 
the test set, excluding patients that were in the first set. 
This produced 598 cases. The first search produced 2329 
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preliminary negative cases, which was enough for both 
the training and test sets.

We chose to weakly annotate imaging data by not label-
ling distinct emboli with bounding boxes or segmenta-
tions, but rather assigning binary labels (PE positive or 
PE negative) only to axial slices and whole CT scans. The 
rationale was to both minimize manual work and test 
whether weakly annotated data suffice for a DL network 
to achieve reasonable results.

For this study, only CTPAs with readily available 
3.0 mm axial slices were included. Scans with non-diag-
nostic image quality were excluded. All CTPAs were 
visually interpreted, and a scan was manually labelled 
positive if it included even one unambiguous embolus 
and negative if there were none. A slice was marked posi-
tive if one or more emboli were present, and negative if 
none were present. In the training set, the labelling work 
was done by a radiology resident (H.H, < 1 year of experi-
ence) specifically trained for this task by an experienced 
board-certified radiologist (M.N., 14 years of experience). 
In the test set, all scans and slices were double read by 
H.H. and M.N. in consensus to achieve a better refer-
ence standard. Interpretation and labelling were done 
using Horos software (Horos Project, Annapolis, MD, 
USA) and ePad annotation platform (Rubin Lab, Stanford 
Medicine, CA, USA). Collecting and labelling the data 
was performed securely on PACS inside the hospital net-
work, and the data was de-identified before moving it to 
the computing platform.

For the training and test sets, 303 and 97 positive 
CTPAs were collected, respectively. To achieve bal-
anced datasets, equal numbers of negative CTPAs were 
selected randomly for the training set (305) and test set 
(107). Because some of the CT studies extended cranio-
caudally to the level of abdomen and pelvis, the slice 
coverage was limited to only 96 slices starting from the 
top (96 × 3 mm = 288 mm). This was deemed sufficient, 
because all positive slices in the training set fell within 
this range. The training set had a total of 52,752 included 
slices, of which 7170 were positive (14%), and the test 
had a total of 17,778 included slices, of which 2801 were 
positive (16%) (Table 1). The datasets did not include the 
same patients. No systematic differences were observed 
between the training and test sets in terms of patient 
demographics, type of scanner used, or the time period 
the scans were acquired.

Data augmentation and preprocessing
We augmented data to increase the number of posi-
tive slices in the training set, because the ratio between 
positive and negative slices was highly imbalanced. 
For augmentation, we used methods including transla-
tion, rotation, blur, Gaussian noise, zoom and elastic 

transformation. The final training set for the CNN mod-
els consisted of ~ 100,000 slices, of which half were 
negative and half were positive (the original 7170 real 
positive slices and ~ 43,000 augmented positive slices). 
Augmented data was not used in training the LSTM 
part, because it handled the data on the stack-based level 
which was already balanced between the positive and 
negative classes.

Preprocessing of the images included rescaling, resiz-
ing, segmentation and windowing. Images had originally 
a height and a width of 512 pixels, except for 10 scans 
where the original width was larger, and rescaling had 
to be applied. Images were resized to 386 × 386 pixels, 
which was the input size required by the CNN model. 
Segmentation was performed to reduce the amount of 
unnecessary information in the images and was done by 
segmenting the lungs and the heart and excluding other 
areas (e.g., soft tissues and objects outside the body). 
Images were windowed with window width 700 HU and 
window level 100 HU. Finally, DICOM images were con-
verted to 8-bit PNG images.

Model architecture and training
All models were created using Keras deep learning 
framework (version 2.2.4) with Tensorflow backend (ver-
sion 1.10.1) and were written in Python programming 
language (version 3.6, Python Software Foundation).

We processed whole CT scans as series of axial slices 
using a combination of a CNN, which analyses 2D 
images, and an LSTM, which processes the slice predic-
tions created by the CNN part as sequences (Fig.  1). A 
major advantage in this approach is that 2D CNN models 
are considerably easier to train and require less data than 

Table 1  Dataset information

Training set Test set

CTPAs (stacks) 608 204

 Positive 303 (50%) 97 (48%)

 Negative 305 (50%) 107 (52%)

CT slices 52,752 17,778

 Positive 7170 (14%) 2801 (16%)

 Negative 45,582 (86%) 14,977 (84%)

Distinct patients 569 201

 Male 250 (44%) 88 (44%)

 Female 319 (56%) 113 (56%)

Mean age 64 64

CT manufacturer

 Toshiba 569 (94%) 195 (96%)

 GE Medical Systems 21 (3%) 5 (2%)

 Siemens 18 (3%) 4 (2%)
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3D CNN models. The LSTM part also allows the model 
to take findings in neighbouring slices into consideration.

Based on our preliminary experiments with different 
pre-trained CNN model architectures, we selected Incep-
tionResNetV2 to be used in this study [33]. A simple cus-
tom classifier was built on top of the model bottleneck. 
As a secondary step, a bidirectional LSTM processed 
data from the CNN model creating a final combination 
model. Detailed model architectures can be found in the 
Additional file 1. Transfer learning was implemented, and 
two separate combination models were trained with dif-
ferent pre-trained weights for the CNN part. Model A 
was pre-trained with the chest X-ray dataset provided by 
National Institutes of Health (over 100,000 chest X-rays, 
weights obtained from https://​github.​com/i-​pan/​kaggle-​
rsna18) and Model B was pre-trained with the ImageNet 
dataset (over 14 million natural images). The LSTM used 
64-dimensional feature vectors from the second to last 
layer of the CNN as an input. We chose to pre-calculate 
these feature vectors and train the LSTM part indepen-
dently from the CNN, because training them together 
would have required more time and more laborious 
adjustments of the hyperparameters. A fixed timestep of 
96 slices starting from the top was used. CTPAs contain-
ing more than 96 slices were clipped and the CTPAs hav-
ing less than 96 slices were padded with zeros.

All models were trained using a five-fold cross-valida-
tion. In this method, the training data is split into five 
folds of equal size, and five “copies” of the model are 
trained, each time using a different fold as a validation 

set to evaluate training results. This method gives a more 
truthful estimation of the model accuracy when data-
sets are relatively small. The folds were stratified so that 
each fold maintained the same distribution of both the 
class and the number of augmented images as the whole 
training set, and images from a given patient were always 
kept in the same fold. During training, augmented images 
were omitted from the validation set, which then had 
the original ratio of negative to positive slices (7:1) and 
CTPAs (1:1).

For the CNN and LSTM models, batch sizes were 48 
and 16, and the numbers of epochs were 8 and 12, respec-
tively. Binary cross-entropy was used as a loss function. 
The optimizers used were Adam with a decay value of 
0.01 for CNN models and Nadam for LSTM models. 
Learning rate was 0.001 for all models. The models were 
trained using 4 NVidia V100 SXM2 32 GB graphics cards.

Performance evaluation and statistical analysis
The final combination models A and B produced both 
stack-based and slice-based predictions, and their perfor-
mance was evaluated on both levels. We plotted receiver 
operating characteristic (ROC) and precision–recall (PR) 
curves for test results and calculated their area under 
the curve (AUC) values. We compared ROC curves of 
Model A and B using the DeLong method [34]. Statisti-
cal significance was set at p < 0.05. We determined the 
best operating thresholds according to the Youden Index, 
which gives equal weights to sensitivity and specificity as 
well as to positive and negative classes. Predictions above 

Fig. 1  Scheme of the model architecture

https://github.com/i-pan/kaggle-rsna18
https://github.com/i-pan/kaggle-rsna18
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this threshold were classified as positive and otherwise as 
negative. Using selected operating thresholds, we calcu-
lated confusion matrices for both stack-based and slice-
based predictions. We evaluated the model performance 
based on five metrics, consisting of accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV), and calculated their 95% confi-
dence intervals (CI) using the Wilson test with continu-
ity correction [35]. We also visually inspected example 
images of true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN). Model testing was 
performed using Python programming language (version 
3.6, Python Software Foundation). Calculations and sta-
tistical analyses were performed using Python, R (version 
4.1.0), and RStudio (version 1.4.1717).

Results
Both combination models achieved excellent results on 
the test set. For Model A, ROC AUC and PR AUC scores 
for predicting PE on the stack-based level were 0.94 and 
0.94, and on the lice-based level 0.97 and 0.90, respec-
tively. For Model B, ROC AUC and PR AUC scores on 
the stack-based level were 0.91 and 0.91, and on the slice-
based level 0.97 and 0.88, respectively. The ROC and PR 
curves for both models are represented in Fig.  2. ROC 
curve comparisons between Models A and B showed 
that there was no statistically significant difference on 
the stack-based level (p = 0.07). On the slice-based level, 
there was a significant difference (p < 0.001), but this 
seems very minimal as the ROC curves and AUC values 
are almost identical.

Fig. 2  ROC and PR curves for stack-based and slice-based predictions
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The optimal thresholds for classifying the predictions 
determined by the Youden index were similar between 
the models, but different between the stack-based and 
slice-based levels. On the stack-based level, the optimal 
Youden indices for models A and B were 0.80 and 0.74, 
corresponding to thresholds 0.797 and 0.858, respec-
tively. On the slice-based level, the Youden indices were 

0.83 and 0.81, corresponding to thresholds 0.172 and 
0.094, respectively.

Confusion matrices calculated using these thresholds 
are shown in Fig. 3.

The performance metrics for models on both stack- 
and slice-based predictions are represented in Table  2. 
Model A outperformed Model B on all metrics on the 

Fig. 3  Confusion matrices for Models A and B on stack- and slice-based classification

Table 2  Performance metrics for Models A and B

Results are in percentage (%) with 95% CI

Metric Model A Model B

Stacks Slices Stacks Slices

Accuracy 90.2 (85.1–93.8) 92.3 (91.9–92.7) 87.3 (81.7–91.4) 90.1 (89.6–90.5)

Sensitivity 86.6 (77.8–92.4) 90.1 (89.0–91.2) 83.5 (74.3–90.0) 90.8 (89.7–91.9)

Specificity 93.5 (86.5–97.1) 92.7 (92.2–93.1) 90.7 (83.1–95.2) 89.9 (89.4–90.4)

PPV 92.3 (84.3–96.6) 69.9 (68.3–71.4) 89.0 (80.3–94.3) 62.3 (61.2–64.2)

NPV 88.5 (80.8–93.5) 98.1 (97.8–98.3) 85.8 (77.8–91.4) 98.1 (97.9–98.3)
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stack-based level. The accuracy, sensitivity, and specific-
ity of Model A were 90.2%, 86.6% and 93.5%, respectively. 
On the slice-based level, both models also had good per-
formance but their PPV was considerably lower than on 
the stack-based level (Model A 69.9% vs. 92.3%; Model B 
62.3% vs. 89.0%, respectively).

Example images from true positive, false positive and 
false negative classifications for both models were visu-
ally inspected (Fig. 4). We did not notice any major dif-
ferences between the models. True positives seemed 
to be more often large proximal emboli, and false find-
ings were more often located in the peripheral parts of 
the pulmonary arteries. This was expected, because 
small and peripheral emboli are usually difficult also for 
radiologists.

Discussion
The main contribution of this study is to demonstrate 
the development of a deep learning model for automated 
detection of PE from CTPAs, and to show that this is fea-
sible even with limited data annotation resources. We 
found that our best model (Model A) achieved an ROC 
AUC of 0.94, sensitivity of 86.6% and specificity of 93.5% 
in predicting PE from whole CTPA stacks. We showed 
that these promising results could be achieved using a 
weakly labelled training dataset consisting of only 600 
CTPAs, which is a relatively small dataset for neural 
networks.

Our models used less training data, yet performed bet-
ter than several models presented in previous studies [26, 
28, 36]. Our best model also had better specificity with 
almost similar sensitivity than a multimodal fusion model 
combining information from CT images and electronic 
health records, which had a specificity of 90.2% and a 

Fig. 4  The figure shows example slices where both the slice-based and stack-based predictions are a true positives, b false positives or  c false  
negatives. In the left panel (the first two images on each row from left to right) are images classified by Model A and in the right panel (the last two 
images on each row) are images classified by Model B
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sensitivity of 87.3% [37]. We achieved only slightly worse 
specificity with our best model than Aidoc’s commercial 
model (93.5% vs. 95–95.5%, respectively), despite their 
model having been trained with a considerably larger 
dataset (600 vs. ~ 28,000 CTPAs) [24, 38]. Models pre-
sented by Yang et al. and Tajbaksh et al. aimed to localize 
each distinct embolus accurately, and their performance 
was evaluated differently than our model, which is why 
the models cannot be directly compared [21, 39].

Transfer learning and data augmentation were imple-
mented to compensate for the small training set size. The 
choice of transfer learning data had only minimal impact 
on the model performance. Model A performed as well 
as or slightly better than Model B, even though it was 
pre-trained on a substantially smaller dataset than Model 
B (NIH dataset, 100,000 images vs. ImageNet dataset, 14 
million images). Since the ImageNet dataset consists of 
color images, the model pre-trained with it learns many 
features irrelevant to classifying grayscale CTPA images. 
NIH chest X-rays are grayscale like target data, and there-
fore a smaller dataset seems to suffice.

Compared to many previous studies, our approach to 
annotate the data with only stack- and slice-based binary 
labels was more time-saving than marking each distinct 
embolus [15, 21, 39]. Rajan et  al. as well as Shi et  al. 
reduced the manual workload in annotation by doing 
pixel-wise segmentations only on slices at 10 mm inter-
vals and otherwise using CT study-level binary labels 
[26, 36]. Despite using sparser annotations, our model 
performed better than their models. Huang et  al. used 
data which was annotated in a similar fashion than in 
our study [28]. However, they excluded studies with only 
subsegmental emboli due to their unclear clinical impor-
tance, but we felt the need to include them because they 
represent a substantial part of the realistic data seen in 
clinical practice.

There was a notable difference between stack and 
slice level cut-off thresholds selected with the Youden 
index that needs to be discussed. The Youden index is a 
measurement for the ROC curve and it is used to select 
the optimal operating point on the curve. The optimal 
cut-off threshold corresponding to this operating point 
depends on the range and distribution of the model out-
put scores, which can vary wildly between models. With-
out additional calibration, the model output score does 
not always equal the probability of the predicted class 
[40]. Also, another reason why the thresholds between 
the stack and slice levels are not comparable is that the 
positive class ratios were very different between the levels 
(48% vs. 16%, respectively).

Our study had certain limitations. First, our models do 
not produce precise information about the location of 
emboli, which might hinder the interpretation of model 

findings. Including localization of emboli in our model 
would have increased the manual annotation workload 
considerably. Our model can still pinpoint individual 
slices that are most likely to contain PE to help radi-
ologists quickly focus on the most probable area. Exact 
localization of emboli is also not needed in pre-screening 
CT studies to prioritize the reading list. Our model could 
help in faster detection of PE positive cases in emergency 
settings as well as in non-emergency CT imaging where 
an incidental PE is frequently found, especially in onco-
logic patients, where there might be a several days delay 
in reading the CT scans [41, 42]. Second, we only used 
data from our institution, and the majority of the data 
was acquired with CT scanners from one vendor. Our 
model might need further training to perform accurately 
with data acquired in different institutions or with differ-
ent CT scanners, as model performance often degrades 
on data acquired differently (e.g., different CT scanner 
model, manufacturer or imaging settings) [43]. Third, 
our model was tested only on a dataset balanced between 
positive and negative cases. In the clinical setting, the 
prevalence of positive CTPAS is much lower, varying 
from less than 10% to 30% [9]. Using balanced datasets 
is, however, a common practice in medical AI research. 
In the future, we aim to test the model on a dataset repre-
senting a more realistic prevalence.

Conclusions
In conclusion, we developed a deep learning model for 
automated PE detection which achieved substantial per-
formance results. We showed that these results could be 
achieved with a relatively small, weakly labelled train-
ing set. This demonstrates that it is possible for small 
research groups and individual hospitals to build well-
performing DL models even with limited resources. Our 
model could be used either as an aid in reading emer-
gency studies to reduce mistakes, or as a pre-screening 
triage tool to prioritize reading order. In the future, we 
plan to test the model performance and usability in a 
clinical setting. We plan to study how the model per-
forms when data acquisition is slightly modified (e.g., 
updated scanning protocol, or a new scanner), and how 
much additional training the model requires after each 
change. We also plan to develop the visualization of the 
output for better interpretability.
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