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Abstract 

Background: Automated segmentation of coronary arteries is a crucial step for computer-aided coronary artery 
disease (CAD) diagnosis and treatment planning. Correct delineation of the coronary artery is challenging in X-ray 
coronary angiography (XCA) due to the low signal-to-noise ratio and confounding background structures.

Methods: A novel ensemble framework for coronary artery segmentation in XCA images is proposed, which utilizes 
deep learning and filter-based features to construct models using the gradient boosting decision tree (GBDT) and 
deep forest classifiers. The proposed method was trained and tested on 130 XCA images. For each pixel of interest in 
the XCA images, a 37-dimensional feature vector was constructed based on (1) the statistics of multi-scale filtering 
responses in the morphological, spatial, and frequency domains; and (2) the feature maps obtained from trained deep 
neural networks. The performance of these models was compared with those of common deep neural networks on 
metrics including precision, sensitivity, specificity, F1 score, AUROC (the area under the receiver operating characteris-
tic curve), and IoU (intersection over union).

Results: With hybrid under-sampling methods, the best performing GBDT model achieved a mean F1 score of 0.874, 
AUROC of 0.947, sensitivity of 0.902, and specificity of 0.992; while the best performing deep forest model obtained 
a mean F1 score of 0.867, AUROC of 0.95, sensitivity of 0.867, and specificity of 0.993. Compared with the evaluated 
deep neural networks, both models had better or comparable performance for all evaluated metrics with lower 
standard deviations over the test images.

Conclusions: The proposed feature-based ensemble method outperformed common deep convolutional neural 
networks in most performance metrics while yielding more consistent results. Such a method can be used to facilitate 
the assessment of stenosis and improve the quality of care in patients with CAD.
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Background
As the most common type of heart disease, coronary 
artery disease (CAD) is the leading cause of death glob-
ally, resulting in a yearly loss of 17.9 million lives with 330 
million being affected [1, 2]. CAD is primarily caused by 
the narrowing of the lumen in coronary arteries due to 
plaque build-up [3]. This narrowing, or stenosis, restricts 
the blood flow to cardiac muscle, depriving the heart of 
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oxygen and nutrient supplements, ultimately leading to 
myocardial ischemia and infarction [4].

X-ray coronary angiography (XCA) is the gold stand-
ard for CAD diagnosis [5]. By releasing dye into the cor-
onary vessels and inspecting its flow through the vessel 
structure via 2D projections, XCA helps clinicians locate 
potential stenoses, visually measure their severity, and 
determine the appropriate interventional therapies [6].

Visual stenosis assessment, however, is often unreli-
able: it tends to overestimate severe blockages while 
underestimate mild ones [7, 8] and has high intra- and 
inter-observer variability [9, 10]. To evaluate the lumen 
diameter more objectively, quantitative coronary angi-
ography (QCA) was introduced [11] to offer a (semi-)
automatic analysis of XCA. QCA analysis involves frame 
selection, vessel segmentation, stenosis positioning, and 
quantitative measurement [12, 13]. The vessel segmen-
tation step of QCA is a prerequisite for calculating the 
percentage of arterial stenosis. Moreover, the correct 
delineation of coronary arteries plays an important role 
in center-line extraction, which is used for 3D recon-
struction of blood vessels [14], vessel tracking [15], and 
cardiac dynamics assessment [16].

Due to the nature of XCA images, segmenting ves-
sels accurately is challenging. First, XCA images usually 
are of low resolution, have low signal-to-noise ratios, 
and exhibit low contrast between the vessel structure 
and background region [17–19]. Second, the presence 
of irrelevant structures such as the catheter, diaphragm, 
and the spine is confounding and leads to non-uniform 
illumination within the images [20]. Third, the various 
angles from which the 3D vessel structure is projected 
to form 2D XCA images create twisted and overlapping 
vessels, making the segmentation even more challenging 
[21].

To overcome these difficulties and aid in the quantita-
tive diagnosis of CAD, efforts have been made to develop 
both supervised and unsupervised methods for auto-
matic coronary vessel segmentation.

Unsupervised methods can be primarily categorized as 
tracking-based, model-based, or filter-based [22]. Track-
ing-based methods [23] choose seed points on the edges 
and the center-lines of vessels, then take a small step in 
the direction of the vessel to look for the vessel edges or 
the center-lines nearby. When new edges are found, an 
estimate of vessel direction is made to take the next step 
in this search direction. Model-based methods [24–29], 
use deformable models or region growing to evolve the 
segmentation towards the vessel-background boundaries 
based on the forces and constraints defined by energy 
functions. They may also apply growing conditions 
defined by similarity functions together with a thresh-
old parameter. Both tracking-based and model-based 

methods require initial seeds for segmentation and are 
therefore sensitive to initialization. Although they tend 
to maintain good segmentation continuity for the ves-
sel tree structure, they may fail to handle confound-
ing elements in the background that are adjacent to the 
vessels. Filter-based methods [17, 30] apply a variety of 
filters for non-uniform background intensity balancing, 
irrelevant structures suppression, noise reduction, and 
vessel enhancement. The filtered images can be later pro-
cessed with thresholding techniques for segmentation 
mask generation. Due to their ease of implementation 
and their ability to mitigate illumination problems, filter-
based methods have also been employed extensively as 
preprocessing steps in both supervised and unsupervised 
methods for automated coronary vessel segmentation 
[29, 31–36]. However, they are usually insufficient for use 
on their own, as they are sensitive to background struc-
tures and may not perform well on vessel junctions and 
bifurcations [37].

Coronary artery segmentation using supervised meth-
ods can be considered as a pixel-wise classification 
problem, with most current methods utilizing Neural 
Networks. Cervantes-Sanchez et al. [31] trained a multi-
layer perceptron with XCA images enhanced by Gaussian 
matched filters and Gabor filters. Nasr-Esfahani et al. [32] 
presented a multi-stage model where a Convolutional 
Neural Networks (CNNs) extracts local, contextual, 
and edge-based information that were then combined 
via a final fully connected layer. Recently, deep learning 
approaches have gained popularity in segmenting both 
major arteries and full artery trees from XCA images. 
Samuel and Veeramalai [38] proposed a Vessel Specific 
Skip Chain Network by adding two vessel-specific lay-
ers to the VGG-16 network [39]. Jo et al. [33] developed 
a two-stage CNN specifically for left anterior descending 
artery segmentation, where the first stage located candi-
date areas of interest and the second stage generated the 
segmentation mask. Iyer et  al. [40] designed an angio-
graphic processing network that learned how to preproc-
ess the XCA images with the most suitable filters for local 
contrast enhancement. The preprocessed images were 
then fed into DeeplabV3+ [41] for segmentation. Shi 
et al. [42] developed a generative adversarial network for 
major branch segmentation with a U-Net generator and 
a pyramid-structure discriminator, reporting improved 
connectivity for the segmented mask. Yang et  al. [43] 
replaced the backbone of U-Net with an ImageNet 
pre-trained ResNet [44], InceptionResNetv2 [45], or 
DenseNet [46] for main branch segmentation. Fan et al. 
[47] modified U-Net so that the proposed structure can 
receive both the target and registered background images 
before dye release as inputs for generating segmentation 
masks. The network structure proposed by [48] receives 
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multi-channel inputs by adding a 3D convolution layer 
to the U-Net encoder, exploiting the temporal informa-
tion using three consecutive frames from angiographic 
image sequences to produce a segmentation mask for the 
middle frame. Zhu et al. [49] applied the Pyramid Scene 
Parsing Network, a network proposed by [50], for coro-
nary vessel segmentation. They took advantage of the 
network structure to incorporate features from multi-
ple scales by pyramid pooling and used transfer learning 
to avoid overfitting on a small training set. Supervised 
methods for coronary artery segmentation may focus on 
the major coronary arteries for which clinicians would be 
more concerned, instead of the entire arterial tree. Net-
work-based supervised methods have a number of draw-
backs, including overfitting when the training set is small, 
weaker interpretability as compared to unsupervised 
filter-based methods, and an inability to ensure connec-
tivity within their prediction masks. However, supervised 
methods require less manual input and are more robust 
in discriminating background structures such as the 
catheter and spine than unsupervised methods.

In this paper novel ensemble framework for coronary 
artery segmentation is proposed that employs gradient-
boosting decision tree (GBDT) [51] and Deep Forest 
classifiers [52]. The GBDT is a popular machine learning 
technique that combines weak decision tree learners for 
loss function minimization. When constructing a GBDT 
model, a series of trees is built wherein each new weak 
decision tree attempts to correct errors from the previ-
ous stage. The Deep Forest classifier, on the other hand, 
is a deep ensemble model that uses non-differentiable 
modules to form deep learning structures. Unlike deep 
neural networks, it does not apply back-propagation for 
training, but it still uses multiple layers (with cascade 
structures) for processing and applies in-model feature 
transformation. However, GBDT boosts the performance 
of weak learners gradually in a sequential and additive 
way, while in Deep Forest, random forests composed of 
decision trees are considered as a subroutine stacked by 
layers, with layer outputs feeding into another layer to 
create depth. Though both GBDT and Deep Forest have 
not been applied to XCA image segmentation, they have 
been recently employed in medical image analysis in dif-
ferent image modalities [53–58]. The ensemble methods 
produced promising results in retinal vessel segmen-
tation [59–64] and have not been, as far as we know, 
applied on coronary artery segmentation yet. In this 
study, 16 deep learning features obtained from the last 
layer of the Dense-Net-backbone U-Net decoder were 
combined with 21 multi-scale statistics on responses to 
a diverse range of filters to construct a 37-dimensional 
feature vector for each pixel in the input XCA image 

for training coronary artery segmentation models with 
GBDT and Deep Forest.

The proposed work takes advantage of both decades of 
classical computer vision research along with contem-
porary machine learning and deep learning techniques 
by employing a diverse set of reliable, well-established, 
hand-crafted features together with features from a 
deep structure for ensemble model training. Additional 
novelties come from the extraction of multiple statistics 
from the scale-space profile of a filter response and the 
adoption of a deep ensemble model on coronary artery 
segmentation.

The remainder of the paper is organized as follows. 
“Methods” section introduces the datasets used in this 
study and describes the methods employed for feature 
extraction, the under-sampling of imbalanced train-
ing classes, and model training, testing, and evaluation. 
“Results” section reports the effect of under-sampling on 
the training set, the performance of models constructed 
using different classifiers, and the analysis of feature 
importance, while “Discussion section provides interpre-
tations of the results and describes limitations and future 
directions of the current work.

Methods
In the following subsections, the datasets used for the 
study, the feature extraction techniques (using filter-
based and deep learning methods) and under-sampling 
methods employed are first introduced, after which the 
training of ensemble classifiers is explained. A schematic 
diagram of the proposed method for coronary artery seg-
mentation is depicted in Fig. 1.

Dataset
The study was conducted with de-identified angiograms 
from two sources: “Dataset 1”, collected from the Univer-
sity of Michigan Hospital, Ann Arbor, MI and “Dataset 2”, 
collected from a hospital in the United Kingdom . Both 
datasets are comprised of patients suspected of having 
coronary artery disease who underwent invasive coro-
nary angiography. Dataset 1 contains three subsets: 1-17, 
1-19, and 1-AVI. Angiograms within subsets 1-17 and 
1-19 were collected in 2017 and 2019, respectively, and 
stored in DICOM (Digital Imaging and Communications 
in Medicine) format, while angiograms in 1-AVI were 
stored in AVI (Audio Video Interleave) format.

Patients were excluded if any of the following occurred: 
incomplete injection of contrast dye, percutaneous coro-
nary intervention, an implanted pacemaker or cardio-
verter defibrillator, or the presence of artificial objects 
other than the dye injection catheter. Ultimately, 130 
angiogram sequences from 130 patients were included in 
this study. 80 of them visualize the left coronary artery 
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(LCA) while the remaining 50 depict the right coronary 
artery (RCA). The number of frames in each sequence 
ranges from 43 to 150, with an average of 86 frames per 
sequence.

As the entire vascular tree is not always visible in all 
frames, frames were selected from XCA videos accord-
ing to three criteria: (1) the selected frame contains the 
full injection of contrast agent; (2) there is minimal car-
diac motion between adjacent frames; and (3) the full 
coronary artery is visualized in the frame. The frames are 
gray-scale images with a resolution of 512× 512 pixels. 
Segmentation masks used for training and testing were 
first generated manually using Adobe Photoshop CS and 
later validated by experienced cardiologists. Catheter 
diameter size (measured by pixel number and referred to 
as “Cath” in later sections) was recorded along with the 
annotation. Only those vessels whose diameters were 
greater than or equal to 0.75× Cath were annotated. The 
mean diameter of Cath was 8.0 (± 1.2) pixels. A sum-
mary of the dataset information is listed in Table 1. For 
angiograms whose acquisition angles are available, the 
information is depicted in Fig. 2.

Fig. 1 Schematic diagram of the training pipeline. Lower panel: features were extracted from raw images with deep-learning and filter-based 
methods. Upper panel: under-sampling methods were performed to balance the number of positive (vessel) and negative (background) training 
classes

Fig. 2 Image acquisition angles for Dataset 1-19 and Dataset 2. 
“Caudal” and “Cranial” refer to the caudal and cranial angulation of the 
X-ray
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Feature extraction with filters
Scale‑space theory and the Z‑profile of filter responses
Structures that a filter can extract from an XCA image 
depend on the scale of observation. A single scale is not 
always sufficient for capturing vessel structures of vary-
ing sizes. The scale-space theory [65] provides a frame-
work for automatic scale selection in image filtering by 
applying multiple scales for image representation and 
summarizing filter responses across scales [66]. Based on 
this theory, the Z-profile of pixel-wise filter responses is 
constructed with four summary statistics: the maximum, 
mean, variance, and interquartile range of multi-scale 

responses. For example, Fig.  3 illustrates the filter 
response of Frangi filters [67] over ten different scales 
and the Z-profile thus obtained.

Scale ranges ( � ∈ � ) were selected to be relative to the 
physical constraints of coronary arteries, ranging from 
0.66×Cath to 6.33×Cath on a logarithmic scale.

Preprocessing
XCAs are often of poor quality due to image noise. To 
enhance the visibility of vessels within the frame, stand-
ard computer vision and image processing techniques 
were used to construct the preprocessing pipeline. First, 
metadata from the DICOM files was used to exclude the 
border regions (pixels outside of the imaging window) 
from analysis and to obtain catheter size information. 
Then, the filter scales were set as described in “Scale-
space theory and the Z-profile of filter responses” sec-
tion. In cases where the aforementioned metadata was 
unavailable, the mean Cath value (“Dataset” section) was 
used. After that, a non-local mean filter [68] was applied 
for noise reduction. Following this step, contrast adjust-
ment (Algorithm  1) using Top-bottom-hat filtering [69] 
was employ to reconstruct the image.

Table 1 Dataset summary

Dataset code Total LCA RCA With 
acquisition 
angles

1-17 98 68 30 0

1-19 8 4 4 8

1-AVI 10 0 10 0

2 14 8 6 14

Total count 130 80 50 22

Fig. 3 Multi-scale filtering with Frangi filter (upper panel) and the corresponding Z-profile of the max, mean, variance, and interquartile range of 
filtering responses (lower panel, from left to right)
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Let I : � → R be the H ×W  image with pixel coordi-
nates given by (x, y) ∈ � = {1, 2, . . . ,H} × {1, 2, . . . ,W } 
and SE� denote the structuring element (SE) with scale 
� , then the Top-hat filtered image Itop is defined as the 
maximum of the differences between an input image I 
and its SE opening over � ∈ � , while the Bottom-hat out-
put Ibottom is defined as the maximum of the differences 
between SE closing with I over � ∈ � , that is,

Itop = max
�∈�

(I − (I ◦ SE�))and

Ibottom = max
�∈�

((I • SE�)− I),

with ( ◦ ) and ( • ) denoting morphological opening and 
closing respectively (see Appendix  6.1 for the defini-
tions of these operations.) The Top-bottom-hat enhanced 
image is then generated as

where m and n are the strengths of Top-hat and Bottom-
hat transformations. 

(1)Ienhanced = I +m · Itop − n · Ibottom,

Vesselness-enhancing diffusion filtering [70] (see 
Appendix  1 for details) was also performed on the 
denoised images to enhance vascular structures as uti-
lized in “Filter-based feature extraction” section.

Filter‑based feature extraction
A number of common vessel enhancement and segmen-
tation filters were used to extract features that can be cat-
egorized into differentiable, spatial, and Gabor features.

In terms of differentiable features, the Z-profile of the 
Frangi filter [67], Z-profile of the matched filter [71], 
the Gaussian-filter-smoothed Z-profile of the gradient 
magnitude, and the vessel confidence measure [72] were 
extracted, resulting in a total of 13 features. For spatial 

features, the granular decomposition of the top-bottom-
hat image using the method given in [73] was obtained, 
producing a Z-profile with 4 features. The Gabor features 
were extracted from the Z-profile of the Gabor filter [17] 
responses on the complement of contrast enhancement 
output image.

Feature extraction with deep learning
The deep learning networks described in this section 
were implemented in Python 3.7 using PyTorch 1.10 and 
the segmentation model package [74]. Each network was 
trained on a single NVIDIA Tesla V100 GPU.
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Data partitioning for model construction
The dataset containing 130 XCA images was split into 
training, validation, and test sets in 3:1:1 ratio. The par-
titions were stratified to ensure different subsets had 
approximately the same percentage of samples of RCA 
and LCA angiograms from different sources.

Network structure
The network structures adopted in this study are com-
mon deep learning models developed for medical image 
segmentation, such as U-Net, DeepLabV3+, Incep-
tionResNet-v2-backbone U-Net, ResNet101-backbone 
U-Net, and DenseNet121-backbone U-Net. The latter 
three were first applied for main branch segmentation in 
XCA images in [43] and achieved the best performance 
in terms of F1 score thus far. These structures were 
employed in this work for major branch segmentation 
with modified training logic to serve as comparison to 
the ensemble models, and to obtain deep learning fea-
tures for ensemble model training. For the DeepLabV3+ 
model, we used a DeepLabV3 encoder as mentioned in 
[41] and adapted the ImageNet pre-trained ResNet101 
[44] for dense features extraction in the encoder [75]. 
Details on model parameters can be found in Appen-
dix 3. For the modified U-Net models, the encoder and 
bottleneck sections of the U-Net were replaced with Ima-
geNet pre-trained ResNet [44], InceptionResNet-v2 [45], 
or DenseNet [46], respectively, except for their average 
pooling layers and the fully connecting layers at the end. 
Skip connections were retained between the encoder and 
the decoder at different spatial resolutions.

Data processing and training setting
Gray-scale XCA images were first preprocessed with 2-D 
min/max normalization. To increase the diversity of the 
training samples, data augmentation was employed at 

each training iteration before feeding data into the net-
works. Specifically, XCA images were randomly aug-
mented by affine transformations ( −20

◦ to 20◦ rotation, 
0–10% of image size translation shift on horizontal and 
vertical axes, or 0–10% zoom) with a probability of 0.7. 
The same augmentations were also applied to the corre-
sponding ground-truth masks. The network was trained 
using a default-setting Adam optimizer with an initial 
learning rate of 10−3 and a mini-batch size of 8 images 
for up to 100 epochs. An early-stop mechanism was trig-
gered if validation loss did not improve for 15 epochs.

Loss function
To take into consideration class imbalance and class 
importance, the deep-learning model was trained using 
Generalized Dice loss (GD) [76]

where wc =

(

∑n
p=1

(Gcp/t))
2 + ǫ

)−1

 is the weight for 
class c, t is the total class number, p is the pixel location, 
and n the total number of pixels in an image. Gcp and Mcp 
are the ground truth image pixel and predicted mask 
pixel values from class c respectively.

Testing and model evaluation
For each network structure, the model that achieved the 
lowest validation loss was applied to the test set. The 
final layer of the network output was passed through an 
element-wise sigmoid activation function to generate the 
probability of each pixel belonging to either the vessel 
region or the background region. The same post-process-
ing described in “Post-processing and model evaluation” 
section was applied to generate the final binary segmen-
tation masks. The quality of the generated masks was 

GD = 1−
2
∑t

c=1 wc
∑n

p=1GcpMcp
∑t

c=1 wc
∑n

p=1(Gcp +Mcp)
,

Fig. 4 An example of the 37-dimensional feature maps extracted by filter-based methods (left panel; 3× 7 = 21 features) and deep learning 
method (right panel; 4× 4 = 16 features)
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evaluated by precision, sensitivity, specificity, F1 score, 
Intersection over Union (IoU), and the Area Under the 
Receiver Operating Characteristic Curve (AUROC). The 
first five are defined as

Precision =
TP

TP + FP

Sensitivity (Recall) =
TP

TP + FN

Specificity =
TN

TN + FP

F1 Score =
2× Sensitivity× Precision

Sensitivity+ Precision

IoU =
TP

TP + FP + FN
,

where TP, TN, FP, and FN are the pixel counts of true 
positives, true negative, false positives, and false nega-
tives, respectively.

Deep feature extraction
The network structure that achieved the best test perfor-
mance with respect to F1 score and AUROC was adopted 
for deep feature extraction. After normalization, the 
XCA images of dimension 1× 512× 512 were fed into 
the network and the activation maps of the final decoder 
layer were extracted as the deep features with dimension 
of 16× 512× 512.

Feature standardization and training samples
After feature extraction as described in Feature extrac-
tion with filters and Feature extraction with deep learn-
ing” sections, all features (Table  2) were concatenated 
(Fig.  4). Each feature map outputted from a filter or a 
deep learning layer is standardized individually by sub-
tracting its mean pixel value and dividing the result by 
the standard deviation. For each pixel pi within an XCA 
image, a 37-dimensional feature vector Xi was extracted 
that yielded a training sample ( Xi , yi ) where the label yi 
is 1 if the pixel is part of a vessel in the annotated XCA 
image and 0 otherwise. The 130 XCA images resulted a 
in total of 512× 512× 130 = 34078720 samples before 
border removal and any under-sampling.

Under‑sampling of non‑vessel pixels
If vessel and background pixels are denoted as positive 
and negative classes respectively, the samples are highly 

Table 2 Feature domains and types

Feature domain Feature type Feature 
number

Differentiable features Z-profile of Frangi filters 4

Z-profile of matched filters 4

Gaussian-filter-smoothed
Z-profile of the gradient magnitude

4

Vessel confidence measure 1

Spatial features Z-profile of granular decomposition 4

Gabor features Z-profile of Gabor features 4

Deep-learning features Activation maps of the
final decoder layer

16

Fig. 5 A uniform under-sampling mask of the majority class. Pixels from the minority class colored light blue are not involved. The mask image on 
the right is a magnified version of the selected red box on the left. Pixels colored white were retained after the mask was applied to major class of 
the target image



Page 9 of 17Gao et al. BMC Medical Imaging           (2022) 22:10  

imbalanced as the minority (positive) class only com-
prises an average of 5.58(±1.99)% in the XCA images. 
Moreover, the features extracted between neighboring 
pixels are highly correlated. Given these two facts, hybrid 
under-sampling of pixels at the image level was per-
formed to (1) avoid over-fitting due to redundant infor-
mation across pixels; (2) ensure that the classifiers do not 
ignore the minority class; and (3) reduce training time.

Uniform and unsupervised under‑sampling
The majority class consists of the background, non-vessel 
areas in the XCA images. Pixels from the majority class 
were first uniformly under-sampled via a mask (Fig.  5) 
such that the 8-neighborhood of each sampled pixel was 
not sampled. Then, an intensity-based unsupervised 
under-sampling method was employed to further reduce 
the major class based on the contrast enhancement out-
put (Fig. 6). To affect this under-sampling, the histogram 
of the pixel intensity of the contrast enhanced image 
was created with 256 bins, after which the discrete pdf 

Fig. 6 Unsupervised under-sampling. Left: the output image from contrast enhancement; Right: Pixels retained after under-sampling based on 
intensity

Fig. 7 Tomek Links under-sampling. The image on the right is a magnified version of the red box on the left. Magenta: pixels removed by Tomek 
Link; Green: positive class, vessel pixels; White: negative class, background pixels
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(probability density function) was obtained and assigned 
to a one-dimensional median filter. The smoothed pdf 
was compared with the original one to identify the over-
saturation peak generated by contrast enhancement. 
When these over-saturated pixels were excluded, the 
median value of pixel intensities was calculated as the 
binarization threshold for bright pixel removal (Fig.  6, 
right panel). This step remove pixels that clearly belong 
to the background based solely on their intensity.

Supervised under‑sampling
Supervised under-sampling includes Tomek Links and 
Cluster Centroid under-sampling for both the positive 
and the negative classes. Tomek Links [77] are defined as 
pairs of pixels from opposite classes that are the nearest 
neighbors of each other. As removing overlapping pix-
els between classes yields more well-defined boundaries 
for the classifiers [78], the Tomek Links of both classes 
were removed so that the minimally distanced nearest-
neighbor pairs of vessel pixels belong to the same class. 
Figure  7 illustrates an Tomek Link under-sampling. 
Following the Tomek Links, the Cluster Centroid [79] 
under-sampling method was employed. This method first 
applies clustering algorithms such as k-nearest neighbors 
to generate cluster centroids and then uses these cen-
troids to replace the original sample points. This method 
can reduce the number of pixels within each class to a 
fixed number, e.g., 4000, which is much smaller than the 
sample number in the original image. The Python imple-
mentation [80] of Tomek Links and Cluster Centroid 
methods were employed.

Ensemble learning for coronary vessel segmentation
Two ensemble methods, Gradient Boosting Decision 
Tree (GBDT) [51] and Deep Forest [52] were trained 
on the extracted 37-dimensional feature vectors with 
samples obtained by under-sampling. To explore how 
Tomek Links and Cluster Centroid affected the seg-
mentation performance, models with and without these 

two under-sampling methods were constructed for 
comparison.

Data partitioning for model construction
The dataset was split into training and test sets with a 
4:1 ratio. The test set images are exactly the same as the 
deep learning test set mentioned in “Data partition-
ing for model construction” section and were not uti-
lized until the test stage. All the partitions (including the 
cross-validation partitions in “Training and testing strat-
egy” section) were stratified to ensure different sets have 
approximately the same percentage of LCA and RCA 
images, and pixels from the same image were not split 
across sets. Moreover, standardization was applied to the 
training set with parameters being saved to transform the 
test set, and this was also true for cross-validation.

Training and testing strategy
For the Deep Forest model, default hyper-parameters 
settings were used since hyper-parameters had mini-
mal effect on the model performance [52], while for the 
GBDT model, hyper-parameters were tuned using 4-fold 
cross-validation, where fold compositions were changed 
under cyclic permutation with a 3:1 ratio. These hyper-
parameters and their respective ranges included the 
learning rate ( {0.01, 0.05, 0.1} ), the number of boosting 
stages ( {100, 500, 1000, 2000} ), and the maximum depth 
of the individual regression estimators ( {3, 5, 10, 20} ). 
For other hyper-parameters, default value in the Sklearn 
package were applied. For example, the loss function to 
be optimized was the deviance and the split quality of 
trees were measured by the mean squared error with 
improvement score by Friedman (Friedman MSE) [51]. 
Finally, the hyper-parameter combination that achieved 
the highest mean AUROC score in cross-validation was 
used to train the final GBDT model on the training set 
and applied to the test set for evaluation.

Table 3 Pixel totals resulting from different under-sampling methods

Pixel count
after the method

% of positive class % of negative class (the majority class) Total count 
(training 
samples)

Original image
(exclude border)

5.559 94.441 25,002,241

Uniform
Under-Sampling

19.611 80.489 7,087,635

Unsupervised
Under-sampling

34.663 65.338 4,010,003

Tomek links 34.677 65.323 4,000,602

Cluster centroid 50.000 50.000 832,000
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Post‑processing and model evaluation
Features extracted from test images were passed into the 
trained ensemble models to generate masks. The masks 
were then binarized using Otsu’s method [81] and post-
processed by (1) removing border regions, (2) adding 
back unsupervised background masks, and (3) removing 
artifacts whose areas values were less than 50. The same 
evaluation metrics listed in “ Testing and model evalu-
ation” section were calculated to evaluate the quality of 
the predicted masks across different models. The metrics 
were calculated image-wise and produced by calculating 
the mean and standard deviation over all tested images.

Feature importance
The permutation importance [82] of the GBDT models 
were computed on the holdout test set for feature evalu-
ation. The importance of a feature was calculated as the 
decrease of Friedman MSE (mentioned in “Training and 
testing strategy” section) evaluated on the test set when 
permuting the feature column for 10 times.

Results
Under‑sampling
The counts of positive and negative pixels retained for 
model training after different under-sampling steps are 
listed in Table  3. Before under-sampling, the positive 
class comprised only 5.56% of the total samples after the 
border regions were removed (see “Preprocessing” sec-
tion). The uniform under-sampling selected 24.13% of the 
background pixels in the original labeled image, followed 

by the unsupervised under-sampling that further kept 
45.98% of the negative pixel samples. These two steps 
resulted in a 34.78% share of vessel pixels in the overall 
samples and 4,000,602 samples of vessel and background 
pixels for model training. Tomek Links only altered this 
percentage level slightly, while Cluster Centroid com-
pletely balanced the positive and negative classes, reduc-
ing the training samples to 832,000 in total.

Performance comparison of deep‑learning models 
and ensemble models on the test set
Table 4 lists the performances of five deep learning mod-
els, six ensemble models and the state-of-the-art deep 
learning model on the test set in terms of their precision, 
sensitivity, specificity, F1 score, AUROC and IoU. For the 
ensemble models, “Unsupervised” indicates that the uni-
form and unsupervised under-samplings were applied on 
the training samples while “Tomek Links” means that all 
the Tomek Links were also removed from the sample pix-
els. Moreover, “Cluster Centroid” indicates that the Clus-
ter Centroid under-sampling method was further applied 
for reducing sample numbers.

For the deep learning models, Inception-ResNet-v2 
U-Net achieved the highest precision and specificity, 
DeepLabV3+ obtained the best sensitivity and AUROC, 
while DenseNet121 U-Net had the best F1 score, 
AUROC, and IoU scores. For ensemble learning models 
that use Deep Forest as the classifier, the samples after 
Tomek Links under-sampling method yielded the highest 
score in precision, specificity, F1 score, and IoU, while the 

Table 4 A comparison of model performance

Bold values are denotes the best-performing statistic of a metric among all models tested.

Precision Sensitivity Specificity F1 Score AUROC IoU

U-Net 0.867 ± 0.073 0.810 ± 0.122 0.993 ± 0.005 0.831 ± 0.082 0.902 ± 0.060 0.719 ± 0.115

DeepLabV3+ 0.862 ± 0.082 0.828 ± 0.096 0.992 ± 0.006 0.838 ± 0.081 0.909 ± 0.047 0.726 ± 0.088

Inception-
ResNet-v2 U-Net

0.904 ± 0.072 0.805 ± 0.133 0.995 ± 0.004 0.842 ± 0.089 0.900 ± 0.066 0.737 ± 0.120

DenseNet121 U-Net 0.891 ± 0.053 0.824 ± 0.145 0.994 ± 0.004 0.845 ± 0.091 0.909 ± 0.071 0.741 ± 0.117

Resnet101 U-Net 0.865 ± 0.072 0.819 ± 0.122 0.992 ± 0.005 0.832 ± 0.068 0.906 ± 0.060 0.718 ± 0.095

Unsupervised
with Deep forest

0.832 ± 0.073 0.911 ± 0.096 0.990 ± 0.005 0.863 ± 0.048 0.95 ± 0.046 0.762 ± 0.071

Tomek Links
with Deep Forest

0.884 ± 0.061 0.867 ± 0.124 0.993 ± 0.004 0.867 ± 0.066 0.930 ± 0.061 0.770 ± 0.094

Cluster centroid
with Deep forest

0.868 ± 0.067 0.873 ± 0.107 0.993 ± 0.004 0.864 ± 0.062 0.933 ± 0.053 0.765 ± 0.087

Unsupervised
with GBDT

0.864 ± 0.066 0.894 ± 0.104 0.992 ± 0.004 0.872 ± 0.051 0.943 ± 0.051 0.776 ± 0.075

Tomek Links
with GBDT

0.885 ± 0.06 0.872 ± 0.123 0.994 ± 0.004 0.870 ± 0.066 0.933 ± 0.060 0.775 ± 0.094

Cluster Centroid
with GBDT

0.857 ± 0.073 0.902 ± 0.084 0.992 ± 0.004 0.874 ± 0.048 0.947 ± 0.041 0.779 ± 0.072

DenseNet121 U-Net [43] 0.858 ± 0.071 0.873 ± 0.109 0.991 ± 0.006 0.858 ± 0.057 0.926 ± 0.068 0.755 ± 0.082
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samples after unsupervised under-sampling gave the best 
test performance in terms of sensitivity and AUROC, 
achieving the highest AUROC of 0.95 among all models 
tested. For ensemble learning models that use GBDT as 
classifier, the samples after Tomek Links under-sampling 
had the best precision and specificity. Moreover, the 
further application of the Cluster Centriod under-sam-
pling method generated the highest sensitivity, F1 score, 
AUROC, and IoU scores. It also yielded the best F1 score 
and IoU of all models tested.

The state-of-the-art method [43] achieved higher sen-
sitivity, F1 score, AUROC and IoU than the five deep 
learning models. However, it can not beat the proposed 
ensemble models, which generally performed better than 
the deep learning methods in all metrics except for speci-
ficity. Moreover, GBDT classifiers performed better than 
the Deep Forest with higher mean value and lower stand-
ard deviation in terms of F1 score and IoU regardless of 
the under-sampling method employed.

The permutation feature importance of GBDT models
Figure  8 illustrates the permutation importance of the 
37 features used in GBDT model training when differ-
ent under-sampling methods were applied. Statistics 
(maximum, mean, variance, and interquartile range) of 
the Z-profile are denoted as Z-max, Z-mean, Z-var, and 

Z-interq in the plot. For the GBDT trained with the unsu-
pervised under-sampling method, Z-mean and Z-var of 
the gradient magnitude, Z-var of the granular decom-
position, and Z-max of the Gabor filter are importance 
filter-based features, as well as the deep features 1, 9, 
and 16. For the GBDT trained with Tomek Links under-
sampling method, the Z-max and Z-mean of Frangi fil-
ter, the Z-interq of gradient magnitude, and deep feature 
4 have high permutation importance. In terms of the the 
GBDT and Cluster Centriod combination, deep features 
4, 9, and 15 show more permutation importance over 
other features. Filter-based features contribute less than 
the deep learning features when evaluated on the test 
set. Overall, GBDT model trained with different under-
sampling methods assigned different contributions to 
features during test evaluation, with some features such 
as the Z-var and Z-interq of Gabor features, Z-var of 
Matched filters, Z-var and Z-interq of Frangi filters, deep 
features 5, 10, 12 and 14, having minor influence when 
evaluated by permutation importance.

Discussion
In this paper, a novel ensemble framework for automatic 
segmentation of coronary arteries in XCA was devel-
oped. The best performing model utilized a GDBT classi-
fier trained on samples generated by the Cluster Centroid 

Fig. 8 Permutation feature importance of GBDT models that were trained with different under-sampling methods. The smaller the value, the lower 
the importance
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under-sampling method, achieving a mean precision of 
0.857, sensitivity of 0.902, specificity of 0.992, F1 score of 
0.874, AUROC of 0.947, and IoU of 0.779. The ensemble 
methods outperformed DeepLabV3+, various U-Net-
based models and the state-of-the-art method [43] on 
coronary vessel segmentation in almost all metrics and 
had a lower standard deviation in performance over test 
images.

From a clinical perspective, as more than 80% of the 
percutaneous coronary intervention (PCI) are performed 
at the time of angiography [83], an accurate vessel seg-
mentation method that improves the quality of QCA can 
greatly facilitate the assessment of stenosis; improve the 
quality of patient care; and avoid unnecessary PCIs, yield 
billions of dollars in savings at the national level [84]. In 
addition, correct delineation of the coronary vascular 
structures would be valuable in many types of CAD such 
as coronary endothelial dysfunction, where XCA serves 
as a testing technique [85].

From a technical perspective, this is the first time to 
our knowledge that ensemble methods, especially deep 
ensemble methods, have been applied to coronary artery 
segmentation. Ensemble methods are known for reduc-
ing the variance of predictions by gathering weak learn-
ers. In this study, we specifically used them for better 
predictive performance and robustness with limited 
data. In terms of the ensemble methods applied, GBDT 
is one of the leading boosting algorithms that employ 
decision tree weak learners. Compared with other deci-
sion tree boosting algorithms (e.g. [86]), it has more flex-
ibility to handle various losses defined in different forms. 
Deep Forest, on the other hand, is an emerging ensemble 
method that creates stacked layers in ensemble training. 
Although the Deep Forest classifier did not achieve per-
formance that was significantly better than GBDT, it still 
outperformed the deep learning models and was more 
consistent when evaluated over all test images. This sug-
gests that the ensemble learning method and the training 
framework in which various features were extracted from 
both classic and deep learning filters is more suitable for 
a relatively small dataset where training samples are lim-
ited. The significant increase in sensitivity indicates that 
the ensemble models have better recognition of the ves-
sel area. This could be attributed to the employment of 
domain knowledge and a reduction in overfitting via the 
pixel-wise training scheme.

The proposed method deliberately introduces some 
redundancies within the feature vectors so that a wider 
spectrum of possible situations can be handled. In terms 
of future work, it is important to analyze the most dis-
criminating features extracted for not only a more 
explainable model but also a more representative feature 
set. A review of the permutation importance of features 

indicates that some of the features have little contribu-
tion to the final prediction. However, since the permuta-
tion importance can be biased towards features that are 
correlated with one another [87], a more substantial fea-
ture analysis is required.

Different from the state-of-the-art paper on ves-
sel segmentation [43], in which the dataset was run for 
400 epochs with decreased learning rate on training loss 
saturation, we used an updated training logic to train the 
deep neural network model for feature extraction. Spe-
cifically, we reduced the training epoch upper bounds 
and introduced an early-stop mechanism. Although the 
deep models trained as such have inferior performances 
compared to those obtained from [43], we believe it is 
not necessary to have prolonged training for the follow-
ing two reasons. First, with the training logic currently 
applied, the state-of-the-art method by itself did not 
outperform our ensemble model in all metrics. Second, 
the trained deep neural networks are only used for fea-
ture extraction. Given that our dataset is relatively small, 
prolonged training on the deep feature extraction model 
may hinder the generalizability of the ensemble model 
built on its top. To summarize, the ensemble methods we 
proposed have strengths in predictive power compared 
to the deep-learning state-of-the-art on our datasets. 
Comparatively, our weaknesses lie in the complexity of 
preprocessing, feature extraction, and under-sampling 
pipeline prior to model training.

Recently, vision transformer networks [88] have been 
introduced to tackle segmentation tasks [89] for their 
capability to capture long-range dependencies in images 
with the self-attention mechanism. However, most of 
the transformer-based networks are unable to be trained 
properly with a small-scale dataset. Current transformer-
based structures designed for medical image segmenta-
tion either need thousands of annotated images [90] 
for training or require a large amount of computational 
resources [91]. Considering that we have limited training 
samples and a model that require a lot of computational 
resources is less operational at the point of care in the 
cardiac catheterization lab, the transform-based network 
may not be a practical or optimal choice.

The proposed method has several limitations. First, 
the current Python implementation of Cluster Centroid 
under-sampling requires much more computational time 
than the Tomek Links and the unsupervised under-sam-
pling methods (see Appendix  2 for details). Although a 
huge reduction in training samples should expedite the 
training process and yield better-performing prediction 
models given the relatively small size of the datasets uti-
lized in this study 4, the prolonged under-sampling pro-
cess increases training time and may hinder the method’s 
efficiency and scalability in practice. Moreover, the 
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choice of output pixel number for each class in the Clus-
ter Centroid under-sampling method was determined 
through a number of trial experiments instead of a more 
comprehensive cross-validated grid search. Since this 
number affects the time required in under-sampling and 
the final performance, it is possible that better choices 
exist to reduce training time while maintaining a good 
performance.

Appendix 1: Pre‑processing
Top‑bottom‑hat filtering
Top-hat and bottom-hat filters are morphological fil-
ters that combine dilation and erosion operations with 
a structuring element (SE). For a gray-scale image, dila-
tion and erosion operation (Fig.  9) of a pixel return the 
minimum and the maximum, respectively, of the pixel 
intensities in its neighborhood defined by SE and hence, 
the former is often used for gaps filling and region con-
nections, while the latter is applied for detail elimination. 
Denoting image matrix as I and the SE with scale � as SE� , 
the morphological opening operation ( ◦ ) is define as an 
erosion ( ⊖ ) followed by a dilation ( ⊕ ) operation and the 
morphological closing operation ( • ) first perform dilation 
and then erosion.

Diffusion filtering
Diffusion is a time-dependent process from phys-
ics that models the concentration change. This process 
evolves the input frame, I, by introducing a ’time’ vari-
able and generating images, I(t), evolved via the diffusion 
equation:

with respect to time t. Here, ∇ represents the divergence 
operator; ∇I = (Ix, Iy) denotes the image gradient; and D 
is a diffusion tensor that describes the diffusion process. 
The diffusion tensor is constructed to enhance the vas-
cular structures in the image using a variant of Frangi’s 
vesselness filter with continuous derivatives. The filter Vσ 
is given by

where �1 and �2 are the eigenvectors of the Hessian 
matrix, |�2| > |�1| , R = �1/�2 and S =
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parameter σ denotes convolution with a Gaussian Kernel 
of radius σ . The smoothing parameter, c, ensures that the 
derivative of Vσ remains continuous at all points, ensur-
ing a smooth function. The diffusion tensor must be 
smooth, positive definite, and symmetric. Due to the 
addition of the smoothing parameter in the above filter, 
the diffusion tensor can be defined as

where Q is the matrix given by the eigenvectors of the 
Hessian of the image and

In this definition, ω , ǫ , and s denote additional tuning 
parameters.

Vessel-enhancing diffusion is performed on each image 
using scale-space theory for scale invariance [94] with 
scaling parameters selected for the LCA and RCA based 
on expected vessel width ranges [95]. The differential fil-
ters are optimized for rotation invariance [96]. Finally, 
the vesselness response of the diffused image I ′ is given 
by the maximum vesselness response over all scales,

Appendix 2: Computational time for different 
under‑sampling procedures
Table  5 shows the mean and standard deviation of the 
computational times when applying different under-
sampling methods over all images in our dataset. Unsu-
pervised under-sampling is implemented by Matlab, 
while Tomek Links and Cluster Centroid are carried out 
with Python Imbalanced-learn library [80]. Cluster Cen-
troid under-sampling takes 67312 times more compu-
tational time than unsupervised method, and uses 163 

D = QGQT

G =

[

�
′

1 0

0 �
′

2

]

=

[

1+ (ω − 1) · V s−1

0

0 1+ (ǫ − 1) · V s−1

]

V = maxσVσ

Fig. 9 Examples of dilation (left) and erosion (right) on a grayscale 
image using a 5× 5 flat SE [92, 93]. The top and bottom parts 
illustrate the position and results of the structuring element window 
when applied on specific pixels of the original images
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time more computational time than the Tomek Links 
under-sampling.

Appendix 3: Training details on DeepLabV3+
We applied a backbone of ImageNet pre-trained 
Resnet101, an encoder depth of 5, an encoder out-
put stride of 16, a decoder atrous rates of (12, 24, 36), a 
decoder channel of 256 in the DeepLabV3+ model con-
struction. These are the preferable parameter choices 
described in the original paper when training the model 
on images of roughly the same resolution as the ours.
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