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Abstract 

Pancreas volume is reduced in individuals with diabetes and in autoantibody positive individuals at high risk for devel-
oping type 1 diabetes (T1D). Studies investigating pancreas volume are underway to assess pancreas volume in large 
clinical databases and studies, but manual pancreas annotation is time-consuming and subjective, preventing exten-
sion to large studies and databases. This study develops deep learning for automated pancreas volume measurement 
in individuals with diabetes. A convolutional neural network was trained using manual pancreas annotation on 160 
abdominal magnetic resonance imaging (MRI) scans from individuals with T1D, controls, or a combination thereof. 
Models trained using each cohort were then tested on scans of 25 individuals with T1D. Deep learning and manual 
segmentations of the pancreas displayed high overlap (Dice coefficient = 0.81) and excellent correlation of pancreas 
volume measurements  (R2 = 0.94). Correlation was highest when training data included individuals both with and 
without T1D. The pancreas of individuals with T1D can be automatically segmented to measure pancreas volume. This 
algorithm can be applied to large imaging datasets to quantify the spectrum of human pancreas volume.
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Introduction
Pancreas volume is reduced in individuals with type 1 
and type 2 diabetes [1] and those at risk for T1D [2, 3]. 
Furthermore, pancreas volume increases with successful 
therapy in type 2 diabetes [4], suggesting that measure-
ment of pancreas volume may be useful in monitoring 
diabetes progression and treatment response. However, 
calculation of the volume of the pancreas currently 
requires manual segmentation of the pancreas by a 
trained reader, which is impractical for large clinical trials 
or studies utilizing large image repositories.

The development of algorithms to automatically seg-
ment organs or lesions from medical images has rapidly 

advanced due to recent breakthroughs in convolutional 
neural networks and deep learning models [5–7]. A num-
ber of studies have segmented the pancreas from abdom-
inal MRI [8, 9] and computerized tomography (CT) scans 
[10–13]. However, these studies have not included images 
from individuals with diabetes, where altered pancreas 
morphology may affect segmentation accuracy. For 
instance, the pancreas of individuals with diabetes has 
more irregular borders than individuals without diabetes 
[4], which may reduce the accuracy of pancreas segmen-
tation approaches trained using only images from non-
diabetic individuals. Segmentation of other organs using 
deep learning, including the brain [14] and inner ear [15], 
have demonstrated the need to include individuals with 
pathologies that span the range of anatomical variation 
in order to improve the generalizability of the segmenta-
tion. However, this approach has not been applied to seg-
mentation of the pancreas of individuals with diabetes. 
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In this study, we develop a deep learning-based pancreas 
segmentation model trained using MRI images from 
individuals with T1D to enable future studies of pancreas 
volume in diabetes in large trials and image databases.

Methods
Study population
This is a single site retrospective study of previously-
acquired abdominal MRI. Study participants were either 
newly enrolled or part of a previously reported MRI data-
set [3] (clinicaltrials.gov identifier NCT03585153). The 
cohort of MRI scans used for analysis was composed of 
185 scans from individuals with T1D and 185 scans from 
age-matched controls.  These studies were approved by 
the Vanderbilt University Institutional Review Board 
and performed in accordance with the guidelines and 
regulations set forth by the Human Research Protections 
Program.

Image acquisition and processing
Pancreas MRI was performed on a Philips 3T Achieva 
scanner (Philips Healthcare, Best, The Netherlands). 
The image acquisition used for segmentation was a fat-
suppressed T2-weighted fast-spin echo sequence with 
1.5 × 1.5 × 5.0 mm spatial resolution spanning the pan-
creas. Each MRI was composed of thirty axial slices with 
a matrix size of 256 × 256. Imaging was performed in two 
breath holds with an image acqusition time of 25 s.

A radiologist (M.A.H.), blinded to the diabetes status 
of each study participant, manually labeled the pancreas 
on the MRI images to be used as ground truth for seg-
mentation. The network used to automatically segment 
the pancreas was a 2D U-Net inspired by [10] and [16], 
where down-convolutions were max pooling layers with 
size 2 × 2, up-convolutions were transposed convolutions 
with size 2 × 2 and stride 2, and the final layer was set 
to one feature channel with a sigmoidal activation func-
tion. Each MRI slice was standardized between 0 and 1 to 
account for a wide range of pixel intensities between MRI 
scans. The loss function used during the network train-
ing was the negative of a smoothed Dice coefficient. The 
network was trained with Adam optimization at a learn-
ing rate of  10−5 for 10 epochs and a batch size of one, in 
agreement with a previous study of pancreas segmenta-
tion [10]. Training was implemented in Keras with Ten-
sorFlow backend. It took less than one hour to train the 
network with one GeForce GTX 108 GPU.

Deep learning-based pancreas segmentation was ini-
tialized by providing the network with a bounding box 
encompassing the pancreas, as previously described [10, 
13]. We then trained three different models, one using 
160 scans of individuals with T1D, one with 160 scans 
of control individuals, and one with 160 scans equally 

comprised of scans from controls and patients with T1D 
(hereafter referred to as the mixed model). The models 
were trained with four-fold cross validation, with training 
on 120 out of 160 scans and validation on the remaining 
40 scans. For the mixed model, each subset was com-
posed of 20 individuals with and 20 individuals without 
T1D. We then tested the three models on unseen data 
composed of 25 individuals with T1D. The segmenta-
tion performance was evaluated using volume measure-
ments and the Dice coefficient, which ranges from 0 for 
no overlap between manual and deep learning-based seg-
mentation to 1 indicating perfect alignment.

Statistical analysis
Statistical analysis was performed in GraphPad Prism, 
version 9.2 (San Diego, CA). Differences between inde-
pendent groups were assessed using unpaired t-test. 
Linear correlation was assessed by Pearson Correlation 
Coefficient, with p values of 0.05 considered significant. 
Bland-Altman analysis was performed to assess the dif-
ference between deep learning-based and manual meas-
urements of pancreas volume versus the mean volume 
measurement.

Results
Representative manual and deep learning-based segmen-
tation of the pancreas are shown for an individual with 
T1D (Fig. 1A) and individual with no pancreas pathology 
(Fig. 1B). The individual with T1D has a smaller pancreas 
with a thinner body. Manual pancreas segmentation (left 
column) displays good agreement with deep learning-
based segmentation (middle column) on a representa-
tive MRI slice. The three-dimensional pancreas volume 
constructed from manual segmentation (red) and deep 
learning-based segmentation (green) display good agree-
ment (right column). Manual and deep learning-based 
pancreas segmentations displayed a high degree of over-
lap with mean Dice coefficient of 0.81 ± 0.04 and mini-
mum Dice coefficient of 0.66.

We compared performance of our three models 
(trained using MRIs from controls, individuals with T1D, 
and a mixed model incorporating both individuals with 
and without T1D) on an unseen cohort composed of 25 
MRIs from individuals with T1D. The mixed model had 
a higher Dice coefficient (0.792) and agreement with 
manually measured pancreas volume  (R2 = 0.94) than 
models trained using scans from only control individu-
als (Dice coefficient= 0.782,  R2 = 0.91). Manual and deep 
learning-based pancreas volume measurements derived 
from the mixed model showed good correlation across 
a testing cohort of individuals with and without T1D 
(Fig. 2,  R2 = 0.94), and in subsets of individuals with T1D 
 (R2 = 0.91) or controls  (R2 = 0.93). Deep learning-based 
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pancreas volume measurements in individuals with T1D 
were significantly lower than controls (38 ± 12 ml vs. 54 
± 17 ml; p < 0.005).

Bland-Altman analysis was performed to further 
characterize the agreement between deep learning-
based and manual pancreas volume measurements 
(Fig.  3). Deep learning measurement of pancreas 

volume tends to underestimate pancreas size compared 
with manual measurements (bias = 2.7 ml). This under-
estimation is more pronounced at larger pancreas sizes, 
as evidenced by a significantly non-zero slope in the 
Bland-Altman plot (p < 0.001). The 95% limits of agree-
ment between deep learning-based and manual pan-
creas volume measurements are − 8.2 to 13.5 ml.

Fig. 1 Representative manual and deep learning-based pancreas segmentations from an individual (A) with T1D or (B) with no pancreas pathology. 
The representative individual with T1D was a 13-year-old male with 2-month diabetes duration (Dice coefficient = 0.82) while the representative 
control individual was a 15-year-old male with no known pancreas pathology (Dice coefficient = 0.84). Three dimensional overlays of manual (red) 
and deep learning-based (green) segmentations are shown for both representative individuals with the pancreas tail oriented to the reader’s left for 
best visualization. Note the smaller and thinner pancreas size in the individual with T1D
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Fig. 2 Manual and deep learning-based pancreas volume 
measurements display correlation across a cohort including 
individuals with and without T1D  (R2 = 0.94) and in subsets of 
individuals with T1D (red;  R2 = 0.91) or controls (blue;  R2 = 0.93)
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Fig. 3 Bland-Altman plot of the agreement between deep 
learning-based and manual pancreas volume measurements. 
The 95% limits of agreement are displayed with dotted lines. 
Deep learning-based measurement of pancreas volume tends to 
underestimate pancreas size compared with manual measurements 
(bias = 2.7 ml), particularly at larger pancreas sizes
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Discussion
In this study we applied a neural network to measure 
pancreas volume in individuals with T1D and dem-
onstrated agreement with manual segmentation by an 
expert reader. The deep learning-based segmentation 
calculated smaller pancreas volume in individuals with 
T1D, in agreement with previous studies using manual 
segmentation [1–3], but absent the subjectivity inherent 
to manual segmentation. In fact, the agreement between 
deep learning and manual pancreas segmentation in this 
study outperformed the agreement between two different 
readers performed using images derived from the same 
study [17]. This finding highlights the subjectivity in 
manual pancreas segmentations which are in turn used to 
train deep learning models. The use of images segmented 
by a single reader is a potential limitation of the study, 
as our model does not capture the variance induced by 
multiple readers. However, for large studies in which use 
of a single reader is not feasible but consistent pancreas 
segmentation is desired, deep learning-based measure-
ment of pancreas volume can potentially increase repro-
ducibility compared with the use of multiple readers. For 
instance, longitudinal monitoring of pancreas size in the 
same individual, which has proven useful in tracking the 
natural history of T1D [3] and assessment of therapeu-
tic response [4], would benefit from deep learning across 
assessments as compared with measurements made by 
different readers at different time points. Pancreas seg-
mentation was improved by training with images from 
both individuals with and without T1D, as this diverse 
training set can putatively capture the range of pancreas 
volume and morphology present in normal and patho-
logical states, as found in brain segmentation [18].

As a small, flexible abdominal organ with a high degree 
of variation among individuals in both shape and vol-
ume, the pancreas is particularly challenging to segment 
compared with proximal organs such as kidney and liver. 
This challenge was illustrated in previous automatic seg-
mentation of abdominal organs in which liver, spleen, 
and kidney segmentation outperformed that of the pan-
creas [8]. In this study we demonstrate Dice coefficients 
similar to segmentation performed on a dataset devoid 
of pancreas pathology [10, 13]. Importantly, when we 
include both individuals with and without T1D to train 
the model we observe improved segmentation accuracy, 
whereas previous pancreas segmentation studies did not 
include individuals with diabetes. The altered pancreas 
morphology found in T1D leads to more variation in 
image features, potentially complicating deep learning-
based segmentation. The altered imaging features found 
in the pancreas in T1D may classify the pancreas of indi-
viduals with diabetes, as has been demonstrated in pan-
creatic cancer [19]. This may prove useful for identifying 

individuals at risk for T1D or for predicting therapeutic 
response.

This study is subject to a number of limitations. Bland-
Altman analysis demonstrates that pancreas volume 
tends to be underestimated by deep learning-based seg-
mentation, particularly for large pancreas sizes. Addi-
tionally, images were acquired on a single MRI scanner 
with standardized image acquisition parameters [20]. 
Deep learning approaches are known to be hampered 
by difference in MRI scanners and acquisition param-
eters [21]. Further work is needed to establish pancreas 
segmentation pipelines incorporating diabetes pathology 
across multisite data in order to generalize the tool estab-
lished in this study. Deep learning algorithms for pan-
creas segmentation are undergoing rapid development 
and refinement [9–12]. A systematic investigation of seg-
mentation accuracy using different algorithms applied to 
a common image dataset is needed to compare the per-
formance of these techniques.

Conclusions
Deep learning-based segmentation of the pancreas can 
reduce the time and associated cost needed for analysis 
of pancreas volume and mitigates inter-reader variabil-
ity. The pancreas segmentation model developed in this 
study can be applied to large abdominal imaging sets, 
such as those being acquired as part of the UK Biobank 
[22], to determine factors which influence pancreas vol-
ume and lead to large interindividual variation in pan-
creas volume.
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