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Abstract 

Background:  The objective of this study is to explore the value of two-dimensional (2D) and three-dimensional (3D) 
radiomics models based on enhanced computed tomography (CT) images in predicting BRCA gene mutations in 
patients with epithelial ovarian cancer.

Methods:  The clinical and imaging data of 106 patients with ovarian cancer confirmed by surgery and pathology 
were retrospectively analyzed and genetic testing was performed. Radiomics features extracted from the 2D and 3D 
regions of interest of the patients’ primary tumor lesions were selected in the training set using the maximum correla-
tion and minimum redundancy method. Then, the best features were selected through Lasso tenfold cross-validation. 
Feature subsets were employed to establish a radiomics model. The model’s performance was evaluated via area 
under the receiver operating characteristic curve analysis and its clinical validity was assessed by using the model’s 
decision curve.

Results:  On the validation set, the area under the curve values of the 2D, 3D, and 2D + 3D combined models were 
0.78 (0.61–0.96), 0.75 (0.55–0.92), and 0.82 (0.61–0.96), respectively. However, the DeLong test P values between the 
three pairs of models were all > 0.05. The decision curve analysis showed that the radiomics model had a high net 
benefit across all high-risk threshold probabilities.

Conclusions:  The three radiomics models can predict the BRCA gene mutation in ovarian cancer, and there were no 
statistically significant differences between the prediction performance of the three models.
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Introduction
According to data from the International Cancer 
Research Center, approximately 52,000 new cases of 
ovarian cancer are diagnosed in China each year, with a 
high tumor mortality rate  [1, 2], and epithelial ovarian 
cancer accounts for 90% of all ovarian malignancies  [3]. 
Approximately 50% of epithelial ovarian cancers exhibit 

DNA repair defects through homologous recombina-
tion, and BRCA1/2 mutations in germline and somatic 
cells are the most common mechanism underlying 
homologous recombination deficiency  [4]. Patients 
with BRCA1/2 mutant ovarian cancer are sensitive to 
platinum drugs, have a higher progression-free sur-
vival period, and have better prognosis  [5, 6]. The main 
method for clinical judgment of BRCA gene mutations is 
genetic testing at present, but it is costly and time-con-
suming, and unit sampling cannot cover the entire tumor  
[7]. Nougaret et  al.  [8] predicted BRCA gene status by 
observing CT features and found that some radiomics 
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features are related to gene mutation status, but the judg-
ment of these imaging features was dependent on the 
observer’s subjective experience.

Radiomics can objectively quantify the relationship 
between the pixels and the spatial distributions of medi-
cal images and fully explore the hidden information in 
the images that cannot be observed by the naked eyes. 
In previous studies, radiomics has been used to capture 
tumors’ inherent heterogeneity and correlate it with 
potential gene expression types  [9]. Extracting radiom-
ics features requires delineating the region of interest 
(ROI) of the lesion, which is currently done by two com-
monly used methods: two-dimensional (2D) and three-
dimensional (3D) delineation. However, the advantages 
and disadvantages of these two delineation methods 
are still controversial  [10, 11]. Therefore, in this study, 
we explored the predictive value of radiomics models 
based on different delineation methods for BRCA gene 
mutations in patients with epithelial ovarian cancer, and 
compared the prediction performance of each model, to 
improve the prediction of gene mutation status. In doing 
so, we strived to seek a model that could provide an ideal 
and convenient method to sketch the area of interest.

Methods
Research subjects
We performed a retrospective analysis of patients with 
epithelial ovarian cancer who received treatment at our 
institution from March 2017 to July 2020. We collected 
clinical pathological data, CT enhanced images before 
surgery, radiotherapy, and chemotherapy, and postopera-
tive pathological diagnosis. The inclusion criteria were 
as follows: (1) epithelial ovarian cancer pathologically 
confirmed by biopsy; (2) abdominal CT scan performed 
before the operation, and the images including the arte-
rial, venous, and delayed phases; (3) no radiotherapy or 
chemotherapy performed before the operation; (4) lesion 
size ≥ 10 mm. The exclusion criteria were as follows: (1) 
large image artifacts interfering with observation; (2) 
intolerance to enhanced CT examination; (3) preop-
erative radiotherapy and chemotherapy; (4) a history of 
other malignant tumors or pelvic metastases. In total, 
106 patients were included in the study (Fig. 1). Among 
them, 63 cases, aged 35–75 years (average: 54.86 years), 
were in the BRCA gene non-mutation group; 43 cases 
aged 36–77  years (average: 53.93  years), were in the 
BRCA gene mutation group.

Fig. 1  Flow chart of screening and grouping the enrolled cases
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Collection of general characteristics
The clinical data of 106 patients, including patient’s age, 
maximum tumor diameter and tumor markers, were col-
lected and analyzed,.

Genetic testing
NGS genetic testing technology was applied on all 
patients, who had at least one of the following indica-
tions: (1) family history of pathogenic BRCA gene muta-
tions; (2) family history of breast cancer before the age of 
45 years or triple-negative breast cancer before the age of 
60 years; (3) affordability of genetic testing or the doctor’s 
requirement of genetic testing. To ensure the consistency 
of the test results, all subjects were tested by the same 
testing agency (Huada BGI).

Image acquisition
The patients fasted for more than 8 h and drank approxi-
mately 500–1000  mL of clean water orally 15–30  min 
before the examination. After the bladder was filled, the 
abdomen and pelvis were scanned using a GE Discovery 
CT 750HD (HDCT, USA) scanner in supine position. 
The scan ranged from the top of the diaphragm or the 
level of the iliac spine to the symphysis pubis. The tube 
voltage was 120  kV, the tube current was 280–300  mA, 
the layer thickness was 5 mm, the reconstruction dimen-
sion was 1.25 mm, the layer spacing was 5 mm, and the 
pitch was 1.375:1. The contrast agent for enhanced scan-
ning was 1.5 mL/kg of iohexol (300 mgI/mL), which was 
injected through the median cubital vein with a flow rate 
of 2.5–3.0  mL/s. The contrast agent was injected twice: 
at 25–30 s and 60–70 s for arterial and venous scanning, 
respectively.

Image segmentation and feature extraction
The preoperative abdominal enhanced CT image data of 
all patients were collected from the ICPACS workstation 
of the CT room at the Imaging Department of our insti-
tution and exported in.DICOM format. For all the image 
modality, the slices were resampled to 1*1*1cm3, and the 
intensity range were normalized to a mean value of 0 and 
standard deviation of 1 (z score standardization). Doc-
tor A, a senior diagnostic imaging doctor, used ITK-Snap 
software (https://​www.​itksn​ap.​org) to delineate the (ROI) 
of the lesion in the third phase of enhanced CT. For 2D 
delineation, the scope included the layer with the larg-
est lesion surface area, and for 3D delineation, the scope 
covered all possible areas of the target lesion. During 
the delineation, necrosis, blood vessels, and other struc-
tures were eliminated as completely as possible (Fig.  2). 
Two weeks later, doctor A randomly selected data of 30 
patients to perform ROI delineation again to evaluate the 

intra-group consistency of ROI delineation (intra-ICC). 
To evaluate the between-group consistency of ROI delin-
eation (inter-ICC), another radiologist, B, also drew the 
ROIs on the 30 patients’ images independently.

A.K. software (GE Healthcare, AnalysisKit; Version: 
3.2.0.R) conforming to the IBSI standard was used to 
extract features from the ROIs outlined in each image. 
A total of 681 image biomarkers were obtained in each 
phase (non-mutation group labeled PA1-63, marked as 0; 
mutation group labeled PA64-106, marked as 1), includ-
ing histogram, grayscale interconnected area matrix, 
grayscale co-occurrence matrix, morphology, run-length 
matrix, and wavelet change (wavelet) and Laplacian 
change (ln) characteristics.

Feature screening and model establishment
The features of the arterial phase, venous phase, and delay 
phase were integrated into 2043 features. The data were 
randomly divided into the training and test sets in a 7:3 
ratio. In the training set, maximum correlation minimum 
redundancy (mRMR) and LASSO (least absolute shrink-
age and selection operator) tenfold cross-validation, were 
used to select features. First, mRMR was performed to 
remove redundant and irrelevant features, incorporate 
the retained features into the LASSO regression, find the 
value of hyperparameter λ that minimized the binomial 
deviation, and then retain the subset of features whose 
coefficients were not 0 to construct the final model.

Statistical analysis and processing
The chi-square test or Mann–Whitney U test was used 
to check for significant differences in general features 
and clinical characteristics between the two groups. The 
area under curve (AUC), model accuracy, precision, sen-
sitivity, specificity, negative predictive value, and positive 
predictive value were analyzed to evaluate the radiomics 
models’ predictive ability. Finally, decision curve analysis 
was used to evaluate the models’ clinical applicability. All 
statistical analyses were performed using R software (ver-
sion 3.6.1, https://​www.r-​proje​ct.​org).

For general clinical characteristics, we used the Chi-
square test and the Kruskal–Wallis H test to analyze 
abnormally distributed continuous variables. P val-
ues < 0.05 were considered statistically significant. All 
statistical analyses were performed using R software (ver-
sion 3.6.1) and the Python programming language (ver-
sion 3.5.6).

The intraclass correlation coefficients (ICCs) of each 
texture feature were calculated to evaluate the within- 
and between-observer changes in the texture features 
extracted by the ROI segmentation and to explain each 
feature’s reproducibility, according to the following scale: 

https://www.itksnap.org
https://www.r-project.org
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ICC < 0.4, poor; 0.59 > ICC ≥ 0.4, fair; 0.75 > ICC ≥ 0.6, 
good; and ICC ≥ 0.75, excellent. Features with ICC ≥ 0.8 
were considered stable and included in further analyses.

Results
General characteristics
No statistically significant differences in age composition, 
maximum tumor diameter, or tumor markers were found 
among the three groups (P > 0.05; Table 1).

Construction and verification of prediction models
Feature screening
The ICC ranges within and between the 2D-outlined fea-
ture data groups were (− 0.18–1.00) and (− 0.08–1.00), 
respectively. In total, 531 features had ICC values of > 0.75 
across the two groups. In the 3D-outlined feature data 
group, the ICC ranges within and between groups were 
(− 0.06–1.00) and (− 0.40–1.00), respectively. In total, 548 
features had ICC values of > 0.75 across the two groups.

Fig. 2  a–-d Images of a 35-year-old patient with high-grade (stage IIIC) serous carcinoma of the ovary, which was genetically detected with a 
non-BRCA gene mutation. ITK-SNAP software was used to segment and label the lesion layer-by-layer to generate a 3D image of the lesion

Table 1  General characteristics of the three groups

Variable Sample Class meaning unknown Class mutation Class wild Statistics P value

Age 106 55.00 (49.00, 58.05) 52.00 (47.70, 57.20) 54.00 (48.00, 59.30) 0.781 0.677

Maximum_Diameter 106 8.75 (5.95, 11.00) 7.00 (4.57, 9.24) 7.00 (4.49, 10.00) 2.929 0.231

Tumor marker CA125 86 15 (83.33%) 42 (93.33%) 63 (81.82%) 3.601 0.463

Tumor marker CA125、CA199 19 3 (16.67%) 3 (6.67%) 13 (16.88%)

Tumor marker CA199 1 0 (0.00%) 0 (0.00%) 1 (1.30%)
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We then used the mRMR and LASSO regression mod-
els to perform feature screening on features with ICC 
values of > 0.75 in the 2D, 3D, and 2D + 3D models. For 
the 2D images, the binomial deviation was smallest at the 
optimal tuning parameter value of ln λ = 0.0118, and the 
four features whose coefficients were not 0 at that value 
were retained. For the 3D images, the binomial deviation 
was smallest at the optimal tuning parameter value of ln 
λ = 0.0279, and the 13 features whose coefficients were not 
0 at that value were retained. For the 2D + 3D images, the 
binomial deviation was the smallest at the optimal tuning 
parameter value of ln λ = 0.0294 (Fig. 3a), and the 12 fea-
tures whose coefficients were not 0 at that value (Fig. 3b) 
were retained; eight and four were retained from 2 and 3D 
images, respectively. The corresponding coefficients of the 
features are shown in Fig. 3c.

Diagnostic efficiency of the devised models
Logistic regression was used to establish radiomics mod-
els using the selected features, and the radscore of each 
case was calculated. Table  2 shows the radscore distribu-
tion in the gene mutation and wild-type groups generated 
by the 2D, 3D, and 2D + 3D models. We used the AUC of 
the receiver operating characteristic curve and the models’ 
accuracy, sensitivity, specificity, negative predictive value, 
and positive predictive value to evaluate their predictive 
ability.

In the training set, the 2D model’s image AUC was 0.81 
(0.71–0.91), the 3D model’s image AUC was 0.80 (0.70–
0.90), and the 2D + 3D model’s image AUC was 0.91 (0.84–
0.97). In the test set, the 2D model’s image AUC was 0.78 
(0.61–0.96), the 3D model’s image AUC was 0.75 (0.55–
0.92), and the 2D + 3D model’s image AUC was 0.82 (0.67–
0.98) (Table  3). The highest AUC value of the 2D + 3D 
model indicated its highest diagnostic efficacy (Fig.  4). 
However, the DeLong test results showed that the P values 
among the three pairs of models were all > 0.05, suggest-
ing that there were no statistically significant differences in 
prediction efficiency among the three pairs of models.

Finally, a decision curve was used to evaluate the three 
models’ clinical effectiveness (Fig.  5). As the radiomics 
model’s standard net benefit within a range of the high-
risk threshold increased, its clinical effectiveness increased. 
The decision curves show that the clinically effective 

performance of the 2D + 3D model was much higher than 
those of the other two models.

The above results indicate that the radiomics model 
based on 2D and 3D images can effectively predict BRCA 
gene mutations in patients with epithelial ovarian cancer, 
although the 2D + 3D model showed no significantly differ-
ent predictive performance from that of the radiomic mod-
els based on 2D or 3D images alone.

Conclusions
Ovarian cancer has the highest mortality rate among 
gynecological malignancies. More than 70% of patients 
with ovarian cancer are already in the advanced stage when 
detected  [12], and there is still a lack of accurate early diag-
nosis and prevention methods  [13]. The use of radiom-
ics can avoid the disadvantages of conventional imaging 
examinations such as subjectivity, histopathology, and local 
sampling.

Guo Jianlin et  al.  [14] found that the combined radi-
omics model of arterial phase and venous phase had 
higher predictive performance than the separate model 
of each phase. Using the CT features of 539 cases of lung 
adenocarcinoma, Yooh et  al. [15] analyzed the tumor 
size, location, volume, density, CT value, and the rela-
tionship between pixel-based texture features and gene 
expression patterns and found that these image features 
showed good discrimination of fusion-positive from 
fusion-negative lung adenocarcinomas. In this study, 
the quantitative features were selected and the predic-
tion model was established using radiomics features 
extracted from the arterial phase, venous phase, and 
delay phase of enhanced CT images, and the resulting 
radiomics scores were strongly correlated with the BRCA 
gene mutation (r = 0.65, P < 0.001; Fig. 3c). Totally, 2,043 
radiomics features were extracted from the CT images 
of 106 patients with epithelial ovarian cancer, Twelve 
characteristics were finally selected and the model was 
constructed via multivariate logistic regression. Among 
them, the P values of the 3D_Artery_wavelet.HLL_
firstorder_Kurtosis, 3D-Delay-wavelet.LHH_IDMN, 
Venous_wavelet.LLL_firstorder_Range, Delay_wave-
let.HHH_glszm_SmallAreaHighGrayLevelEmphasis, 
Venous_wavelet.HHH_firstorder_MeanAbsoluteDevia-
tion, and 2D_Artery_wavelet.HHH_glszm_ZoneEntropy 

Fig. 3  Application of LASSO (Least absolute shrinkage and selection operator)-logistic regression to imaging feature screening in the 2D + 3D 
model shows that the LASSO-logistic regression model selects tuning parameters (λ) through tenfold cross-validation and obtains the relationship 
between binomial variance and logarithm (λ) (a). The relationship is retained with the parameters that yield the smallest binomial deviation, and 
the 12 best features with non-zero coefficients (b) are retained in the final model. The relationships between the features and gene mutation status 
(correlation coefficient × 100) are shown in the heat map (c)

(See figure on next page.)
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were less than 0.05, and can be used as independent 
risk predictors. The values of these characteristics in 
the mutation group were higher than those in the non-
mutation group. For example, Artery_wavelet.HLL_first-
order_Kurtosis is a measure of the “peak” of the value 
distribution in the image ROI transferred by wavelet from 

the artery phase. Higher kurtosis means that the qual-
ity of the distribution is concentrated in the tail instead 
of the average, which can be used as a label to predict 
the mutation status of the BRCA gene. Other detailed 
explanation of the features are in the appendix (Table 4). 
The radscore obtained from the mutlvirate logistic 

Table 2  Radscores of each patient in the training and validation sets calculated by different models, and their distribution and 
difference statistics in patients with wild-type and mutant type BRCA genes

Variable Sample Wild Mutation Statistics P value

Train Radscore _2D3D 76 − 1.22 ± 1.06 0.52 ± 0.94 − 7.329  < 0.001

Radscore _3D 76 − 0.71 (− 1.06, − 0.28) 0.00 (− 0.36, 0.28) − 4.413  < 0.001

Radscore _2D 76 − 0.51 ± 0.23 − 0.19 ± 0.30 − 5.303  < 0.001

Test Radscore_2D3D 30 − 1.03 (− 2.32, − 0.01) 0.66 (− 0.23, 4.92) − 2.963 0.003

Radscore_3D 30 − 0.61 (− 0.95, − 0.25) − 0.04 (− 0.48, 0.49) − 2.159 0.031

Radscore_2D 30 − 0.41 ± 0.22 − 0.17 ± 0.23 − 2.9 0.007

Table 3  Cutoff value prediction ability of the 2D, 3D, and 2D + 3D joint radiomics models

AUC​ Accuracy Sensitivity Specificity Positive value Negative value Cut-off

2D Training set 0.81 (0.71–0.91) 0.75 (0.63–0.84) 0.68 0.83 0.86 0.65 − 0.43

2D validation set 0.78 (0.61–0.96) 0.73 (0.54–0.87) 0.61 0.91 0.91 0.61

3D training set 0.80 (0.70–0.90) 0.75 (0.63–0.84) 0.71 0.81 0.84 0.65 − 0.61

3D validation set 0.75 (0.55–0.92) 0.74 (0.55–0.88) 0.84 0.58 0.76 0.70

2D + 3D Training set 0.91 (0.84–0.97) 0.86 (0.77–0.93) 0.95 0.74 0.84 0.92 0.14

2D + 3D validation set 0.82 (0.67–0.98) 0.73 (0.54–0.87) 0.611 0.91 0.91 0.61
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Fig. 4  ROC curves of 2D model, 3D model, and 2D + 3D model in the training group (a) and validation group (b)
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regression model was also higher in the mutation group 
than the wild group in both the 2D and 3D and 2D + 3D 
model(p < 0.05). Therefore, the radiomics signature estab-
lished by the selected radiomics feature radscore can be 
used as a biomarker for BRCA gene mutation prediction.

The study by Lei Xu et  al. found that in both uni-
variate and multivariate analyses, 3D image features 
showed better prediction performance than 2D image 
features  [16]. However, according to Shen et  al.  [17], 
2D features had better performance. Yet, Lifeng 
Yang et  al.  [18] found that the features derived from 
a 2D + 3D model showed better prognostic perfor-
mance than 2D or 3D features alone in predicting 
overall survival of non-small cell lung cancer. There-
fore, we established prediction models using 2D, 3D, 
and 2D + 3D image features, and found that the AUC 
values of all three models were over 0.75, and all three 
models’ exhibited good prediction performance, indi-
cating that the radiomics models can effectively predict 
BRCA gene mutation status in patients with epithelial 
ovarian cancer. The 2D + 3D model had the highest 
AUC value, but the DeLong test results showed no sta-
tistical differences in predictive performance between 
the three pairs of models. The results showed that 2D 

outlining of the layer with the largest lesion diameter 
could cover the central region of the tumor and achieve 
high predictive performance in predicting BRCA gene 
mutations in ovarian cancer. The 3D outlining images 
could provide information about tumors’ heterogeneity 
outside the central area, but this information could not 
contribute to the prediction of BRCA gene mutations in 
the present study. Therefore, we believe that when the 
image is delineated in 2D, with appropriate selection of 
lesion delineation level, the predictive performance the 
radiomics model is close to that of the 2D + 3D model. 
This insight may improve the practical efficiency of 
establishing radiomics model in clinical practice.

This study had some limitations. First, this study was 
a single-center retrospective study. The included cases 
were all from our hospital and therefore lacked external 
verification. Second, the sample size was small, which 
may lead to bias in the data. Third, all ROIs in this study 
were drawn manually, making the results easily affected 
by subjective factors. Lastly, in this study, there were 
63 and 43 patients in the wild-type and mutant groups, 
respectively. The data of the two groups were unbalanced, 
and the model may therefore be biased.

Fig. 5  The yellow line, black dotted line, and blue dotted line represent the data obtained from the 2D, 3D, and 2D + 3D images, respectively. The 
x-axis represents the patient’s personal threshold probability (e.g., x = 0.6 means that the high-risk threshold of ovarian cancer and BRCA gene 
mutation is 60%). The y-axis represents net income. The line labeled “All” represents the hypothesis that all ovarian cancer cases are caused by BRCA 
gene mutations. The thin line labeled “None” represents the assumption that there are no BRCA gene mutations in patients with ovarian cancer
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Table 4  The detailed information of the features

Image type Features Features explanation

X3D-venous-wavelet.LHH Glcm–cluster shade

 

Ng
∑

i=1

Ng
∑

j=1

(

i + j − µx − µy

)3
p(i, j)

Cluster Shade is a measure of the skewness and 
uniformity of the GLCM. A higher cluster shade implies 
greater asymmetry about the mean

X3D-venous-wavelet.HHH Firstorder –mean absolute deviation (MAD)

1
Np

Np
∑

i=1

|X(i)− X |

Mean Absolute Deviation is the mean distance of all 
intensity values from the Mean Value of the image array

X2D-venous-wavelet.HLH X2D-delay-
wavelet.LHHX2D-Artery-wavelet.HHH

Firstorder—skewness

 

µ3

σ 3 =

1
Np

∑Np
i=1 (X(i)−X)3

(

√

1
Np

√

∑Np
i=1 (X(i)−X)2

)3

Skewness measures the asymmetry of the distribution 
of values about the Mean value. Depending on where 
the tail is elongated and the mass of the distribution is 
concentrated, this value can be positive or negative

X3D-delay-wavelet.LHH Glcm—IDMN
Ng−1
∑

k=0

Px−y (k)

1+

(

k2

N2g

)

IDMN (inverse difference moment normalized) is 
a measure of the local homogeneity of an image. 
IDMN weights are the inverse of the Contrast weights 
(decreasing exponentially from the diagonal i = ji = j in 
the GLCM). Unlike Homogeneity2, IDMN normalizes the 
square of the difference between neighboring intensity 
values by dividing over the square of the total number 
of discrete intensity values

X2D-venous Original shape elongnation

 

√

�minor
�major

Elongation shows the relationship between the two 
largest principal components in the ROI shape. For 
computational reasons, this feature is defined as the 
inverse of true elongation

X2D-venous-wavelet.HHH Glszm–Zone entropy (ZE)

−

Ng
∑

i=1

Ns
∑

j=1

p(i, j) log2 (p(i, j)+ ∈)

ZE measures the uncertainty/randomness in the 
distribution of zone sizes and gray levels. A higher value 
indicates more heterogeneneity in the texture patterns

X2D-venous-wavelet.HHH Glszm–gray level non-uniformity (GLN)
∑Ng

i=1

(

∑Ns
j=1 P(i,j)

)2

Nz

GLN measures the variability of gray-level intensity 
values in the image, with a lower value indicating more 
homogeneity in intensity values

X3D-artery-wavelet.HLL Firstorder—Kurtosis

 

µ4

σ 4 =

1
Np

∑Np
i=1 (X(i)−X)4

(

1
Np

∑Np
i=1 (X(i)−X)2

)2

Kurtosis is a measure of the ‘peakedness’ of the distri-
bution of values in the image ROI. A higher kurtosis 
implies that the mass of the distribution is concen-
trated towards the tail(s) rather than towards the mean. 
A lower kurtosis implies the reverse: that the mass of 
the distribution is concentrated towards a spike near 
the Mean value

X2D-delay-wavelet.HHH Glszm–small area high gray level emphasis (SAHGLE)
∑Ng

i=1

∑Ns
j=1

P(i,j)i2

j2

Nz

SAHGLE measures the proportion in the image of the 
joint distribution of smaller size zones with higher gray-
level values

X2D-venous-wavelet.LLL Firstorder–range max(X)-min(X) The range of gray values in the ROI
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In summary, the 2D, 3D, and 2D + 3D radiomics mod-
els based on enhanced CT images can effectively predict 
BRCA gene mutation status in patients with epithelial 
ovarian cancer and provide a new type of method for 
clinical evaluation of patients’ genetic mutation status.
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