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Abstract 

Background:  99mTc-pertechnetate thyroid scintigraphy is a valid complementary avenue for evaluating thyroid dis-
ease in the clinic, the image feature of thyroid scintigram is relatively simple but the interpretation still has a moderate 
consistency among physicians. Thus, we aimed to develop an artificial intelligence (AI) system to automatically classify 
the four patterns of thyroid scintigram.

Methods:  We collected 3087 thyroid scintigrams from center 1 to construct the training dataset (n = 2468) and inter-
nal validating dataset (n = 619), and another 302 cases from center 2 as external validating datasets. Four pre-trained 
neural networks that included ResNet50, DenseNet169, InceptionV3, and InceptionResNetV2 were implemented to 
construct AI models. The models were trained separately with transfer learning. We evaluated each model’s perfor-
mance with metrics as following: accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV), recall, precision, and F1-score.

Results:  The overall accuracy of four pre-trained neural networks in classifying four common uptake patterns of thy-
roid scintigrams all exceeded 90%, and the InceptionV3 stands out from others. It reached the highest performance 
with an overall accuracy of 92.73% for internal validation and 87.75% for external validation, respectively. As for each 
category of thyroid scintigrams, the area under the receiver operator characteristic curve (AUC) was 0.986 for ‘diffusely 
increased,’ 0.997 for ‘diffusely decreased,’ 0.998 for ‘focal increased,’ and 0.945 for ‘heterogeneous uptake’ in internal vali-
dation, respectively. Accordingly, the corresponding performances also obtained an ideal result of 0.939, 1.000, 0.974, 
and 0.915 in external validation, respectively.

Conclusions:  Deep convolutional neural network-based AI model represented considerable performance in the clas-
sification of thyroid scintigrams, which may help physicians improve the interpretation of thyroid scintigrams more 
consistently and efficiently.
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Background
Thyroid scintigraphy with 99mTc-pertechnetate is an 
essential complementary exanimation for the evaluation 
of thyroid function as a follow-up to blood biochemical 
tests and thyroid ultrasonography. It is a valid and con-
venient avenue to identify the causes of thyrotoxicosis, 
especially for distinguishing Graves’ disease (GD) and 
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toxic multinodular goiter (TMG) when both thyrotro-
pin receptor antibody was negative or differentiating 
GD from thyroiditis [1]. Accurate interpretation of thy-
roid scintigrams influences treatment decisions. If clini-
cians interpret the same scintigram differently, they will 
likely recommend different treatments. The interpreta-
tion of thyroid scintigram is always focused on the degree 
of radionuclide uptake, which was mostly described as 
diffuse or focal, homogeneous or heterogeneous, and 
increased or decreased [2]. Albeit, the interpretation of 
thyroid scintigram seems to be a simple repetitive task 
for nuclear medicine physicians, but it is only with a 
moderate interobserver agreement among endocrinolo-
gists [3], there remains an unmet need to assist the reader 
in analyzing thyroid scintigraphy more consistently and 
accurately.

Recently, Artificial intelligence (AI) demonstrated dis-
tinguished advances in big-data retrieval, explicit feature 
extraction, satisfactory consistency, and efficiency in 
terms of medical image analysis [4–6]. It has been proven 
effective in the analysis of single positron emission com-
puted tomography (SPECT) images. For instance, myo-
cardial perfusion imaging and whole-body bone scan 
were successfully assessed and reported by implementing 
deep learning approach [7–9]. A previous study [10] used 
deep convolutional neural networks (DCNN) with opti-
mization for thyroid diagnosis from SPECT images and 
reached almost perfect performance in classifying three 
common thyroid diseases. However, conventional clini-
cal practice considers that diagnosis of thyroid disease is 
not only based on thyroid scintigrams but with available 
biochemical data, clinical history, and physical examina-
tion [11]. There is still not a one-to-one correspondence 
between thyroid scintigrams types and specific thy-
roid disease, since the entirely different thyroid diseases 
would present similar thyroid scintigrams characteris-
tics [2]. Furthermore, the researches mentioned above 
omitted one of the most important indications in thy-
roid scintigraphy, namely the autonomously functioning 
thyroid nodules which present focal increased uptake in 
thyroid scintigram [1, 12]. Thus, we input four common 
thyroid uptake patterns from thyroid scintigrams instead 
of idiographic thyroid disease to train our AI model and 
validated the performance on the internal and external 
datasets in dual centers.

Methods
Collection, inclusion, and exclusion of patients
This study with retrospective information collection was 
approved by the Institutional Ethics Committee of West 
China Hospital in Sichuan University and Panzhihua 
Central Hospital, respectively. We retrospectively col-
lected cases who underwent 99mTc-pertechnetate thyroid 

scintigraphy from January 1, 2016 to December 31, 2018 
at West China Hospital of Sichuan University (Center 1) 
and Panzhihua Central Hospital (Center 2). The patients 
who were confirmed thyrotoxicosis through clinical his-
tory and thyroid function tests (thyroid stimulating hor-
mone, free triiodothyronine, and free thyroxine) were 
included. The exclusion criteria were listed as following: 
(1) Patients who underwent semi/total thyroidectomy; 
(2) failed to extract raw data from picture archiving 
and communication system (PACS); (3) images format 
was not raw data; (4) images were incomplete. The thy-
roid scintigram in two hospitals was obtained following 
the clinical guidelines and manufacturer recommended 
parameters. Briefly, patients were intravenously injected 
with 185  MBq of 99mTcO4−, and then the images were 
captured for 100 × 103 counts in 5  min (center 1) and 
300 × 103 counts in 10  min (center 2) using the gamma 
cameras, which were both equipped with the low-energy, 
high-resolution, parallel-hole collimators (GE Discovery 
NM/CT 670). And the pixel size, matrix size, and field 
of view (FOV) were 2.21 mm, 256 × 256, and 28 cm in 
center 1, which is 2.21  mm, 128 ×  128, and 28  cm in 
center 2, respectively. The energy peak was centered 
at 140  keV with 15–20% windows. All the images were 
exported as DICOM format for further analysis.

Classification criteria
Thyroid scintigrams were defined as four common pat-
terns referring to published criteria [2, 11, 13, 14]. The 
ones that had homogeneous increased uptake over 
than the uptake of salivary with enlarged thyroid were 
defined as ‘Diffusely increased’ (type I); the ones that had 
diminished and absent uptake was defined as ‘diffusely 
decreased’ (type II); the ones had focal nodule uptake 
with or without suppressed uptake in the surrounding 
thyroid tissue was defined as ‘local increased’ (type III), 
and the ones had multiple areas of focal increased and 
suppressed uptake was defined as ‘heterogeneous uptake’ 
(type IV). All characteristic performance of these four 
pattern images were shown in Fig.  1. For this study, all 
thyroid scintigram images from two centers were inde-
pendently and blindly classified by three senior nuclear 
medicine physicians with more than 10  years of work-
ing experience in reading thyroid scintigraphic images. 
Consensus shall be reached by consulting if there is 
disagreement.

Construction of AI model
The images collected from center 1 were defined as the 
internal dataset for AI construction and internal valida-
tion, while the images from center 2 were defined as the 
external dataset for validation only. The architecture of 
the AI model is illustrated in Fig. 2. There are three main 
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steps in the training process: data augmentation, feature 
extraction, and classification. Before data augmenta-
tion, all images were converted to grayscale images with 
a value range of [0,255] according to the range of inten-
sity. Random horizontal flipping with a probability of 0.5, 
random rotation by 0°–90°, and mix-up [15] were applied 
to the original image to increase the diversity of the data 
and improve the robustness of the model in augmenta-
tion. After data augmentation, those images were nor-
malized by divided 255. Then, a feature extraction neural 
network is employed to extract high-level features from 
the input image. The feature extraction neural network 
is consist of various layers including convolutional, batch 
normalization, pooling, and ReLU layers. In this study, 
we explored four kinds of candidate AI models based 
on different standout pre-trained networks, including 
ResNet50 [16], DenseNet169 [17], InceptionV3 [18], and 
InceptionResNetV2 [19]. All these networks have been 
removed the last fully connected layer and employed as 

the feature extraction network. At the final step, a neu-
ral network that contains three fully connected layers is 
constructed to classify the high-level features into four 
classes. In the current study, all models were trained 
using Adam [20] as the optimizer with a weight decay 
rate of 0.0001 and a learning rate of 0.001 for 300 epochs. 
The mini-batch size was fixed 12. To reduce overfitting’s 
side effect, we employed the dropout [21] to the last fully 
connected layer, with a drop probability of 0.8.

Evaluation of model performance
The classification accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value 
(NPV), precision, recall, and F1 score of four candi-
date DCNNs were individually evaluated in the inter-
nal and external validation. True positive (TP), true 
negative (TN), false positive (FP) and false negative 
(FN) can be determined for each category according to 
whether the classification results of DCNNs are correct 

Fig. 1  The characteristic performance of ‘diffusely increased’ (A), ‘diffusely decreased’ (B), ‘local increased’ (C) and ‘heterogeneous uptake’ (D)
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and whether the samples are positive. The mathemati-
cal formulations of the above evaluation metrics were 
defined as follows:

Accurracy =
TP+ TN

TP + FP + TN + FN

Sensitivity(Recall) =
TP

TP + FN

Specificity =
TN

TN + FP

PPV (Precision) =
TP

TP + FP

NPV =
TN

TN + FN

F1score = 2×
Recall × Precision

Recall + Precision

The larger these performance values are, the better the 
performance of a method is. Then, the performance of 
four DCNNs in the internal and external validation was 
evaluated by areas under the curve (AUC) of receiver 
operating characteristic (ROC) as well. The 4 × 4 confu-
sion matrix visualized the classification true labels and 
predicted labels of four DCNNs in identifying four thy-
roid uptake patterns from thyroid scintigrams.

Results
Patient characteristics
We collected 2468 cases of thyroid scintigrams (2396 
females and 72 males; age: 41.24 ± 14.25 years) as a train-
ing cohort and 619 cases (611 females and 8 males; age: 
41.20 ± 14.20  years) as an internal validating cohort 
from West China Hospital of Sichuan University (center 
1). Another 302 cases (214 females and 88 males; age: 
44.61 ± 13.68 years) were obtained from Panzhihua Cen-
tral Hospital (center 2) as an external validating cohort. 
In center 1, ‘diffusely increased’ and ‘diffusely decreased’ 
predominated, whereas ‘diffusely increased’ and ‘hetero-
geneous uptake’ accounted for the majority in center 2. 

Fig. 2  The architecture process of AI model

Table 1  The detailed distribution of thyroid scintigrams at dual centers

Values are described as absolute numbers or percentages in the parantheses

Source Dataset Diffusely increased Diffusely decreased Focal increased Heterogeneous 
uptake

Total

Training Internal 1040 (42.14) 902 (36.55) 97 (3.93) 429 (17.38) 2468

Validating Internal 260 (42.00) 226 (36.51) 25 (4.04) 108 (17.45) 619

External 120 (39.74) 49 (16.22) 13 (4.30) 120 (39.74) 302
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Table 2  The performance of DCNNs that including InceptionV3, InceptionResnetV2, DenseNet169, and ResNet50 in the internal and 
external datasets

Metrics Dataset Diffusely increased (%) Diffusely decreased (%) Focal increased (%) Heterogeneous 
uptake (%)

InceptionV3

Accuracy Internal 94.51 99.68 98.38 92.89

External 89.74 99.34 98.68 87.75

Sensitivity (Recall) Internal 90.77 99.56 100.00 81.48

External 90.00 95.92 76.92 83.33

Specificity Internal 97.21 99.75 98.32 95.30

External 89.56 100.00 99.65 90.66

PPV(Precision) Internal 95.93 99.56 71.43 78.57

External 85.04 100.00 90.91 85.47

NPV Internal 93.57 99.75 100.00 96.06

External 93.14 99.22 98.97 89.19

F1 score Internal 93.28 99.56 83.33 80.00

External 87.45 97.92 83.33 84.39

InceptionResnetV2

Accuracy Internal 94.02 99.35 98.06 92.41

External 90.40 97.02 99.01 87.09

Sensitivity (Recall) Internal 91.15 99.12 88.00 79.63

External 90.83 81.63 84.62 85.00

Specificity Internal 96.10 99.49 98.48 95.11

External 90.11 100.00 99.65 88.46

PPV(Precision) Internal 94.42 99.12 70.97 77.48

External 85.83 100.00 91.67 82.93

NPV Internal 93.75 99.49 99.49 95.67

External 93.71 96.56 99.31 89.94

F1 score Internal 92.76 99.12 78.57 78.54

External 88.26 89.89 88.00 83.95

DenseNet169

Accuracy Internal 94.83 99.03 95.32 91.44

External 91.06 98.68 99.01 91.39

Sensitivity (Recall) Internal 92.69 97.79 100.00 66.67

External 95.00 91.84 100.00 83.33

Specificity Internal 96.38 99.75 95.12 96.67

External 88.46 100.00 98.96 96.70

PPV(Precision) Internal 94.88 99.55 46.30 80.90

External 84.44 100.00 81.25 94.34

NPV Internal 94.79 98.74 100.00 93.21

External 96.41 98.44 100.00 89.80

F1 score Internal 93.77 98.66 63.29 73.10

External 89.41 95.74 89.66 88.50

ResNet50

Accuracy Internal 93.70 99.52 98.55 92.08

External 91.39 99.01 98.68 89.74

Sensitivity (Recall) Internal 93.46 99.56 96.00 71.30

External 95.00 93.88 76.92 83.33

Specificity Internal 93.87 99.49 98.65 96.48

External 89.01 100.00 99.65 93.96

PPV(Precision) Internal 91.70 99.12 75.00 81.05

External 85.07 100.00 90.91 90.09
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Furthermore, the ‘focal increased’ was relatively deficient 
in both centers. The detailed distribution of thyroid scin-
tigrams at dual centers was shown in Table 1.

Performance of the DCNNs
The individual performances of four DCNNs in inter-
nal and external validation were shown in Table  2. The 
InceptionV3 model achieved the highest overall accuracy 
of 92.73% (574/619) in classifying four common patterns 
of thyroid scintigrams in the internal validation, whereas 
the metrics dropped to 87.75% (265/302) in external vali-
dation. After applied ROC, the AUC values of the Incep-
tionV3 in the diagnosing of four thyroid uptake patterns 
reached a considerable performance, which the AUC was 
0.986 for ‘diffusely increased,’ 0.997 for ‘diffusely decreased,’ 
0.998 for ‘focal increased,’ and 0.945 for ‘heterogeneous 
uptake’ in internal validation, respectively. Accordingly, 

the corresponding performances also obtained an ideal 
result of 0.939, 1.000, 0.974, and 0.915 in external valida-
tion, respectively. The confusion matrix demonstrated that 
the recall of the InceptionV3 reached a profitable result, 
which is 90.77% (236/260) for ‘diffusely increased,’ 99.56% 
(225/226) for ‘diffusely decreased,’ 100.00% (25/25) for 
‘focal increased’ in the internal validation. Whereas, the 
recall for ‘heterogeneous uptake’ was relatively moderate, 
which is 81.48% (88/108). The category of ‘heterogeneous 
uptake’ was more likely to be misclassified into ‘diffusely 
increased’. In the external validation, the selected DCNN 
displayed comparable performance in the recognizing of 
‘diffusely increased’, ‘diffusely decreased’ and ‘heterogene-
ous uptake’. But for the category of ‘focal increased, the 
recall dropped significantly to 76.92% (10/13). The results 
of the ROC analysis (Fig.  3) and the confusion matrix 
(Fig. 4) of the other three DCNNs are listed as well.

Table 2  (continued)

Metrics Dataset Diffusely increased (%) Diffusely decreased (%) Focal increased (%) Heterogeneous 
uptake (%)

NPV Internal 95.20 99.74 99.83 94.08

External 96.43 98.83 98.97 89.53

F1 score Internal 92.57 99.34 84.21 75.86

External 89.76 96.84 83.33 86.58

Fig. 3  The performance of four DCNNs by using AUC calculation in classifying four patterns of thyroid scintigrams in the internal and external 
validation
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Discussion
Thyroid scintigraphy is a convenient and intuitive tech-
nology in evaluating the distribution of active thyroid tis-
sue in clinical practice. It provides a clue to distinguish 
the causes of thyrotoxicosis by corresponding with four 
common uptake patterns [11, 22, 23]. However, inevita-
ble variations still exist among different inter-observers 
in interpreting thyroid scintigram [3]. If physicians inter-
pret the same thyroid scintigram differently, different 
treatments might be recommended in further clinical 
management. Considering the distinguished advances 
of DCNN in explicit feature extraction and satisfactory 
consistency in medical data analysis, we tried to con-
struct an AI model to help physicians interpret thyroid 
scintigrams.

Overall, this AI model indicated a satisfactory classifi-
cation performance. The accuracy of distinguishing four 
common thyroid uptake patterns from thyroid scinti-
grams in the internal validation was 92.73% and 87.75% 
in the external validation, respectively. Slightly declined 
accuracy was observed when applied the DCNN to the 
new dataset of “high-signal abundant images” with 
300 × 103 counts. Although there is an acquisition guide-
line for thyroid scintigraphy [1], imperceptible diver-
gences have still existed in images obtained by different 
institutes, equipment, or under different system param-
eters, and afterward, these variations may accumulate 
and affect the final interpretation of thyroid scintigrams. 
The relationship between acquisition variations in the 

training cohort is worth considering. Furthermore, the 
model had high advantages in the recognition of ‘diffusely 
increased,’ and ‘diffusely decreased,’ in dual centers. But 
the performance for the ‘heterogeneous uptake’ pattern 
was relatively low in internal and external validation, and 
we found that this thyroid uptake pattern was preferred 
to be misclassified into ‘diffusely increased’. We presumed 
it is due to the suppressed uptake feature could not be 
extracted well as increased uptake by the DCNN.

The sensitivity of our model is slightly lower com-
pared with Ma et  al. [10], which the sensitivity almost 
reached 100% in classifying GD (97.5%), Hashimoto 
disease (98.5%), subacute disease (100%), and normal 
class (100%). This discrepancy could due to the diverse 
datasets, it was better to include normal thyroid images 
to deep learning for distinguishing abnormal thyroid 
disease. However, we input and output four common 
thyroid uptake patterns according to the physician’s 
interpretation, rather than input specific thyroid disease. 
As widely regarded in clinical practice, some thyroid dis-
eases could share a similar uptake pattern in thyroid scin-
tigraphy, such as endemic goiter Hashimoto’s thyroiditis 
and Graves’ disease [2, 24, 25]. Thus, directly output the 
specific thyroid disease prefers to increase the risk of 
misdiagnosis. On the contrary, automatically recognize 
and distinguish thyroid uptake patterns in thyroid scin-
tigraphy potentially facilitates the consistency and effi-
ciency of interpretation of thyroid scintigrams, especially 
for practicing physicians.

Fig. 4  The confusion matrix of four DCNNs in classifying four patterns of thyroid scintigrams in the internal and external validation. Type I: diffusely 
increased; Type II: diffusely decreased; Type III: local increased; Type IV: heterogeneous uptake
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Nevertheless, we also noticed some unsatisfied points 
in this study. Firstly, the model’s performance was 
found not as good as in the external validation, which 
encourages the necessity to enroll a larger dataset from 
multi-institutes to facilitate a new model with better 
serviceability in available generalization. Then, as we 
discussed above, thyroid scintigram is not sufficient to 
accomplish the diagnosis of thyroid disease, a new robust 
model that could analyze multi-type data is under devel-
opment. We believe that AI-assisted diagnosis would be 
more precise for specific thyroid diseases by integrating 
clinical history, biochemical information, and thyroid 
scintigrams.

Conclusion
We have successfully constructed an AI model for clas-
sifying four common patterns of thyroid scintigrams and 
achieved considerable accuracy in dual centers. With 
further assessment and validation, this model might be 
promising in the clinical interpretation of thyroid scintig-
raphy in thyrotoxicosis.
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