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Abstract 

Background:  Most existing algorithms have been focused on the segmentation from several public Liver CT 
datasets scanned regularly (no pneumoperitoneum and horizontal supine position). This study primarily segmented 
datasets with unconventional liver shapes and intensities deduced by contrast phases, irregular scanning conditions, 
different scanning objects of pigs and patients with large pathological tumors, which formed the multiple heteroge-
neity of datasets used in this study.

Methods:  The multiple heterogeneous datasets used in this paper includes: (1) One public contrast-enhanced CT 
dataset and one public non-contrast CT dataset; (2) A contrast-enhanced dataset that has abnormal liver shape with 
very long left liver lobes and large-sized liver tumors with abnormal presets deduced by microvascular invasion; (3) 
One artificial pneumoperitoneum dataset under the pneumoperitoneum and three scanning profiles (horizontal/
left/right recumbent position); (4) Two porcine datasets of Bama type and domestic type that contains pneumoperi-
toneum cases but with large anatomy discrepancy with humans. The study aimed to investigate the segmentation 
performances of 3D U-Net in: (1) generalization ability between multiple heterogeneous datasets by cross-testing 
experiments; (2) the compatibility when hybrid training all datasets in different sampling and encoder layer sharing 
schema. We further investigated the compatibility of encoder level by setting separate level for each dataset (i.e., 
dataset-wise convolutions) while sharing the decoder.

Results:  Model trained on different datasets has different segmentation performance. The prediction accuracy 
between LiTS dataset and Zhujiang dataset was about 0.955 and 0.958 which shows their good generalization ability 
due to that they were all contrast-enhanced clinical patient datasets scanned regularly. For the datasets scanned 
under pneumoperitoneum, their corresponding datasets scanned without pneumoperitoneum showed good gen-
eralization ability. Dataset-wise convolution module in high-level can improve the dataset unbalance problem. The 
experimental results will facilitate researchers making solutions when segmenting those special datasets.
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Background
Medical image segmentation is very important as it is 
the prerequisite in feature extraction, surgery planning, 
and image guided interventions. Liver is among the big-
gest soft organs and CT is the primary modality in clini-
cal liver imaging. For three decades, many methods have 
been proposed to achieve automatic, robust, and accurate 
liver segmentation to alleviate the manual slice-to-slice 
delineation work [1, 2]. In contrast to traditional methods 
such as atlas-based methods [3, 4], graphical models [5, 
6], and deformable models with shallow machine learn-
ing methods [7, 8], which achieved limited accuracy with 
a lot of user-specified parameters and poor generaliza-
tion performances, the revolutionary deep learning based 
segmentation was fully automatic and have shown great 
success in medical image segmentation [9–13]. Recently 
liver segmentation methods based on the popular U-net 
model [11–13] was proposed and can reach the highest 
Dice similarity coefficient (DSC) value of 0.985. It seems 
that liver segmentation problem has been addressed so 
far.

However, most methods improved the segmenta-
tion from those public datasets such as 3Dircadb1 [14], 
Sliver07 [15] and LiTS [16]. Those datasets were all 
scanned regularly (no pneumoperitoneum and horizon-
tal supine position) from patients. Except Sliver07, both 
3Dircadb1 and LiTS have tumors. LiTS was the largest 
public liver tumor segmentation dataset with diversity in 
size, numbers, and medical centers. The liver tumors in 
LiTS have lower intensity than liver and maximum size 
of 349 cm3 (25% of the whole liver). Instance with small-
size tumors is more difficult for liver tumor segmentation 
[11] but easier for binary segmentation of the whole liver 
because large various lesion presets [17] may make the 
liver shape and intensity out of distribution [18, 19].

The datasets in this study were quite different from 
existing public datasets in both liver shape and intensity. 
For instances, the Zhujiang dataset scanned from micro-
vascular invasion [20–22] patients exhibit high-intensity 
large tumors and abnormal liver shape with very long 
left liver lobes. Our previous study analyzed the 3Dir-
cadb1 dataset that contains cases like long liver lobe and 
tumor growing outside of the liver [18]. Its segmentation 
accuracy was worse than Sliver07 [18] and LiTS even 
for the SOTA method modified-UNet [13] due to small 
samples (twenty) and abnormal cases. The APP (artificial 

pneumoperitoneum) datasets has large deformation and 
porcine datasets have anatomy discrepancy with humans. 
However, segmentation of these datasets was required 
in clinical [23] and animal experiments [24] like pneu-
moperitoneum deduced anatomical changes [23] and its 
deformation registration [25] or modeling [26–29] but 
gained few attentions. Our previous study [23] show that 
pneumoperitoneum CT favored the augmentation real-
ity in laparoscopic liver resection. Unfortunately, we only 
traced few literatures related to the segmentation of ani-
mal CT such as mouse multi-organ segmentation [30].

Researchers have few literatures to refer facing chal-
lenges of lacking training samples for these segmenta-
tion tasks in a short time. Developing segmentation 
algorithms consumed time as radiologists are often busy. 
A fully automatic and robust tool is needed for rapid 
training and prediction. U-Net [31] has been estab-
lished a universal and robust medical image segmenta-
tion method. Schoppe et  al. [30] developed an AIMOS 
processing pipeline based on U-Net for multi-organ 
segmentation in whole-body mouse CT scans and con-
cluded that deep learning method can address the issue 
of human bias of expert annotations. Excitingly, a simi-
lar but fully automatic pipeline named nnU-Net (no 
new U-Net) proposed by Isensee et al. [12] has achieved 
satisfied results on 53 segmentation tasks. They made it 
a public tool accessible to a broad audience by requir-
ing neither expert knowledge nor computing resources 
beyond standard network training [31]. Zhou et  al. [32] 
proved that the 3D U-Net performed better than 2D in 
liver segmentation. The 2D U-Net lose 3D information 
and predicted a discontinuous area requiring more man-
ual correction. Hence, we choose 3D U-Net version in 
nnU-Net and the network architecture novelty is not the 
focus in this paper. The most important problem is lack-
ing training samples.

The first promising idea was that whether we can 
exploit the related public labeled dataset for the new 
task? However, in contrast to humans, deep learn-
ing model may have poor generalization ability facing 
domain-shifted task [33, 34]. In terms of our datasets, 
the homogeneity was deduced by contrast phases, 
pathological type, population and shape deforma-
tion by irregular scanning profile with pneumop-
eritoneum. What’s the feasibility extent of using the 
dataset scanned regularly to predict samples scanned 

Conclusions:  (1) Regularly scanned datasets is well generalized to irregularly ones. (2) The hybrid training is ben-
eficial but the dataset imbalance problem always exits due to the multi-domain homogeneity. The higher levels 
encoded more domain specific information than lower levels and thus were less compatible in terms of our datasets.
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irregularly, or using the patients to predict animal pigs? 
Hence, the first question is what’s the generalization 
relationships between the special datasets used in our 
study? The unsupervised method made us step first to 
annotate a new dataset, avoiding completely manual 
delineation especially for those large organs. Thus, 
cross-dataset testing results will facilitate researchers 
to choose most related datasets for unsupervised seg-
mentation or for data augmentation.

Secondly, whether a hybrid training of all datasets 
(multi-domain learning) can generate a more generalized 
model if direct prediction and transfer learning failed for 
some datasets like porcine dataset? For humans, diverse 
datasets in terms of one task contribute to learning the 
essence of the object. Big data is particularly important 
for the data-driven deep learning model. Mårtensson 
et  al. [33] also suggests that more heterogeneous MRI 
training data makes the model generalize better. How-
ever, if those datasets have strong homogeneity, the com-
patibility of U-Net is not clear [35, 36]. It is hard to avoid 
the dataset unbalance problem because our datasets have 
different distributions and sample sizes. Our previous 
study [37] found that the hybrid training of non-contrast 
CT data with the same number of contrast CT data can 
improve segmentation performance of non-contrast 
dataset. But the segmentation accuracy decreased when 
increasing the proportion of contrast data. The sample 
size problem can be alleviated by sampling strategy while 
the heterogeneity problem is the source reason. In terms 
of multi-domain segmentation, researchers proposed a 
variety of methods to improve the representative ability 
of U-Net on MRI datasets. Leonardo et al. [38] incorpo-
rated a SE (Squeeze and Excitation) block in all levels of 
the encoder. Liu et al. [39] used separate decoder for each 
dataset. All of those works considered that the encoder 
contain more domain-specific information. However, 
which level encodes more domain specific information 
is not investigated. The results contribute to designing 
networks that can preserve the generative features while 
separately learn or fine-tune the discriminative features 
in multi domains [39, 41] and domain adaption learning 
[40].

Existing studies investigated the characteristics of the 
learning features in each encoder level by visualizing 
features [18] from encoder, or fine-tuning from differ-
ent levels [42, 43]. Different from previous study, we pro-
posed a dataset-wise convolution module on each level 
of the encoder while fixing the decoder to estimate the 
encoder levels’ compatibility in multi-datasets learning. 
Moreover, the dataset-wise convolution module can alle-
viate the dataset-imbalance problem by replacing fewer 
compatible levels that encode more domain-specific 
information.

In summary, we will investigate the segmentation per-
formances of 3D U-Net on multiple diverse liver CT 
datasets. The results will provide some references when 
we making labels from scratch. The contributions of this 
paper are:

(1)	 The segmentation performances of supervised 
U-Net segmentation model on multiple diverse 
liver CT datasets were investigated in two aspects: 
(1): inter-dataset generalization performances by 
cross-testing experiments; (2) the compatibility by 
hybrid training all datasets in different sampling 
and encoder layer sharing schema. We used a novel 
dataset-wise convolution module (DCM) to explore 
the compatibility of each level in the encoder. The 
dataset imbalance problem can be alleviated by 
replacing those fewer compatible levels with DCM.

(2)	 From the dataset view, this is the first publication 
of using 3D U-Net model for porcine liver CT seg-
mentation, and also the first related to the segmen-
tation of liver CT segmentation under pneumoperi-
toneum pressure with different scanning protocols.

The remaining structure of the paper was as follows. 
Method section describes the details about method and 
datasets. The experimental settings and results grouped 
by the two aspects of segmentation performances were 
given in Experiments section and Results section, fol-
lowed by discussions and the conclusions.

Methods
Network architecture
The 3D network used in this study was a conventional 3D 
U-Net shown in Fig. 1. The initial feature map and batch 
size was set as 32 and 2, respectively. The number of fea-
ture maps doubled but cannot exceed 320 and the size 
down-sampled by half after each stride convolution. We 
add the combination of batch normalization, leakyReLU, 
and dropout after each convolution with kernel 3. The 
up-sample method adopted transposed convolution 
with both kernel and stride size of 2. Finally, convolution 
with 1 kernel size was used to output the target num-
ber of feature maps. Convolution layers in the encoder 
were leveled by the size of their output features maps 
and then numbered by the down-sampling times. For 
an instance, the first two convolutions with output size 
of 128 × 128 × 128 and down-sampled times of zero were 
named Level 0.

To investigate the generalization performances of the 
level features in the encoder, we proposed dataset-wise 
convolution module that sets separate level convolu-
tions for the eleven datasets by fixing the decoder. The 
GELN_DCM 3D U-Net using dataset-wise convolution 
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module (DCM) at all encoder levels with their level num-
ber greater than or equal to N (GELN) in the 3D U-Net. 
For an instance the GEL4_DCM network replaces the 
original convolutions with dataset-wise convolutions at 
Level 4 and Level 5. We do not use dataset-wise convo-
lution at only level N for GELN_DCM 3D U-Net based 
on the phenomena that the higher levels were less com-
patible than lower levels in terms of our datasets. For 
GEL4_DCM 3D U-Net, if we only use DCM in level 4 but 
shared in level 5, the effeteness of DCM may not be obvi-
ous compared to fully shared schema as the less compat-
ible level 5 may still learn the distribution of some dataset 
and neglect the unbalanced dataset. Then the generaliza-
tion performance of the n’th level was estimated by com-
paring GELN_DCM network with GELM_DCM (M is 
greater than N).

Learning parameters and training details
Our training methods were based on nnU-Net. Data 
augmentation was implemented using batch genera-
tors with transform types of scale, flip, rotation, elastic 
deformation, and gamma correction. The loss was the 
sum of Dice and cross entropy. The optimizer was Adam 
with learning rate initially set as 3 × 10−4 and updated 
using ReduceLROnPlateau scheduler with patience of 30 
epochs. The nnU-Net adopted the automatically training 
stop conditions that the training losses did not improve 
by at least 5 × 10−3 within the last 60 epochs and the 
learning rate was smaller than 10−6. Finally, the number 
of training epochs was less than 400 with 250 iterations 

each. The training consumption of GPU memory was 
about 12 GB, and the time required for the whole train-
ing was about 33 h.

Data preparation

(a)	 Dataset: This study used six datasets listed as fol-
lows:

(1)	 LiTS: This public dataset consisted of 130 abdo-
men contrast enhanced CT volumes scanned 
from multiple clinical sites in five developed 
countries [44]. The dataset was aimed for liver 
and liver tumor segmentation in the challenge 
of ISBI2017-LiTS and MICCAI2018- medical 
segmentation decathlon. In our study we will 
focus on the whole liver containing tumor seg-
mentation.

(2)	 Anatomy3: This public dataset came from the 
multi-organ segmentation challenge hold with 
ISBI 2015 [45]. It contained 20 non-contrast 
enhanced abdomen CT scans from real patient.

(3)	 Zhujiang: The dataset mainly comes from one 
of our research group study about radiomic 
feature-based predicting model for microvas-
cular invasion in patients with HCC [20]. This 
dataset included 164 contrast enhanced CT 
scans from clinical treatment of real patients 
diagnosed with hepatic cysts, cancer, hepato-
cirrhosis provided by Zhujiang Hospital affili-

Fig. 1  The pipeline of the method and the segmentation networks used in this study. The proposed dataset-wise convolution module (DCM) sets 
separate level convolutions for the eleven datasets. Convolution layers in the encoder was leveled by the size of their output features maps and 
numbered by down-sampling time. GELN_DCM 3D U-Net set DCM at those levels greater or equal to Level (GEL) N (N ranges from zero to five) in 
the encoder of 3D U-Net
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Fig. 2  Multiple liver CT datasets in different scanning conditions—A public contrast-enhanced CT liver tumor dataset from five developed 
countries in LiTS Challenge, B public non-contrast CT normal liver segmentation dataset in Anatomy3 Challenge, C clinical patients with long left 
liver lobes (case #1 and #3) and large and intensity-varied (low or high) liver tumor changes from Zhujiang Hospital in China, D non-contrast CT 
dataset from real patients scanned regularly (APP_0) and irregularly (APP_1-3) with different scanning profiles under artificial pneumoperitoneum 
(APP) pressure, E non-contrast Bama Pig (PB) CT dataset and F contrast-enhanced domestic pig (PD) CT with (PB1 & PD1) or without (PB0 & PD0) 
pneumoperitoneum pressure
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ated with Southern Medical University. The 
Zhujiang dataset has abnormal liver shape with 
very long left liver lobes (Fig.  2. case #3 and 
#1). Such samples occupied 16.5%. It also has 
abnormal liver tumors due to enhanced arte-
rial phase ((Fig. 2. case #1 has tumor intensity 
higher than liver), microvascular invasion (case 
#5 and case #6), very large tumors and tumor 
growing outside of liver (Fig. 2. case #2).

(4)	 APP: (artificial pneumoperitoneum): This data-
set came from 58 patients under the abdomi-
nal wall adhesion check through scanning CT 
images with pneumoperitoneum pressure and 
different profiles. The datasets were provided 
by the Third Medical Center, General Hospital 
of PLA. We named those datasets as APP (0–3) 
for each scanning profile. APP_0 means the 
regular supine profile without pneumoperito-
neum. APP (1–3) were for the other three pro-
files: supine/left and right recumbent position 
under pneumoperitoneum. Most patients have 
all the scan positions.

(5)	 Porcine-B and Porcine-D: Both datasets came 
from our previous animal study about porcine 
anatomy change on pneumoperitoneum pres-
sure conducted in the First Affiliated Hospi-
tal of Harbin Medical University in the years 
2017 (Porcine-B) and 2018 (Porcine-D) respec-
tively [23], which were approved by the Insti-
tutional Animal Care and Use Committee of 
Harbin Medical University. All the porcines 
came from the Heilongjiang Qing’an Jubao Pig 
Breeding Farm (Qing’an, Heilongjiang, China). 
Porcine-A contains 10 abdominal non con-
trast enhanced CT scanned from Bama pigs 
weighted 17–35 kg before and after 13 mmHg 
pneumoperitoneum. Porcine-B contains 8 con-
trast enhanced male domestic pigs weighted 
25–49  kg and scanned also with and without 
13  mmHg pneumoperitoneum. The porcines 
were sacrificed by administration of potassium 
chloride after experiments.

(b)	 Ground truth: For Zhujiang dataset the liver was 
segmented by homemade segmentation software 
[18] and manually corrected [20, 46] by experts. 
For APP dataset, we first used automatic segmenta-
tion based on the model trained with public dataset 
and then manually corrected by two experienced 
experts in abdomen disease treatment. Then a new 
model was trained for second automatic segmenta-
tion. Finally, all samples were manually corrected by 
experts. The porcine datasets were very difficult to 

annotate due to the poor data quality. In order to 
ensure that the surface of the sketch is smooth and 
accurate, it is necessary to repeatedly sketch out the 
uncertain areas and confirmed by generating the 
3D surface model. It takes five hours each to accu-
rately annotate a porcine label. The process of mak-
ing liver segmentation labels inspired us to do the 
generalization ability study of those diverse liver CT 
datasets.

(c)	 Image Pre-processing: The image pre-processing 
included cropping, down-sampling, and inten-
sity normalization. We borrowed the spacing and 
intensity normalization method from the nnU-Net 
[12]. First all images were cropped according to the 
bottom slice and upper slice of liver in z-axis, we 
relaxed the crop range by 60 mm in each side. Let 
(Lx, Ly, Lz) denoted the size of original image,  L0z 
and L1z represented the first and the final slice num-
ber of liver, respectively. Then images were cropped 
with the range of

to include enough context. Here Sz was the spac-
ing of image in z-axis. Second, all cropped images 
were first resampled as 128 × 128 × 128, then the 
media spacing was selected as the target spac-
ing for resampling the original cropped images. 
By doing this, most images were resampled close 
to the designed input size of the 3D U-Net. In the 
final step, all down-sampled images were normal-
ized by a z-score normalization based on the mean 
and standard deviation of target organ intensities in 
each dataset. Finally, preprocessed images were fed 
to the 3D U-Net model after random cropping and 
data augmentation.

Experiments
To investigate the generalization relationship intra and 
inter the eleven datasets, we set a series of experiments 
with multiple training configurations listed as follows:

(1)	 Inter-datasets cross-testing: In this experiment, for 
each dataset we train a model with its all samples 
and tested on all the other datasets.

(2)	 Baseline: We compared two fully supervised 
method in two-fold and five-fold cross-testing 
which were named Fold_2 and Fold_5 respectively. 
The dividing of two-fold and five-fold was preceded 
by first sorting filenames. The two-fold cross-test-
ing was used for all experiments. Thus Fold_2 was 
also set as a baseline.

(

(0, Lx),
(

0, Ly
)

,

(

max(0, L0z − 60/Sz), min(Lz, L
1
z + 0/Sz)

))



Page 7 of 13He et al. BMC Medical Imaging          (2021) 21:178 	

(3)	 Pre-train with LiTS: We also utilize pre-train model 
from LiTS dataset to investigate whether those vari-
ous datasets can benefit from pre-training by doing 
paired t-test with the Fold_2 result. The learning 
rate of the pre-training is set very small as 1e-6 to 
constrain the over-tuning effect.

(4)	 Hybrid training of all datasets: In this experiment, 
the two-fold cross-testing was performed like this: 
at first each dataset was divided by two folds, and 
then one of their corresponding folds was mixed 
for training and the other fold was for testing. We 
adopt three sampling strategies at each iteration:

(a) Dataset-order sampling (DOS): random select a 
batch of samples from one dataset, and the selection was 
conducted in the order of the dataset listed in Table 1 for 
dataset balance.

(b) Random sampling from one dataset (RSD): ran-
dom select one sample from all mixture training samples 

and then choose a batch of samples from the dataset of 
the selected sample.

(c) Random sampling (RS): random select a batch of 
samples from all mixture training samples. We compared 
GELN_DCM where N set from zero to five in DOS strat-
egy to investigate the level generalization ability.

Results
Cross‑datasets testing results
Table 2 gives the results of cross-testing where S and T 
represented training and testing dataset respectively. In 
Table  2, the prediction accuracy between LiTS dataset 
and Zhujiang dataset was about 0.955 and 0.958 which 
shows their good generalization ability due to that they 
were all contrast-enhanced clinical patient datasets 
scanned regularly. Although LiTS and Zhujiang have 
same magnitude of training samples, the generalization 
ability of LiTS is much higher than Zhujiang when pre-
dicting other datasets. Especially when predicting Anato-
myCT dataset, LiTS and Zhujiang achieved accuracy of 
0.907 and 0.633, respectively. This is because the Zhuji-
ang dataset contains very large tumors with high inten-
sity, resulting much over-segmentation in supine and 
muscle area. The LiTS samples were consistent in the 
presenting of tumors with low intensity and small tumors 
mostly.

For the datasets scanned under pneumoperitoneum 
such as APP-1, 2, 3, PB1, and PD1, their corresponding 
datasets APP_0, PB0, and PD0 scanned without pneu-
moperitoneum showed good generalization ability. To 
further testify this, we compared the datasets predicted 
by corresponding regular scanned datasets with two-
fold testing results seen as Fig. 3. The average Dice value 
was higher when predicted by regularly scanned datasets 
than fully supervised results for the datasets APP_1 and 

Table 1  Details of the datasets used in this study

DataSet Modality Scan profile No PP

LiTS CTce Regular supine 130 N

Anatomy3 CT Regular supine 20 N

Zhujiang CTce Regular supine 164 N

APP_ 0 CT Regular supine 34 N

1 CT Regular supine 56 Y

2 CT Left recumbent 49 Y

3 CT Right recumbent 51 Y

Porcine-Bama B0 CT Regular supine 10 N

B1 CT Regular supine 10 Y

Porcine-Domestic D0 CTce Regular supine 8 N

D1 CTce Regular supine 8 Y

Table 2  Cross-testing results between multiple datasets where S denotes source dataset and T denotes testing dataset

The bold denotes the best segmentation result of T from S

S T

LiTS Anatomy CT Zhujiang App-0 App-1 App-2 App-3 PB0 PB1 PD0 PD1

LiTS – 0.907 0.958 0.943 0.937 0.909 0.889 0.795 0.732 0.860 0.832

AnatomyCT 0.661 – 0.630 0.858 0.857 0.882 0.861 0.797 0.783 0.815 0.781

Zhujiang 0.955 0.633 – 0.925 0.908 0.892 0.805 0.650 0.555 0.827 0.728

App_0 0.926 0.881 0.905 – 0.954 0.935 0.928 0.824 0.767 0.903 0.880

App_1 0.793 0.866 0.740 0.954 – 0.943 0.949 0.768 0.835 0.866 0.855

App_2 0.795 0.821 0.764 0.938 0.950 – 0.937 0.820 0.813 0.892 0.881

App_3 0.662 0.880 0.591 0.844 0.957 0.922 – 0.754 0.828 0.831 0.843

PB0 0.789 0.788 0.776 0.847 0.842 0.878 0.847 – 0.830 0.886 0.849

PB1 0.677 0.714 0.644 0.733 0.853 0.830 0.854 0.879 – 0.872 0.888

PD0 0.830 0.711 0.816 0.884 0.873 0.883 0.851 0.722 0.636 – 0.932
PD1 0.581 0.787 0.566 0.730 0.848 0.853 0.837 0.457 0.454 0.921 –
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PD1. In addition, the LiTS can predict APP_1 with DSC 
of 0.937. But for the other scan profile APP_2 & 3, the 
prediction accuracy was only 0.909 and 0.889. In inverse 
direction APP_1–3 predict LiTS with only 0.793, 0.795, 
and 0.662, much lower than APP_0 of 0.925 even with 
more training samples. The APP_3 dataset was most het-
erogeneous as the liver largely deformed to the left side 
(liver was positioned on the right side of the body) under 
left recumbent position.

The DSC cross testing between real patient datasets 
and porcine datasets was generally around 0.8, which 
means weak generalization ability between real patient 
and porcine liver segmentation as they anatomically dif-
fer too much.

It is obvious that the larger appearance gap between 
the datasets, the worse generalization ability. The factor 
includes scan object type, pathological type, scan regu-
larly or not and contrast-phases. For each dataset, the 
best perdition result (bolded) was yielded by its closest 
dataset. LiTS and Zhujiang were best prediction dataset 
to each other as they have same factors in scan object, 
contrast enhanced and regular scan. For APP dataset and 
porcine dataset, the sub-datasets were best-prediction 
dataset as they contain the same patients or pigs.

Dataset‑wise convolution module in high‑level can 
improve the dataset unbalance problem
Figure  4 compared different sampling strategies when 
hybrid training all those datasets in two-fold manner. The 
unbalance problem always exists whatever sample strat-
egy used, suggesting some degree of incompatibility of 
those diverse datasets. Figure 4 showed that using DOS 
sample schema, all datasets except LiTS and Zhujiang 
benefit from the hybrid training which acquired higher 
DSC than the two-fold training baseline (denoted as hor-
izontal blue line), especially for those datasets have few 
samples. With the increasing randomness from DOS to 
RSD and further to the complete random sampling of RS, 
the Dice value decreased for porcine datasets with few 
training labels while increased for human datasets.

Fig. 3  Bar chart of comparison results measured with DSC for 
datasets scanned under pneumoperitoneum which are predicted 
by their corresponding dataset scanned regularly (without 
pneumoperitoneum) and two-fold model respectively. Dataset 
scanned without pneumoperitoneum showed good generalization 
ability

Fig. 4  Bar charts of comparison results measured with DSC for eleven datasets grouped by different sampling strategies when training all datasets 
together by two-fold (the non-hybrid training schema fold 2 and fold 5 were used as baseline). The dataset-balance extent of sample strategy 
decreased from DOS > RSD > RS. Most datasets benefit from the hybrid training except the unbalanced dataset. LiTS and Porcine dataset was 
unbalanced dataset in DOS and RS strategy respectively. Zhujiang dataset cannot benefit from hybrid training in any sample strategy
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Figure 5 further investigated the problem from viewer 
of compatibility of different leveled features in the 
encoder. Overall, the low-level features have better com-
patibility than high-level features. The compatibility for 
the fifth level was uniformly worse for all datasets. Com-
pared with fully-share schema, GEL5_DCM network 
improved the segmentation performance for both the 
unbalanced dataset (LiTS) and the inclined datasets (APP 
& porcine) while not decreasing others. The close result 
of GEL4_DCM and GEL5_DCM means the compatibil-
ity of level 4 is not obviously good. Conversely, the most 
general and obvious decrease of GEL0_DCM compared 
to the GEL1_DCM schema means the Level 0 should 
be shared and thus was most compatible. The compat-
ibility for other levels differs in dataset. For dataset LiTS 
& AnatomyCT & APP (0, 1, 3) & PB1 and PD1, an obvi-
ous decreasing start from Level 2 which means the Level 
(0–2) should be shared and thus were more compatible. 
For dataset PB0 & PB1 & PD0, it started from Level 3. 
The decreasing started from Level_0 and Level_1 respec-
tively for dataset Zhujiang and APP_2. Thus, the sharing 
of lower level (0–3) convolutions is beneficial and thus 
was more generalized. Overall, the dataset unbalance 
problem can be addressed by setting the proposed data-
set-wise convolution module simply only in Level 5.

Table 3 gives ablation results in the Hausdorff distance 
results by our proposed DCM hybrid training method 
with dataset order sampling strategy. Compared with 
non-hybrid-training 3D U-Net, the hybrid training using 
DOS (3D U-Net + DOS) cannot solve data unbalance 
problem. Datasets like LiTS, Zhujiang, PD1 produced 
worse results when using hybrid training. But by adding 
DCM in the fifth level of the encoder, our method pro-
duced smaller average Hausdorff distance with much 

smaller standard division then non-hybrid training for all 
datasets.

Figure  6 further gives the visualization segmenta-
tion results of methods used in this paper by some hard 
samples for each task. Those samples have special liver 
shape with unclear boundary with nearby tissues such as 
spleen, which deduced less or over segmentation prob-
lem. It is obvious that the segmentation quality can be 
improved by using the hybrid training which means more 
plentiful training samples.

Discussions
Discussions about the pre‑training from LiTS
When meeting the segmentation task of those datasets 
lacking any supervised labels, the first choice is exploiting 
related public dataset of the target organ segmentation. 
For the diverse liver CT datasets in our study, the most 
related is the largest and public liver CT dataset LiTS. We 
do experiments by pre-training from LiTS datasets and 
the results show that LiTS shows good generalization 
ability to human datasets but not porcine datasets.

In Fig. 7, we found that the impact of pre-trained model 
depends on its generalization performances relationship 
with the target dataset if the target task has enough train-
ing labels (i.e., 50%). The same trends can also be found 
in datasets like APP_2, APP_3 where the LiTS dataset 
has bad generalization ability in Table 2. The pre-trained 
model is effective for those datasets like Anatomy3, 
APP_0, and APP_1. The improvement for Anatomy3 was 
obvious in terms of average Dice value but insignificant 
in paired t-test. Because only one abnormal case in Anat-
omy3 contains a spleen larger than liver was easily taken 
as liver. By using the pre-trained model, such case can be 
segmented successfully. The APP_0 and APP_1 can be 

Fig. 5  Bar charts of comparison results measured with DSC for eleven datasets tested by hybrid-training models with different encoder layer 
sharing schema. FullyShare was another name of the DOS result in Fig. 4. GELN_DCM denotes segmentation from GELN_DCM 3D U-Net in Fig. 2. 
The blue triangle denotes an obvious accuracy-decreased stagnation level, which suggested that the stagnation level and the lower levels should 
be shared and thus were more compatible. The GEL5-DCM can improve the unbalanced datasets’ accuracy while not reduce others’, which 
suggested that the final level of the encoder was the least compatible
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well predicted by the LiTS dataset and thus benefit from 
the pre-trained model. Tajbakhsh et  al. [15] also found 
that using pre-trained model has no improvement when 
using all training samples. Besides, they have shown that 
the pre-trained model was very useful with small number 

of training samples. Our experiments also yield same 
conclusions. Recent study about the self-supervised pre-
train model [16] shows better performances than fully-
supervised pre-train model. This is the direction of our 
future study.

Fig. 6  Visualization segmentation results of three comparison methods for hard examples by task. The blue, red and green line respectively show 
the segmentation results by reference segmentation, the simple 3D U-Net in two-fold non-hybrid training schema and the 3D U-Net in hybrid 
training with DOS sampling strategy and GEL_DCM layer sharing schema

Fig. 7  Box charts of comparison results measured with DSC for eleven datasets segmented by five-folds (white), two-fold (grey) and two-fold using 
LiTS Pre-trained model (red) respectively. For most datasets, there shows no great significance between the five-fold and two-fold results
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Discussions about the compatibility of encoder levels
Related works such as Zeiler et al. [41] explored it by visualiz-
ing output feature maps of each level. They found that the first 
and second level convolutions learn very generative features like 
edges and colors. The third level learned more complex genera-
tive features such as textures. However, the fourth level learned 
discriminative features and the fifth level learned complete and 
most discriminative features. Shirokik et al. [43] measured the 
level generalization ability of a 2D U-Net segmentation model 
based on multiple MRI images from six domains. They com-
pared three different models by fine-tuning the first, last and 
all levels. They concluded that first layers were more prone to 
domain shift than deeper levels. This is because those datasets 
differ in appearance such as intensities and were more genera-
tive in organ distributions. Then the low-level features contain 
more domain specific information. The multiple liver CT data-
sets in this study share more common low-level features such 
as texture and intensity features but differ in liver organ distri-
butions due to different scanning profiles or the pneumop-
eritoneum pressure deduced large deformation and varieties of 
objects like patients and pigs from different populations. Then 
the high-level features encode the dissimilarities of those data-
sets. The Zhujiang dataset always achieved lower accuracy than 
fully supervised even with a separate encoder (GEL0_DCM). 
The compatibility may relate to the decoder.

One limitation of the study was the samples for each por-
cine dataset was too small due to the high cost in both eco-
nomic and time. Besides, the image artifacts of the porcine 
datasets deduced by the leakage of artificial planned tumor 
show lower DSC value than real-patient datasets. The two 
factors may lead un-stable results for the porcine datasets 
as it may deduced completely different results when choos-
ing another group of training samples. Another limitation 
of the study is that it did not relate to the few-shot learning 
as the few-shot learning was more useful for researchers 
when need to segment those special datasets from scratch, 
and this is the direction of our future study.

Conclusion
In this paper, we used eleven liver CT datasets including 
both public dataset and dataset from previous clinical and 
animal experiment. Those datasets except the public data-
set was completely new and thus have not been studied 
yet. We show their inter-dataset generalization ability rela-
tionships between porcine and patients, between images 
scanned with and without pneumoperitoneum pressure 
through cross-testing experiment. The results show that 
the Zhujiang were bad generalized to other datasets com-
pared with public LiTS. The generalization between por-
cine and human was bad. The regularly-scanned dataset 
can well-generalized to irregularly-scanned dataset. Finally, 
we proposed a dataset-wise convolution module to prove 
that high-level encode more domain-specific information. 

The dataset unbalanced problem in hybrid training all data-
sets can be solved by setting DCM in the final level of the 
encoder. Moreover, the proposed DCM can be used in any 
level that encode the dissimilarities of multiple datasets.
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