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Abstract 

Background:  Segmentation of important structures in temporal bone CT is the basis of image-guided otologic 
surgery. Manual segmentation of temporal bone CT is time- consuming and laborious. We assessed the feasibility and 
generalization ability of a proposed deep learning model for automated segmentation of critical structures in tempo-
ral bone CT scans.

Methods:  Thirty-nine temporal bone CT volumes including 58 ears were divided into normal (n = 20) and abnormal 
groups (n = 38). Ossicular chain disruption (n = 10), facial nerve covering vestibular window (n = 10), and Mondini 
dysplasia (n = 18) were included in abnormal group. All facial nerves, auditory ossicles, and labyrinths of the normal 
group were manually segmented. For the abnormal group, aberrant structures were manually segmented. Temporal 
bone CT data were imported into the network in unmarked form. The Dice coefficient (DC) and average symmetric 
surface distance (ASSD) were used to evaluate the accuracy of automatic segmentation.

Results:  In the normal group, the mean values of DC and ASSD were respectively 0.703, and 0.250 mm for the 
facial nerve; 0.910, and 0.081 mm for the labyrinth; and 0.855, and 0.107 mm for the ossicles. In the abnormal group, 
the mean values of DC and ASSD were respectively 0.506, and 1.049 mm for the malformed facial nerve; 0.775, and 
0.298 mm for the deformed labyrinth; and 0.698, and 1.385 mm for the aberrant ossicles.

Conclusions:  The proposed model has good generalization ability, which highlights the promise of this approach for 
otologist education, disease diagnosis, and preoperative planning for image-guided otology surgery.
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Introduction
The anatomy of the temporal bone is highly complex. 
It contains crucial structures including the facial nerve, 
cochlea, and ossicular chain, which are fine structures 
surrounded by a large amount of mastoid air cells [1]. 
Due to this complexity and large interpatient variation, 

it is often difficult for residents to recognize these struc-
tures at the 2-dimensional computed tomography (CT) 
level. Indeed, the anatomy of the temporal bone is one 
of the most challenging topics during the education of 
ENT surgeons [2]. In addition, prior to neurotologic sur-
gery, clinicians require a broad and profound anatomical 
knowledge of the three- dimensional (3D) spatial rela-
tionships between risk structures and lesions to avoid 
complications, such as dizziness and facial nerve palsy [3, 
4].

In recent years, novel technologies using image-
guided neurotologic surgery have been developed such 
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as minimally invasive cochlear surgery [5–8]. The tun-
nel from the mastoid cortex to the cochlea is drilled by a 
robot or micro-stereoscopic frame under imaging guid-
ance [5–8]. Pre-surgical trajectory planning and intraop-
erative navigation require visualization of vital anatomic 
structures in 3D and extraction from pre-operative CT 
images, which require segmentation. Additionally, accu-
rate image segmentation improves path planning safety 
and achieves the purpose of automated planning [8]. 
Manual segmentation is highly accurate; however, it is 
time-consuming and laborious method [6, 9]. Although 
some software tools that can enhance and accelerate the 
extraction of structures of interest have emerged, they 
still cannot achieve fully automatic segmentation [10]. 
Considering these aspects, it is necessary to automati-
cally and accurately identify significant structures in tem-
poral bone CT images.

The traditional automatic recognition of the anatomi-
cal structures of the temporal bone is mainly based on 
atlas-based segmentation [11–15]. The principle of this 
method is to use the volume that has been pre-seg-
mented by doctors as an atlas to register other volume to 
be extracted, and appropriate structures are segmented 
by marking the transformed label map [14, 16]. However, 
important anatomical structures of the temporal bone 
such as ossicles, facial nerve, and labyrinth are ineffective 
for robust and accurate segmentation using pure atlas- 
based segmentation methods due to their small diameter, 
large interpatient variations, and/or the lack of local con-
trast [11, 12, 14]. At present, a compromise is achieved by 
combining refined strategies and atlas-based approaches 
to complete the automatic segmentation of the temporal 
bone [11, 12, 14, 17]. These versions of atlas-based seg-
mentation are currently used for automatic segmentation 
of anatomical structures in the temporal bone and permit 
high segmentation accuracy in relatively normal anatom-
ical structures. However, the performance of atlas-based 
methods is strongly related to the accuracy of registra-
tion, which is the primary limitation [13–15]. Further, 
large variations in patients’ anatomical structures, such 
as cochlear deformity, facial nerve displacement, and 
ossicle malformation preclude the identification of struc-
tures that match the traditional atlas in the area of inter-
est. This will result in failure of automatic identification 
and segmentation.

Neural networks based on deep learning are widely 
used in medical imaging and pathological diagnosis, 
and have been reported to achieve satisfactory results 
in segmenting images [18–22]. Unlike traditional fea-
ture extraction, deep learning combines more complex 
architecture and internal feature extraction mechanisms 
to build a multilayer neural network, which may achieve 
higher accuracy and reproducibility in a fully automatic 

manner [23–25]. Furthermore, deep learning networks 
contain millions of mathematical function parameters, 
allowing machines to perform active learning according 
to the working mode of human neuronal networks [19, 
20]. This implies that multilayered networks have large 
advantages for segmenting deformed anatomy. For this 
reason, deep learning and artificial neural networks have 
significantly improved medical image segmentation accu-
racy if given sufficient training data from the population 
[26–29]. However, few studies have focused on the seg-
mentation of important structures using deep-learning 
networks in temporal bone CT images.

To address this gap in the field, we have proposed a 
deep-learning framework referred to as W-net architec-
ture and performed preliminary training of the neural 
network to automatically segment critical structures in 
CT scans of normal adult conventional temporal bone 
[30]. To assess the feasibility of the model’s clinical appli-
cation, we must further test the generalization ability of 
W-net. In this study, we used newly-collected temporal 
bone CT data and established two types of test sets, one 
representing normal structures and the other malformed. 
The performance of W-net was compared and analyzed 
with that of manual segmentation to evaluate the feasibil-
ity of the proposed model in clinical application.

Materials and methods
Data collection
Test Set data from 39 temporal bone CT volumes includ-
ing 58 ears (including 20 ears with normal anatomy 
and 38 ears with deformity), were derived from routine 
scans of 39 subjects undergoing conventional temporal 
bone CT examinations (SIEMENS/ SOMATOM Defini-
tion Flash, German, 128-channel, thickness = 0.4  mm, 
pitch = 0.30 mm, pixel = 0.412 mm) in Peking University 
Third Hospital (Table  1). In this study, all CT volumes 
were newly-collected, thereby excluding the training 
model data. In the normal test set (n = 20), all CT data 
contained complete structures of the ossicle, facial nerve, 
and labyrinth. In the abnormal test set (n = 38), ossicu-
lar chain disruption (n = 10) and facial nerve covering 

Table 1  Numbers of ears, CT scans, and patients collected in 
study

Ears CT volumes Patients

Normal groups 20 10 10

Ossicular chain disruption 10 10 10

Facial nerve covering the oval window 10 10 10

Mondini dysplasia 18 9 9

Total 58 39 39
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the oval window (n = 10) were used to represent middle 
ear malformations, and Mondini dysplasia (n = 18) was 
used to represent inner ear (labyrinth) malformations. 
Patients underwent cross-sectional scans with base line 
connecting the infraorbital margin and external audi-
tory meatus. The scanning range encompassed the region 
between the top border of the petrous bone and bottom 
boundary of the external auditory canal. Axial sections 
were obtained with the following settings: matrix size, 
512 × 512; field of view, 220 × 220  mm; voltage, 120  kV; 
and current, 240 mA. Each registered patient underwent 
only one CT scan between February 2020 and May 2020. 
All CT images were downloaded from the physician’s 
workstation and saved in 512 × 512 pixel, DICOM for-
mat, for analysis. The voxel sizes of all CT data ranged 
from 0.4 * 0.4 * 0.4 mm3 to 0.5 * 0.5 * 0.4 mm3. An expert 
excluded cases of ear diseases, such as otitis media from 
temporal bone CT. This trial was approved by the Peking 
University Third Hospital Medical Ethics Committee.

Construction of deep learning models
The proposed network model (W-Net) was described in 
detail in a previous study [30]. The W-net architecture in 
this study has no changes from the previously reported 
study [30]. Figure 1 shows the architecture of W-net. The 
deep learning network comprised two analysis paths and 
two synthesis paths, which performed the functions of 
analysis of temporal bone CT images and generation of 
full-resolution segmentation, respectively. The segmenta-
tion structures were located in the middle of CT imag-
ing data, and the surrounding edges lacked segmentation 
target area. Thus, we set the pixel padding value in the 
3D convolution operation of neural networks to 1, which 
ensured that the output and input dimensions of the net-
work were the same (64 × 64 × 80 voxels). The number 
of channels for the first and second convolution of our 
deep-learning network was 1/2 and 1/3, respectively, to 
ensure a smooth transition. In this study, we selected the 

adaptive moment estimation (Adam) optimizer to opti-
mize parameters via an iterative process [31]. A signifi-
cant part of the network was the weighted cross entropy 
(WCE) as the loss function that could effectively solve 
the problems of small size and complex structure of the 
segmentation target and make the network fit faster.

Experimental design
Our previous study used data enhancement technology 
and 30 temporal bone CT volumes (15 left, 15 right) to 
develop the neural network model, which allowed the 
architecture to locate and render important structures on 
the left or right sides of the temporal bone CT [30]. We 
have used 24 volumes (12 left, 12 right) and 6 volumes 
(3 left, 3 right) as the training and validation set respec-
tively, and trained the W-net network through five  fold 
cross-validation [30]. It should be noted that the test set 
in this study were not included the training and valida-
tion data set in the previous study [30].

In this study, we input the CT data of each group of 
normal temporal bone without labels into the neural 
network in DICOM format and allowed the framework 
to automatically segment and extract the facial nerve, 
ossicles, and labyrinth. Subsequently, we divided the CT 
data of abnormal structures into three portions, includ-
ing ossicular chain disruption, facial nerve covering the 
oval window, and Mondini dysplasia, which were added 
to three folders in DICOM format. We imported the 
data in each folder separately into the neural network 
and automatically segmented the malformed structures. 
All experiments were performed on a workstation with a 
Xeon Silver 4110 CPU and a NVIDIA RTx2080Ti GPU 
(16G memory). Two cochlear implant surgeons manu-
ally delineated (consensus reviewed each individual CT 
volume), and reconstructed the relevant structures of 
interest in a slice-by-slice manner, and a medical image 
analysis scientist with over 30  years of clinical experi-
ence made final corrections for every structure. All 

Fig. 1  W-Net architecture. The number of channels is denoted next to the feature map
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segmentations were performed with the Mimics image 
processing software (Materialise NV, Leuven, Belgium, 
version 20.0). It should be noted that the annotators (two 
surgeons and one medical image analysis scientist) were 
blinded to the automated segmentation results.

Evaluation
Using manual segmentation as the gold standard, we 
performed quantitative and qualitative evaluation of the 
results through automatic segmentation based on deep 
learning. In this study, Dice coefficient (DC) and Aver-
age symmetric surface distance (ASSD) were used as the 
evaluation criteria of segmentation accuracy to assess the 
congruence of automatic and manual segmentation [32–
35]. The DC and ASSD were defined as follows:

where R is the manually outlined mask developed by 
the clinicians, and R0 is the segmented mask using the 
deep learning method. d (r, r0) is the Euclidian distance 
between the two voxels. r and r0 are the surface points 
of R and R0, respectively. NR and NR0 are the number of 
surface voxels on R and R0, respectively. The DC is spatial 
overlap index [36]. ASSD serves as a metric of shape sim-
ilarity, which can supplement descriptions of structural 
margins [35]. Higher DC values (maximum value of 1) 
indicate that the automatic segmentation is more similar 
to ground truth. For ASSD, lower values (minimum value 
of 0) represent greater agreement between the automatic 
segmentation contours and gold standard.

Results
Neural network performance in the normal group
This method was tested on 20 normal ears. Figure  2 
shows the masks of the facial nerve, ossicles, and laby-
rinth in normal adult CT images, which were manually 
annotated and automatically extracted. Figure  3 shows 
reconstructions of each structure including clinicians’ 
annotations and automatic segmentation. The labyrinth 
had the highest similarity, with slight differences in the 
vestibular and cochlear windows, which were connected 
to the middle ear cavity and lacked clear boundaries. The 
incudomalleolar joint was clearly visible, whereas the sta-
pes was incomplete. The facial nerve exhibited the poor-
est performance and was merged with mastoid air cells in 
the vertical plane.
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The results of automatic segmentation were compared 
with manually segmented images in a pixelwise manner. 
Table  2 summarizes the values of two metrics (DC and 
ASSD) for automatic segmentation of the normal adult 
dataset. For automatic segmentation of the labyrinth, 
DC and ASSD were 0.910 and 0.081  mm, respectively. 
The mean accuracy of ossicles was 0.855 for DC, and 
0.107  mm for ASSD, respectively. For the facial nerve, 
deviations between automatic segmentation and the gold 
standard were noted, with DC and ASSD of 0.703 and 
0.250 mm, respectively.

Neural network performance in the abnormal group
Satisfactory results were obtained for malformed struc-
tures except facial nerve. Figure  4 shows the masks of 
malformed structures outlined by clinicians and the neu-
ral network in CT images. The 3D volume reconstruc-
tions of the structures segmented by the neural network 
and surgeons are shown in Fig. 5. Although the enlarged 
vestibular aqueduct was fused with the semicircular 
canals, the neural network clearly distinguished the mar-
gins and the labyrinth with high accuracy. For disrupted 
ossicular chains, the neural network accurately identified 
the malleus and incus, although some noise was present. 
However, the facial nerve covering the oval window was 
imperfectly annotated by the neural network.

The segmentation errors of the neural network based 
on different metrics are shown in Table 3. For dysplastic 
labyrinth, mean values for the labyrinth were 0.775 and 
0.298 mm for DC and ASSD, respectively. The mean val-
ues of DC and ASSD for disrupted ossicular chains were 
0.698 and 1.385  mm, respectively. For malformed facial 
nerves, the mean values of DC and ASSD were 0.506 and 
1.049 mm, respectively.

Discussion
Neural network learning is prone to overfitting, that is, 
the model can correctly recognize the data in the training 
set but has poor performance of recognizing data out-
side the training set. Therefore, new data should be used 
for testing to evaluate the generalization ability of the 
neural network before clinical application. In this study, 
newly-collected temporal bone CT data were obtained to 
comprehensively evaluate the performance of automatic 
segmentation of normal and malformed structures using 
our proposed model.

The facial nerve has distinct characteristics includ-
ing a small diameter, lack of local contrast, and large 
interpatient variation [11, 12].Indeed, even experienced 
otologists face difficulties in manual segmentation and 
determination of the exact boundaries of the facial nerve. 
During facial nerve segmentation, the geniculate gan-
glion and horizontal segment are easily confounded with 
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Fig. 2  The masks of important structures generated by two methods in normal adult temporal bone CT images. Blue, green, and red labels denote 
the automatic extraction of FN, AO, and LA, respectively. Turquoise, yellow, and magenta labels represent the manual segmentation of FN, AO, and 
LA, respectively. CT, computed tomography; FN, facial nerve; AO, auditory ossicle; LA, labyrinth
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the tensor tympani muscle, while the second genu and 
vertical segment are fused with mastoid air cells. Thus, 
it is not ideal to segment the facial nerve purely using 
atlas-based methods [13]. Noble and colleagues [11, 12, 
37] combined an atlas-based method with a statistical 
model algorithm to segment the facial nerve in children 
and adult patients, whereby the mean errors of automati-
cally and manually generated structures were 0.23  mm 
and 0.155  mm, respectively. Another report presented 
a novel atlas-based method that combined an intensity 
model and region-of-interest (ROI) masks, resulting in a 
DC value of 0.7 for the facial nerve [14]. Further, atlases 
of the facial nerve have been constructed on micro-CT to 
achieve highly accurate ground truth for test images, with 
a DC value over 0.75 [38, 39]. Recently, a new method 
based on deep learning was reported and the DC of facial 
nerve was as high as 0.8 from micro-CT [40]. However, in 
published research, ASSD has not yet been used to evalu-
ate the segmentation accuracy of the facial nerve. In our 
study, the DC value of the normal facial nerve exceeded 
0.7 and the ASSD value was 0.25 mm in conventional CT. 
The segmentation was fully automatic without involving 
surgeons. CT resolution may affect judgment and seg-
mentation of the nerve margin. Additionally, the diam-
eter of the facial nerve is only 3–5 voxels, and an error 
of 1–2 surface voxels may result in drastic changes in the 
DC value. Visual comparison of the results of automatic 
and manual segmentation revealed that most voxels over-
lapped perfectly, and the centerline of the facial nerve 
was consistent and reproducible.

The cochlea is an extremely sensitive structure in inner 
ear surgery, especially cochlear implant surgery. Previ-
ous research segmented the labyrinth to replace normal 

cochlear structure [6]. The cavity in the labyrinth has 
clear local contrast with the bone wall. However, the 
labyrinthine bone wall and temporal bone are com-
pletely fused together, and precise boundaries cannot be 
determined. As the cavity of labyrinth is surrounded by 
dense bone, the DC for the labyrinth was 0.8 based on 
a novel atlas-based method that united intensity model 
and ROI masks [14]. Li et  al. reported that the DC val-
ues of the labyrinth (further subdivided into the cochlea, 
semicircular canal, and vestibule) were between 0.68 and 
0.84, while the ASSD values were between 0.15 mm and 
0.29  mm in conventional CT by deep learning network 
[35]. In this study, the normal and malformed labyrinth 
DC exceeded 0.90 and 0.77, respectively, while their 
ASSD were lower than 0.09  mm and 0.3  mm, respec-
tively, indicating that our method was better than the 
atlas-based and other network methods in conventional 
CT. Generally, accurate segmentation of the intra-coch-
lear structures may help clinicians to precisely insert 
electrodes while reducing intra-cochlear damage during 
cochlear implantation [41]. However, the basilar and ves-
tibular membranes are too thin for precise identification 
and location of intra-cochlear structures in conventional 
scans. To overcome this issue, Noble et al. [42] manually 
segmented the scala tympani and scala vestibuli to gener-
ate active shape models with higher resolution micro-CT, 
rendering the membranes visible. This model can be reg-
istered on the intra-cochlear regions of conventional CT 
and estimate the position of these cavities [43].The mean 
DC of the scala tympani and scala vestibuli was approxi-
mately 0.75 [42]. Indeed, errors in this method depend 
on the fidelity of the active shape model created, which 
is limited by the predefined deformation model. Given 

Fig. 3  Three normal structures reconstructed by the neural network and clinical experts. FN, facial nerve; AO, auditory ossicle; LA, labyrinth
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the encouraging performance of our W-net, employing 
our method to automatically segment the intra-cochlear 
structures in micro-CT and to accurately extract these 
cavities in conventional temporal bone CT will be the 
focus of our next study.

The ossicular chain consists of the malleus, incus, and 
stapes. In theory, ossicles are isolated in the middle ear 
cavity and surrounded by air, resulting in a very high 
local contrast, which results in the highest segmentation 
accuracy of the ossicular chain among all temporal bone 
structures. However, in our study, the DC values of both 
normal and malformed ossicles were lower than those for 
the labyrinth. Due to its small size, it was difficult to iden-
tify and describe the stapes in traditional temporal bone 
CT [1]. In the manual segmentation process, only a small 
portion of the stapes could be extracted, and it could not 
be delineated in some cases. The difficulty of delineating 
the stapes may have interfered with the performance of 
the neural network. Indeed, the DC of the stapes is sig-
nificantly lower than that for other structures in the tem-
poral bone [14]. Thus, the ossicular chain as a whole is 
often used for automatic segmentation evaluation [13, 
44]. In this study, automatic segmentation via deep learn-
ing resulted in a DC greater than 0.85 for normal ossicles 
and an approximate value of 0.7 for deformed ossicles. 
This study’s normal and malformed ossicles ASSD were 
lower than 0.11 mm and 1.4 mm, respectively. Compared 
with the results reported by Li et al., the accuracy of the 
ossicles segmented by our W-net method is slightly bet-
ter than that of their neural network [35]. Recently, some 
groups employed more advanced synchrotron radiation 
phase-contrast imaging and micro-CT for temporal bone 
imaging, which demonstrated that the stapes could be 
clearly tracked and outlined [45]. With these novel radio-
logical techniques, the ossicular chain can be more finely 
segmented.

Currently, there is no clear standard for the goal or 
allowance error of automatically segmenting temporal 
bone structure. All researchers hope that automatic 
segmentation can be closer to manual segmentation. In 
previous studies, we have tried to train W-net using CT 
datasets separately annotated by two surgeons [30]. If 
the metric values of the two models (trained from the 
two surgeons’ separately annotated CT dataset) are 
close, we consider that the accuracy of the automatic 
segmentation is close to the level of the surgeon. There-
fore, we believe that the tolerable error of DC values for 
the facial nerve, ossicles, and labyrinth were 0.7, 0.8 and 
0.85, respectively, in conventional temporal bone CT 
based on our experience. While the tolerable error of 
ASSD values for the facial nerve, ossicles, and labyrinth 
were 0.3 mm, 0.2 mm and 0.3 mm, respectively. It was 
noted that the automatic segmentation error should 
have different tolerant ranges according to various 
tasks such as image-guided cochlear access, mastoidec-
tomy, and otologist education. Therefore, formulating 
detailed error standards for automatic segmentation of 
temporal bone based on various tasks will be one of our 
main goals in the future.

Structures delineated by automatic segmentation 
can be reconstructed by doctors via 3D visualization 
to assess positional relationships between vital struc-
tures and disease-affected regions, which serve as an 
important guide to surgeons for surgical planning. 
From teaching of surgical theories to medical practice, 
this approach will strengthen clinical education and 
enable students to better appreciate the 3D relation-
ships of temporal bone anatomy [13]. Image-guided 
minimally invasive cochlear implant surgery requires 
segmentation of related structures and planning of 
safe paths before surgery. Automatically extracting 
these structures from CT image data will significantly 

Table 2  The segmentation errors of the neural network for normal structures

FN, Facial Nerve; AO, Auditory Ossicle; LA, Labyrinth; AVG, Average; Mdn, Median

Dice index Average symmetric surface distance (mm)

Max Min AVG Mdn Max Min AVG Mdn

FN 0.838 0.592 0.703 0.687 0.355 0.114 0.250 0.260

AO 0.902 0.759 0.855 0.858 0.180 0.068 0.107 0.102

LA 0.926 0.880 0.910 0.910 0.162 0.054 0.081 0.069

(See figure on next page.)
Fig. 4  The masks of malformed structures created by two methods in abnormal temporal bone CT images. Blue, green, and red labels denote the 
FN (covering the vestibular window), AO (disruption), and LA (Mondini dysplasia), respectively. Turquoise, yellow, and magenta labels represent 
the manual segmentation of the FN (covering the vestibular window), AO (disruption), and LA (Mondini dysplasia), respectively. CT, computed 
tomography; FN, facial nerve; AO, auditory ossicle; LA, labyrinth
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Fig. 4  (See legend on previous page.)



Page 9 of 11Wang et al. BMC Medical Imaging          (2021) 21:166 	

reduce processing time and increase the convenience 
of path planning. Further, using this neural network to 
automatically segment the jugular fossa, carotid canal, 
internal acoustic meatus, sigmoid sulcus, and other 
structures is also under consideration. This automated 
segmentation approach can be used in other robot-
assisted otological surgeries such as mastoidectomy 
and acoustic neuroma [46, 47].

This study has several limitations. First, in this study, 
we used a small sample size of normal and malformed 
structures to test the generalization ability of the pro-
posed model, and provided a preliminary research basis 
for model parameter optimization and clinical applica-
tion. In future experiments, a larger sample size of CT 
data with normal and abnormal structures will be used 
to further train and test the performance of the neural 
network. Second, the test set data in this study and the 
CT data in our previous study [30] were all from the 
same institution. In the future, we will collect CT vol-
umes from various institutions, and different scales of 
CT images to further train and test our network model, 
which can improve the robustness and generaliza-
tion ability of the W-net. Third, the single CT volumes 

annotated between different teams (observers) have a 
certain degree of variability, which may affect the per-
formance of the neural network model during the train-
ing process. We will attempt to compare the differences 
between various annotators and observe the impact on 
W-net training. In addition, future training sets may 
include CT data from different annotators. Finally, with 
the exception of the CT data of the Mondini dysplasia 
from children, the data was primarily obtained from 
adult cases. In this regard, most congenital ear dyspla-
sia and cochlear implant surgeries are performed in 
impuberal patients. The proposed approach should be 
applied to pediatric cases for further verification.

Conclusions
In this study, we assessed the generalization ability of 
a novel method based on deep learning for automated 
segmentation of the facial nerve, labyrinth, and ossi-
cles, which are relevant to otologic surgery. The accu-
racy of our method was close to manual segmentation 
of normal structures and abnormal labyrinth and ossi-
cles, which indicates the promise of this approach for 
otologist education, disease diagnosis, and preoperative 

Fig. 5  Three malformed structures reconstructed by the neural network and clinical experts. FN, facial nerve (covering the vestibular window); AO, 
auditory ossicle (disruption); LA, labyrinth (Mondini dysplasia)

Table 3  The segmentation errors of the neural network for malformed structures

FN, Facial Nerve; AO, Auditory Ossicle; LA, Labyrinth; AVG, Average; Mdn, Median

Dice index Average symmetric surface distance (mm)

Max Min AVG Mdn Max Min AVG Mdn

FN 0.638 0.373 0.506 0.511 2.174 0.332 1.049 0.817

AO 0.805 0.614 0.698 0.789 2.026 0.800 1.385 1.400

LA 0.894 0.345 0.775 0.838 0.673 0.144 0.298 0.247
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planning for image- guided otology surgery. In the 
future, we hope to apply this method for the segmen-
tation of other temporal bone structures and skull base 
structures.
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