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Abstract 

Background:  A novel multi-level pyramidal pooling residual U-Net with adversarial mechanism was proposed for 
organ segmentation from medical imaging, and was conducted on the challenging NIH Pancreas-CT dataset.

Methods:  The 82 pancreatic contrast-enhanced abdominal CT volumes were split via four-fold cross validation to 
test the model performance. In order to achieve accurate segmentation, we firstly involved residual learning into an 
adversarial U-Net to achieve a better gradient information flow for improving segmentation performance. Then, we 
introduced a multi-level pyramidal pooling module (MLPP), where a novel pyramidal pooling was involved to gather 
contextual information for segmentation, then four groups of structures consisted of a different number of pyramidal 
pooling blocks were proposed to search for the structure with the optimal performance, and two types of pooling 
blocks were applied in the experimental section to further assess the robustness of MLPP for pancreas segmentation. 
For evaluation, Dice similarity coefficient (DSC) and recall were used as the metrics in this work.

Results:  The proposed method preceded the baseline network 5.30% and 6.16% on metrics DSC and recall, and 
achieved competitive results compared with the-state-of-art methods.

Conclusions:  Our algorithm showed great segmentation performance even on the particularly challenging pancreas 
dataset, this indicates that the proposed model is a satisfactory and promising segmentor.
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Background
Organ segmentation from medical imaging is recognized 
as a difficult job, since the contours of organs tend to be 
indistinguishable from the background gray low-resolu-
tion images. Especially for organs with small volume and 
varied morphology, such as pancreas [1]. As deep learn-
ing thrives, convolutional neural networks (CNNs) show 
great potential on organ segmentation tasks and vari-
ous methods based on CNNs have been raised for pan-
creas segmentation [2–14]. Zhang et  al. incorporated 

multi-atlas registration and level-set for a pancreas seg-
mentation framework, which mainly contained coarse, 
fine, and refine stages and utilized both the 3D and 2D 
information for segmentation [2]. Mo et  al. proposed 
an iterative 3D feature enhancement network, which 
suppressed the non- target areas and increased the fine 
target details by leveraging the information in different 
layers, to segment pancreas from CT images [3]. Liu et al. 
raised an ensemble fully convolutional neural network for 
pancreas segmentation, which firstly generated candidate 
region and then combined output probability maps from 
five segmentation networks with different energy func-
tions [4]. Roth et al. presented an automated holistically-
nested convolutional network for pancreas localization 
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and segmentation from 3D CT scans [5]. Zhou et al. put 
forward a fixed-point model for pancreas segmenta-
tion in abdominal CT scans through shrinking the input 
region by a predicted segmentation mask [6]. Cai et  al. 
introduced a recurrent neural network to address the 
contextual learning and segmentation consistency prob-
lem and applied a novel Jaccard Loss to optimize train-
ing for improving pancreas segmentation performance 
[7]. Oktay et  al. showed an attention gate model which 
is capable of automatically focusing on targets in medi-
cal imaging. The involvement of this attention gate into 
models conduces to suppressing irrelevant regions while 
highlighting useful features for a specific task. The U-Net 
model trained with the attention gate performs highly 
beneficial performance on 3D CT scans pancreas data-
set [8]. These schemes indicate that the involvement of 
CNNs variants is effective for pancreas segmentation 
task.

Segmentation methods based on 3D networks are usu-
ally time-consuming and require more advanced server 
configuration. However, 2D segmentation models are 
not adept at capturing spatial information, thus tend to 
be limited in final segmentation performance. To solve 
this issue, we proposed a multi-level pyramidal pooling 
residual U-Net with adversarial mechanism for accurate 
pancreas segmentation in this paper. For this objective, 
we incorporated residual learning [15] into an adver-
sarial U-Net to optimize the gradient information flow, 
thus improved its segmentation performance. Then, 
we put forward a multi-level pyramidal pooling module 
(MLPP) to collect more contextual information in search 
of a structure with better performance. Specifically, we 
introduced a novel pyramidal pooling into the adver-
sarial U-Net with residual blocks as a substitute for the 
conventional pooling layer. And in order to obtain finer 
clues, we further introduced four groups of network 

structures with different numbers of pooling blocks for 
fusing features from different scales. To verify the effec-
tiveness and stableness of MLPP in pancreas segmenta-
tion task, we applied pooling layers with different sizes 
to constitute two sets of MLPP and successively tested 
their segmentation performance. Overall, our proposed 
2D segmentation model addresses the time-consuming 
and high configuration requirements of 3D networks. 
Then, the involvement of adversarial learning offsets 
the spatial information loss in simple 2D segmentation 
networks, depending on the ability of generative adver-
sarial network to capture high-dimensional data distri-
butions. And the introduction of multi-level pyramidal 
pooling module (MLPP) helps to collect more contextual 
information for segmentation. These steps contribute to 
compensate simple 2D segmentation networks for their 
spatial information loss.

The structure of the remaining paper was organized as 
follows. Firstly, we introduced the materials and methods 
used in this paper. Then, we set several groups of experi-
ments and showed the specific results. Finally, we made a 
discussion and a conclusion for this work.

Methods
Data
We evaluated our proposed model on a public Pancreas-
CT dataset [16, 17], which is collected by the National 
Institutes of Health Clinical Center (NIH). It contains 
82 contrast-enhanced abdominal CT volumes, where 
each scan is 512 × 512 × L and L represents slices num-
ber along the long axis. We resized the scans to [208, 224] 
referring to the general scopes of label. Following the 
training protocol in [6, 7, 18], our experiments were car-
ried on four-fold cross validation to randomly split these 
82 patients. That is, three folds of patients were used as 

Fig. 3. Examples of 2D visualization results from several segmentation models. From left to right, original images, U-Net
results, adversarial U-Net results, results from adversarial U-Net with residual blocks, and ground truth images.
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Fig. 1  Overview of the proposed pancreas segmentation model
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the training dataset and the rest samples were used for 
testing.

Residual U‑Net with adversarial mechanism
A typical generative adversarial network [19] is consisted 
of a discriminator and a generator. These two networks 
compete with each other in a minmax two-player game, 
as defined in Eq. (1). And in this formula, D and G respec-
tively represent the discriminator and the generator. D(x) 
refers to the probability that the input x comes from the 
original dataset rather than the synthetic samples.

In the training process, the objective of the discrimina-
tor is to distinguish the real images from the synthetic 
samples produced by the generator, no matter how sem-
blable they are. The generator aims to produce samples 
as realistic as possible to cheat the discriminator. During 

(1)
min
G

max
D

V (D,G) =Ex∼pdata(x)

[

logD(x)
]

+ Ez∼pz (z)

[

log (1 − D(G(z))
]

this process, the discriminator and the generator opti-
mize their own network simultaneously until achieving 
Nash equilibrium [20]. A generative adversarial network 
is capable of capturing high-dimensional spatial informa-
tion distributions through its specific competitive mech-
anism. Therefore, we introduced adversarial learning into 
conventional U-Net to obtain an adversarial U-Net to 
offset the spatial information loss in simple segmentation 
network, thus collecting much more useful information 
for pancreas segmentation.

Residual network proposed by He et  al. [15] is to solve 
the problems of the increasing training error and degrading 
network performance with the network deepness added. 
In order to optimize the gradient information flow of our 
adversarial U-Net to further improve its segmentation per-
formance, we incorporated residual learning into our pro-
posed model.

Specifically, the U-Net proposed by Ronneberger et  al. 
[21] was used as a basic framework in this work. Based 
on this segmentation network, we involved adversarial 
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Fig. 2  Diagram of different pooling layers. a Conventional pooling structure, b a pooling mode consisted of two scales of pooling layers, i.e., B1, c 
an escalation pooling mode consisted of three scales of pooling layers, i.e., B2

Fig. 3  Examples of 2D visualization results from several segmentation models. From left to right, original images, U-Net results, adversarial U-Net 
results, results from adversarial U-Net with residual blocks, and ground truth images
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mechanism [19] to further ensure the distributions of pro-
duced volumes resemble that of the ground truth images 
for a better segmentor, namely adversarial U-Net. In adver-
sarial U-Net, a segmentation network (i.e., U-Net) is used 
as the generator in a generative adversarial network. Thus, 
the synthetic volumes produced by the generator refer to 
the obtained probability maps from the segmentation net-
work. The adversarial network used here is consisted of five 
convolutional layers, and the kernel sizes are 7 × 7, 5 × 5, 
4 × 4, 4 × 4, and 4 × 4 from the first to the fifth layer. The 
energy functions of the generator and discriminator in 
adversarial U-Net were respectively defined in Eqs. (2) and 
(3). N is the total amount of images. Fn and Rn respectively 
represent the fake samples from the segmentation net-
work and the original images from the NIH Pancreas-CT 
dataset. D refers to the discriminator while G represents 
the generator (i.e., segmentor). Then, in order to further 
improve segmentation performance, we introduced resid-
ual learning into the adversarial U-Net, which contributes 
to a better gradient information flow within network. The 
specific structure of the involved residual block was shown 
in Fig. 1.

Multi‑level pyramidal pooling module
Furthermore, we introduced a multi-level pyrami-
dal pooling module (MLPP) to collect more use-
ful details for segmentation. Specifically, inspired 
by [22], we involved a novel pyramidal pooling into 

(2)
1

N

N∑

n=1

|Fn − Rn| + Ez∼p(z) [log (1− D(G(z)))]

(3)
−Ex∼p(data) [logD(x)]− Ez∼p(z) [log (1− D(G(z)))]

aforementioned segmentor (i.e., adversarial U-Net 
with residual blocks) for capturing contextual informa-
tion in the model training process. Then, we set four 
groups of network structures with different numbers 
of pyramidal pooling blocks for fusing features from 
different scales, and selected the one with the optimal 
performance acted as the final version of our proposed 
algorithm. That is, in the first network, namely (i.e., B_
P1), we placed one pooling block after the fourth con-
volutional layer. In the second network (i.e., B_P2), we 
placed one block after the third and the fourth convolu-
tional layer severally. In the third network (i.e., B_P3), 
we placed one block after the second, the third and the 
fourth convolutional layer severally. In the fourth net-
work (i.e., B_P4), we placed one block after the first, 
the second, the third and the fourth convolutional layer 
severally. To assess the robustness of MLPP for pan-
creas segmentation task, we severally applied two kinds 
of updated pooling blocks based on the conventional 
pooling block displayed in Fig. 2a, to constitute MLPP 
and successively verified their segmentation perfor-
mance. The structures of these two pyramidal pooling 
blocks (B1 and B2) were respectively shown in Fig. 2b, 
c.

Experimental environment
All experiments in this work were built on PyTorch [23] 
and implemented on an NVIDIA GeForce GTX 1080Ti 
graphics card with 11 GB memory. In the training phase, 
Adam was used as optimizer with initial learning rate 
0.0001 and batch size was set to 1.

Evaluation metrics
To evaluate the segmentation performance of our pro-
posed model, we used DSC and recall as evaluation met-
rics in this paper. DSC reflects the overlap between the 
output probability maps obtained from segmentation net-
works and their corresponding ground truths, as defined in 
Eq. (4). Let X represents the voxels in obtained probability 
maps while Y denotes the voxels in ground truths.

(4)DSC =
2�X ∩ Y �

�X + Y �

Table 1  Dice similarity coefficient (%) and recall (%) comparison 
of three models

AD-U-Net refers to the adversarial U-Net, and ADR-U-Net represents the 
adversarial U-Net with residual blocks

U-Net AD-U-Net ADR-U-Net

DSC 77.73 80.98 81.36

Recall 78.44 81.11 82.36

Table 2  Dice similarity coefficient (%) and recall (%) comparison 
of ADR-U-Net models with different pooling layers based on 
pyramidal pooling block B1

B1_P1 B1_P2 B1_P3 B1_P4

DSC 81.65 82.12 82.43 82.77

Recall 82.10 83.31 83.34 84.32

Table 3  Dice similarity coefficient (%) and recall (%) comparison 
of ADR-U-Net models with different pooling layers based on 
pyramidal pooling block B2

B2_P1 B2_P2 B2_P3 B2_P4

DSC 82.22 82.74 82.76 83.03

Recall 83.38 83.75 84.06 84.60
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Recall measures the fractions of correctly predicted 
pixels in the total number of pancreas pixels, with its 
definition in Eq. (5) as below:

Results
Residual U‑Net with adversarial mechanism
In order to verify the effectiveness of residual learning, 
we firstly compared our proposed adversarial U-Net 
with residual blocks to a conventional segmentation 
network U-Net [21] and an adversarial U-Net. The seg-
mentation results comparison was shown in Fig. 3. And 
the specific numerical values of these three models on 
metrics DSC and Recall were displayed in Table 1.

Multi‑level pyramidal pooling module
In our proposed multi-level pyramidal pooling mod-
ule (MLPP), we severally set one, two, three, and four 
pyramidal pooling blocks to obtain multi-scale feature 

(5)Recall =
�X ∩ Y �

�Y �

representations, and picked out the one with optimal 
performance acted as the final network version. MLPP 
was severally consisted of two types of pooling struc-
tures: B1 and B2, as shown in Fig. 2. The specific numeri-
cal results were respectively displayed in Tables 2 and 3. 
Figure 4 showed the segmentation results from the opti-
mal network ADR-U-Net with four pooling layers based 
on pyramidal pooling block B1 while Fig. 5 exhibited the 
segmentation results from the optimal ADR-U-Net with 
four pooling layers based on pyramidal pooling block B2.

Compared with the state‑of‑the‑art methods
To evaluate the segmentation performance of our pro-
posed model on pancreas segmentation task, we com-
pared it with the state-of-the-art pancreas segmentation 
methods. The probabilistic bottom-up approach [18] 
based on multi-level deep convolutional networks 
achieves a DSC score of 71.8%, which is 11.23% lower than 
our proposed method. The holistically-nested convolu-
tional neural network proposed by Roth et al. [5] obtains 
a mean DSC score of 81.27% and is inferior to our method 

Fig. 4  Examples of 2D visualization results from the optimal network ADR-U-Net with four pooling layers based on pooling blocks I. From left to 
right, original images, segmentation results, and ground truth images
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by 1.76%, while the attention gate model put forward by 
Oktay et al. [8] is 1.55% lower than our model. Also, our 
optimal DSC score in this work is 0.63% higher than the 
recurrent neural network architecture raised by Cai et al. 
[7] which addresses the contextual learning and segmen-
tation consistency problem for pancreas segmentation, 
while our proposed method exceeds 0.66% on evaluation 
index DSC than the fixed-point model which involves a 
predicted segmentation mask to shrink the input region 
for a better performance when segmenting pancreas form 
abdominal CT scans in [6]. All these instances demon-
strate that our proposed model is a powerful segmentor 
even on the tricky pancreas segmentation mission.

Discussion
Residual U‑Net with adversarial mechanism
In this work, we proposed a multi-level pyramidal pool-
ing residual U-Net with adversarial mechanism to 
achieve accurate organ segmentation, and we conducted 
our proposed model on a particularly challenging dataset 

(i.e., NIH Pancreas-CT) to assess its segmentation per-
formance. Specifically, we firstly involved a discriminator 
into a conventional U-Net to obtain an adversarial U-Net, 
and used this structure as the baseline architecture in 
our proposed segmentation model. Then, we introduced 
residual learning into the baseline segmentor to opti-
mize gradient information flow for improving model 
performance. Figure  3 shows the segmentation results 
from U-Net, adversarial U-Net, and adversarial U-Net 
with residual blocks. It is obvious that the output prob-
ability volumes from the adversarial U-Net with residual 
blocks preferably resemble the ground truths in a myr-
iad of subtle parts compared with U-Net and adversarial 
U-Net, which illustrates that the involvement of adver-
sarial learning and residual blocks are all advantageous to 
improve pancreas segmentation performance.

Multi‑level pyramidal pooling module
Furthermore, we introduced a multi-level pyramidal 
pooling module (MLPP) into the residual U-Net with 

Fig. 5  Examples of 2D visualization results from the optimal network ADR-U-Net with four pooling layers based on pooling blocks II. From left to 
right, original images, segmentation results, and ground truth images
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adversarial mechanism to capture more contextual infor-
mation for pancreas segmentation. Table  2 shows that 
B1_P4 precedes 1.12%, 0.65%, and 0.34% on DSC while 
2.22%, 1.01%, and 0.98% on Recall than structures B1_P1, 
B1_P2, and B1_P3. This indicates that B1_P4 achieves the 
optimal segmentation performance compared to other 
three models as more contextual information are col-
lected in B1_P4. The numerical values in Table 3 display 
the same trend as the Table  2, which further verify the 
above conclusion that B1_P4 performs the best on pan-
creas segmentation among these four sets of models. 
Thus, the structure B1_P4 is used as the final version of 
our segmentation model.

Compared with the state-of-the-art methods for pan-
creas segmentation, our proposed model shows com-
petitive results as displayed in experimental parts. There 
is still room, however, for our proposed segmentation 
network. As our model is 1.47%, and 2.43% lower than 
the methods proposed in [24, 25]. Thus, future work will 
upgrade this existing model to quest a better segmenta-
tion performance on pancreas segmentation, and apply 
our model on different datasets to confront different 
kinds of organs segmentation tasks.

Conclusions
In this paper, we exploited a novel multi-level pyrami-
dal pooling residual U-Net with adversarial mecha-
nism for organ segmentation, and operated this 
proposed model on a particularly challenging NIH 
Pancreas-CT dataset. Experimental results show that 
our method achieves great improvements than the 
basic network and obtains satisfactory performance 
compared with the-state-of-art segmentation mod-
els even for the particularly challenging Pancreas-CT 
dataset. This also indicates that our proposed segmen-
tation model is an effective and promising network for 
organ segmentation.
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