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Abstract 

Background: Lung region segmentation is an important stage of automated image-based approaches for the 
diagnosis of respiratory diseases. Manual methods executed by experts are considered the gold standard, but it is 
time consuming and the accuracy is dependent on radiologists’ experience. Automated methods are relatively fast 
and reproducible with potential to facilitate physician interpretation of images. However, these benefits are possible 
only after overcoming several challenges. The traditional methods that are formulated as a three-stage segmentation 
demonstrate promising results on normal CT data but perform poorly in the presence of pathological features and 
variations in image quality attributes. The implementation of deep learning methods that can demonstrate superior 
performance over traditional methods is dependent on the quantity, quality, cost and the time it takes to generate 
training data. Thus, efficient and clinically relevant automated segmentation method is desired for the diagnosis of 
respiratory diseases.

Methods: We implement each of the three stages of traditional methods using deep learning methods trained on 
five different configurations of training data with ground truths obtained from the 3D Image Reconstruction for Com-
parison of Algorithm Database (3DIRCAD) and the Interstitial Lung Diseases (ILD) database. The data was augmented 
with the Lung Image Database Consortium (LIDC-IDRI) image collection and a realistic phantom. A convolutional 
neural network (CNN) at the preprocessing stage classifies the input into lung and none lung regions. The processing 
stage was implemented using a CNN-based U-net while the postprocessing stage utilize another U-net and CNN for 
contour refinement and filtering out false positives, respectively.

Results: The performance of the proposed method was evaluated on 1230 and 1100 CT slices from the 3DIRCAD 
and ILD databases. We investigate the performance of the proposed method on five configurations of training data 
and three configurations of the segmentation system; three-stage segmentation and three-stage segmentation with-
out a CNN classifier and contrast enhancement, respectively. The Dice-score recorded by the proposed method range 
from 0.76 to 0.95.

Conclusion: The clinical relevance and segmentation accuracy of deep learning models can improve though deep 
learning-based three-stage segmentation, image quality evaluation and enhancement as well as augmenting the 
training data with large volume of cheap and quality training data. We propose a new and novel deep learning-based 
method of contour refinement.
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Introduction
Lung region segmentation is in the early stage of 
image-based approaches for early detection, diagnosis 
and treatment of respiratory diseases [1]. Lung cancer, 
chronic bronchitis and the recent coronavirus disease 
(COVID-19) are examples of respiratory diseases. The 
accuracy of subsequent stages of the imaging work-
flow leading to a reliable diagnosis of respiratory dis-
eases is strongly dependent on accurate segmentation 
of the lung region. Computed tomography (CT) imag-
ing is widely used for the diagnosis of respiratory dis-
eases because of its relatively small acquisition time 
and potential to generate high contrast images of the 
thoracic cavity. Figure  1 are examples of some of the 
axial slices acquired during a typical CT examination. 
The slices (Fig. 1a–l) are arranged successively, from the 
superior to the inferior region of the thorax.

Image-based diagnosis can be implemented either 
manually by radiologists or automatically using a com-
puterized system. Routine diagnostic tasks require 
the radiologists to combine information from sev-
eral hundreds of sagittal, coronal and transverse CT 
slices. Manual methods executed by the radiologists 
are considered the gold standard but it requires sub-
stantial reading experience from radiologists. Since 
the accuracy is dependent on the experience of the 
radiologists, they are prone to high intra-reader and 
inter-reader variability. Manual methods are time 
consuming, labour-intensive with high risk of fatigue-
induced human errors. Automatic methods are attrac-
tive to physicians as they are reproducible and can be 
implemented with minimal user interaction. Further-
more, automated methods facilitates physicians inter-
pretation of images, thereby significantly reducing the 
time for making clinical decisions.

The benefits of automatic methods can be reaped only 
after overcoming several challenges. They include ana-
tomic structures such as the colon, bowel gas, arteries, 
bronchioles and subcutaneous cavity that exhibit simi-
lar grayscale as the lung region. Other challenges are 
the uneven intensity distribution within the lung region 
and the presence of noise, particularly images acquired 
at low dose. Segmentation becomes more challeng-
ing with the presence of pathological features which 
increase the variability of image attributes across slices. 
For example, in CT images of patients with COVID-
19 and interstitial lung diseases (ILD), the presence of 
ground glass opacity [2] and fibrosis [3], respectively, 

result in discontinuous lung contours which makes it 
difficult for automated systems to accurately extract the 
lung region. Some of the slices such as Fig. 1a, k and l 
do not contain lung region. Thus, another challenge is 
the reduction of false positives by the identification and 
exclusion of slices that do not contain the lung region.

Automatic lung region segmentation can be catego-
rized into traditional and machine learning methods [4, 
5]. The traditional methods are explicitly programmed 
mathematical models which include gray-scale thresh-
olding, region growing, deformable models, wavelets 
and watershed techniques. The machine learning meth-
ods are models that learns the segmentation task either 
in an unsupervised manner from the available image data 
or in a supervised manner from example images. Clus-
tering algorithms are examples of unsupervised machine 
learning methods. Supervised machine learning methods 
include deep convolutional neural networks (CNN) that 
are designed as a single unified model which learns both 
feature extraction and classification tasks [6].

None of the techniques from traditional methods can, 
by itself, accurately extract lung region from a CT data 
because the attributes of lung CT cannot be described 
by precise mathematical models [7]. These limitations 
encouraged the introduction of hybrid methods which 
integrates multiple traditional techniques into a three-
stage system to enhance segmentation accuracy [8]. The 
three stages are pre-processing, processing and post-
processing. In a three-stage system, there is significant 
increase in the number of operating parameters. There-
fore, it becomes difficult to optimize segmentation accu-
racy across slices. A trained deep learning network, 
unlike the traditional methods, is a single unified model 
which does not require parameter tuning, thereby mak-
ing it adaptable to variability of images in a clinical set-
ting. This paper proposes a deep learning-based CT lung 
segmentation algorithm that follows the three-stage sys-
tem adopted by the traditional methods. Three main con-
tributions of this paper are summarized below. 

1 To the best of our knowledge, the proposed method 
is the first application of a simple yet effective deep 
learning technique to implement each of the three 
stages of the segmentation system adopted by tradi-
tional methods. Of particular note is the introduction 
of a new deep learning-based method to refine the 
contour of lung regions at the post-postprocessing 
stage.

Keywords: Computed tomography (CT), Three-stage segmentation, Deep learning network, Lung region, Lung 
contour
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2 At the pre-processing stage, we apply a CNN to iden-
tify and exclude CT slices that do not contain lung 
region. This approach significantly reduces the risk of 
false positives in the proposed system. Also, we gen-

erate binary images from three different databases. 
These binary images doubles as the input training 
images and as the output training labels of a CNN-
based U-net. The trained network converts a gray-

Fig. 1 Examples of CT slices from [24, 25] that are acquired during CT lung screening. The slices are arranged successively such that (a) is the most 
superior and (l) is the most inferior within the thorax region. Slices in (a), (k) and (l) do not contain lung region
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scale CT slice to a binary image. To execute the clus-
tering task, the input training images of the U-net are 
grayscale images while the output training labels are 
k-means clustered images.

3 At the post-processing stage, binary images con-
taining lung region and edge images of the ground 
truth are the training images and training labels of a 
U-net, respectively. The trained network corrects for 
pathology-induced discontinuity of lung contours. 
We incorporate a self verification unit within the 
post-processing stage by applying another CNN to 
identify and exclude, from the segmented image, any 
object that do not contain lung region.

Related work
Traditional methods include a three-stage segmenta-
tion proposed in [9]. The first stage exploits the gray 
level intensity difference between the thorax region and 
the background. Optimal thresholding and morphology 
are applied to retain only the thorax region by remov-
ing the background air and CT table. Connected com-
ponent analysis is executed at the second stage to extract 
the lung from the thorax region. In the third stage, the 
borders of the lung region are refined by applying mor-
phological closing operation to insert the juxtapleural 
nodules and tissues that may have been excluded during 
the first stage. In [10], the first two stages of a three-stage 
segmentation of lung nodules from CT images is for the 
extraction of the lung region. In the first stage, a global 
threshold, computed from the gray level histogram of 
the CT slices, was used for the extraction of the prelimi-
nary lung region. A morphological closing operation was 
applied in the second stage to include juxtapleural nod-
ules in segmented lung regions and to refine the contours 
of the lung region. In the last stage, k-means clustering is 
applied on the extracted lung region to detect and seg-
ment potential lung nodules. In [11], the authors propose 
the Selective Binary and Gaussian filtering-new Signed 
Pressure Force (SBGF-new SPF) function. It is based on 
the Chan Vese’s [12] and Geodesic [13] active contour 
models. Statistical information from gray level pixels are 
applied to avoid re-initialization and to automatically 
place the initial contour on the CT image. The Gauss-
ian filter enables smooth regularization and ensures a 
sharper reconstructed image. The parameters of the con-
tours are encoded in the SPF function so that the SPF 
can control the direction of evolution. The contribution 
by [8] integrates six techniques into a three-stage system. 
In the first stage, a guided filter smooths the image to 
improve contrast between different regions and remove 
noise. The second stage is the binarization of the image 
using Otsu adaptive thresholding [14]. There are three 

steps within the third stage. First, a region growing tech-
nique is applied to extract the thorax region from the 
binarized image. The second step is the application of 
random walk method to extract the lung from the tho-
rax region. Finally, after morphological hole filling opera-
tion, a curvature-based correction method proposed by 
[15] is applied to refine the contours of the lung region. 
Another three-stage system was recently proposed in 
[16]. In the first stage, a CT slice is decomposed into 
four different components in the logarithmic domain. 
The component of interest is the shading component 
because it preserves lung contours and details. Image 
filtering is implemented by formulating the decompo-
sition as a minimization problem. In the second stage, 
wavelet transformation is combined with morphological 
operations to extract the lung region. The last stage is the 
smoothing and correction of the lung contours using a 
corner detection technique. A three-stage system based 
on watershed transformation was proposed in [17]. In 
the first stage, gradient image of the CT slice was gener-
ated using a Sobel mask. In the second stage, the internal 
markers are specified, followed by morphological opera-
tion to extract the external markers. In the last stage, the 
markers are combined with the gradient image. There-
after, a watershed transform is applied on the combined 
image to obtain the watershed lines which describe the 
initial lung contours. The refinement of the lung contours 
is implemented using a rolling ball filter to smooth the 
lung borders.

Deep learning techniques have been applied in a single-
stage system or as a unit within a multi-stage system. In 
[18], the authors propose a single-stage system that uti-
lize a deep learning technique to perform an end-to-end 
segmentation without any pre-processing and post-pro-
cessing steps. The deep learning architecture is a U-net 
CNN [19], a type of fully convolutional neural network 
[20] with a wider network. The wide network is achieved 
by gradually increasing the number of kernels in the con-
volutional layer from 16 to 128 in the encoding path and 
decreasing from 128 to 8 in the decoding path. The wide 
network enables extraction of spatial contextual infor-
mation at different levels resulting in lung region with 
finer details. A three-stage segmentation that utilized 
U-net was proposed in [21]. Cropping of the CT slices 
are performed in the pre-processing stage to significantly 
reduce the number of pixels in the background region 
and remove the CT table. The classical U-net was utilized 
in the second stage to extract the lung region mask. The 
mask was further applied in the third stage to segment 
the lung parenchyma. A three-stage segmentation system 
was proposed in [3, 22] to segment lung for the detec-
tion of ILD. In [22] the CT slice is preprocessed for noise 
removal using a Wiener filter. The processing stage is 
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the extraction of texture features based on gray level co-
concurrence matrix and deep features from U-net. In the 
postprocessing stage, the texture and deep learning fea-
tures are fused to derive the contours of the lung region. 
In the contribution by [23], the preprocessing step is 
image normalization. The processing step applies U-net 
architecture to extract the lung region. The postprocess-
ing stage utilize Gaussian kernel to remove noise, fol-
lowed by morphological operation to remove unwanted 
structures that do not belong to the lung region.

Materials and method
Description of data
This study utilizes retrospectively acquired CT scans, in 
DICOM format, from four databases. They are the Lung 
Image Database Consortium (LIDC-IDRI) image collec-
tion [24], 3DIRCAD (3D Image Reconstruction for Com-
parison of Algorithm Database) [25] and the Interstitial 
Lung Diseases (ILD) database [26]. The fourth database 
(PHTM) consist of realistic phantoms. The LIDC-IDRI 
has 1,018 helical thoracic CT scans from seven aca-
demic centres. The 3DIRCAD contains two databases. 
The first, 3D-IRCAD-01 and second, 3D-IRCAD-02 
contains anonymized CT scans of 20 and 2 patients, 
respectively, with expert-annotated binary masks of 
thoracic organs. Six binary masks of the lung are pro-
vided in 3D-IRCAD-01. The data of both patients in 
3D-IRCAD-02 include binary masks of the lung. The 
ILD database was provided by the University Hospital of 
Geneva. It contains high-resolution computed tomog-
raphy (HRCT) images of 128 patients affected with ILD. 
The data has annotated lung tissue patterns including 
lung mask as well as a comprehensive set of 99 clinical 
parameters related to ILDs. The PHTM contains 10000 
images generated from the Kyoto Kagaku Lungman 
phantom (http:// kyoto kagaku. com/ produ cts/ detai l03/ 
pdf/ ph-1_ manual. pdf ) at the department of radiology 
and nuclear medicine, Oslo University Hospital. The 
mother phantom has a main body height 45 cm and cir-
cumference 94 cm with provisions for extensions to sim-
ulate bigger size patients. Furthermore, it is composed of 
a chest wall, mediastinum and an abdominal block. The 
phantom was initially utilized in the study of the effect of 
iterative reconstruction levels on image quality [27].

Deep learning architecture
The algorithm was built from two classical CNNs 
(CNN-1 and CNN-2) and two U-net CNNs (UNET-1 and 
UNET-2) deep learning models that are widely used for 
image classification and segmentation, respectively. The 
CNN consists of three successive stages of convolutions 
with 8, 16 and 32 convolution layers of size 3× 3 , respec-
tively. The convolution layer at each stage is stacked with 

rectifier linear unit, batch normalization layer and max 
pooling layer. The rectifier linear unit operates like a 
thresholding algorithm which outputs the input directly 
if it is positive, otherwise, it outputs zero. The batch nor-
malization layer normalizes the activations and gradients 
propagating through the network while the max pooling 
layer reduces the spatial size. Features learned from the 
stack is connected to a fully connected layer which con-
tains softmax activation function for classification.

The U-net is structured into down-sampling and up-
sampling sections. The down-sampling structure is a 
stack of two convolution layers, max pooling layer and 
rectifier linear unit which down-samples its input by a 
factor of 4 with no padding. The up-sampling structure is 
a stack of two transposed convolution layers and rectifier 
linear unit which increases the size of the input from the 
down-sampling structure by a factor of 4. Each convolu-
tion layer and the transposed convolution layer have 64 
filters of size 3× 3.

The CNN-1 will be at the preprocessing stage to predict 
whether or not the input image contains a lung region. 
The UNET-1 and UNET-2 will perform segmentation 
and lung contour refinement, respectively. The CNN-2 is 
at the postprocessing stage to filter out none-lung regions 
that were erroneously segmented by UNET-1.

Generation of training data
The accuracy and robustness of a learning technique is 
dependent on the availability of example images that cap-
tures a wide range of image attributes that is commonly 
found in a clinical setting. Thus, the training phase of 
deep learning models requires reasonably large volume of 
labeled CT data which is a labour-intensive task for radi-
ologists. Our strategy to address this problem will follow 
the recent work of the authors in [28]. Their design phi-
losophy is based on the assumption that the lung region 
presents common visual and geometric similarities 
across subjects, diseases and CT scanners. They propose 
a weakly supervised approach to generate a large amount 
of CT images from unlabeled data, which is subsequently 
used to train and validate the CNN model. The trained 
model was evaluated on another separate set of expert-
annotated labeled CT data.

Figure 2 shows the flow chart for generating the train-
ing data for two CNN models (CNN-1 and CNN-2). It 
begins with visual inspection (VS1, VS2, VS3) of three 
databases (LIDC, PHTM and ILD). During the inspec-
tion, three sets of grayscale images (TR1, TR2, TR3) are 
selected. These images are combined into a single set and 
visually inspected (VS4) again to categorize them into 
images containing lung region CN1-L1 and images with-
out lung region CN1-NL1. Application of Otsu thresh-
olding (OT1, OT2) on each category of images converts 

http://kyotokagaku.com/products/detail03/pdf/ph-1_manual.pdf
http://kyotokagaku.com/products/detail03/pdf/ph-1_manual.pdf
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them to a training data consisting of lung region CN1-L 
and none lung region CN1-NL. The generation of train-
ing data for CNN-2 begins with clustering KMX the three 
sets (TR1, TR2 and TR3) with k-means-based clustering 
tree [29]. A clustering tree is clustering at multiple clus-
tering resolutions [30]. Clustering tree does not require 
the user to specify a predefined number of cluster, so it 
overcomes a major limitation of k-means clustering. This 
is followed by analysis of connected component CCX of 
the output TR4 of the clustering algorithm. This produce 
new set of images TR5. The new set of images are visu-
ally inspected VS5 to generate training data which is cat-
egorized into lung region CN2-L and none lung region 
CN2-NL.

In this study there are five different configurations of 
training data (see Table  1) for the U-net model. In the 
first approach, expert-annotated binary masks of lung 
regions and its duplicate copy are the training images and 
the training labels, respectively. The training images and 
the training labels in the second configuration are binary 
images generated using Otsu-based threshold method. 

The foreground of CT lung images doubles as the train-
ing images and the training labels in the third configura-
tion. The fourth and fifth configurations of training data 
are generated by applying k-means clustering to segment 
grayscale images, from the three databases, into two and 
three classes. The grayscale images and the k-means clus-
tered images are the training images and training labels, 
respectively, of the U-net model.

Figure 3 displays the flow chart for generating the sec-
ond configurations of training data for UNET-1 and the 
training data for UNET-2. Three databases LIDC, PHTM 
and ILD were visually inspected (VS1, VS2, VS3) to 

Fig. 2 Flow chart for the generation of training data for CNN-1 and 
CNN-2 models. Three databases LIDR, PHTM and ILD were visually 
inspected (VS1, VS2, VS3) and three sets of grayscale images (TR1, 
TR2, TR3) was selected. These images are combined to into a single 
set and visually inspected (VS4) again to categorize them into 
images containing lung region CN1-L1 and images without lung 
region CN1-NL1. Otsu thresholding OTX is applied to images in each 
category which converts them to binary images and tagged training 
data, CN1-L and CN1-NL for CNN-1. The generation of training data 
for CNN-2 begins with applying k-means KMX clustering to the sets 
of images (TR1, TR2 and TR3) from the three databases. Application 
of connected component analysis CCX on the output TR4 of the 
clustering algorithm produces set of images TR5 which are visually 
inspected VS5 and categorized into components containing lung 
region CN2-L and components without lung region CN2-NL 

Table 1 The five different configurations of the training data

Training data

Training images Training labels

Ground truth images Ground truth images

Otsu-based binary images Otsu-based binary images

Foreground images Foreground images

Grayscale images Two-class k-means clustered images

Grayscale images Three-class k-means clustered images

Fig. 3 Flow chart for generating the second configuration of training 
data for UNET-1 and the training data for UNET-2 models. Three 
databases LIDR, PHTM and ILD were visually inspected (VS1, VS2, 
VS3) to select three sets of grayscale images (TR1, TR2, TR3). Otsu 
thresholding OT1 converts the three sets of images into binary 
images. The binary images are combined into a single set and further 
classified into two categories; the training images UN1-M and 
training labels UN1-L for the training of UNET-1. The ILD database 
is again visually inspected VS4 to select a set of expert-annotated 
masks TR4 that corresponds to grayscale images in TR3. The 
corresponding images in TR3 is multiplied MTX with TR4 to obtain 
new set of images TR5. The TR5 is converted to a binary image using 
Otsu thresholding OT2 and are tagged the training images UN2-M 
for UNET-2. Canny edge detector EDX extract edge images from 
TR4 and these edge images are tagged the training labels UN2-L for 
UNET-2
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select three sets of grayscale images (TR1, TR2, TR3). 
Otsu thresholding OT1 converts the three sets of images 
into binary images. The binary images are combined 
into a single set tagged UN1-M, the training images 
for UNET-1. We make a duplicate copy of UN1-M and 
tagged it as UN1-L, the training labels for UNET-1. The 
ILD database is again visually inspected VS4 to select 
a set of expert-annotated masks TR4 that corresponds 
to grayscale images in TR3. The corresponding images 
in TR3 is multiplied MTX with TR4 to obtain new set 
of images TR5. The TR5 is converted to a binary image 
using Otsu thresholding OT2 and are tagged the training 
images UN2-M for UNET-2. Canny edge detector EDX 
extracts edge images from TR4 and these edge images 
are tagged with the training labels UN2-L for UNET-2.

Training
The proposed method was implemented using the MAT-
LAB computing environment on a Microsoft Windows 
10 Education edition personal computer. The system 
has an installed physical memory of 16 GB with Intel(R) 
Core(TM) processor rated as i7-8650U CPU @ 1.90GHz, 
2112 Mhz. For all the CNNs and U-nets, the initial learn-
ing rate and maximum epochs was set at 0.001 and 100, 
respectively. The validation frequency and mini batch 
size for the CNNs and U-nets are 30 and 32, respectively.

The training data for CNN-1 model contains 5000 
binary images each for the class of lung region and none 
lung region. Figure 4a and b are examples of the binary 
image containing lung and none regions, respectively. 
The CNN-2 model utilize 10,000 training data. Examples 
of images that contain connected components belonging 
to the lung and none lung regions are in Fig.  4c and d, 
respectively. The length of the training phase are 3 and 5 
h for CNN-1 and CNN-2, respectively, and accuracy of 
99.6 and 97.0%, respectively.

Four thousand binary images, each for the training 
images and the training labels, were utilized to train 
the first U-net model. Figure  4e is example of a binary 
mask that is tagged as both a training image and training 
label. Figure  4f is a plot of loss versus number of itera-
tions during the training phase of the first U-net model. 
A zoomed-in version (Fig. 4g) of the plot in Fig. 4f shows 
that it takes approximately 50 iterations to attain optimal 
accuracy. Figure  4h is a grayscale image from the ILD 
database that was converted to a binary image (Fig.  4i) 
and used as one of the 780 training images for train-
ing the second U-net model. The image in Fig.  4j is the 
binary mask of Fig. 4h that was converted to edge image 
(Fig. 4k) which is tagged as a training label in the training 
data of the second U-net model. In Fig. 4l, the plot of loss 
versus number of iterations show that the training phase 

of the second U-net model attained optimal accuracy in 
less than 50 iterations.

Segmentation
The flow chart in Fig. 5 and the images in Fig. 6 describe 
the successive steps to implement the proposed three-
stage segmentation system. Detailed implementation are 
provided below.

Pre‑processing
The Otsu thresholding algorithm is applied on the test 
image TIM shown in Fig. 6a. This step converts BIX to 
a binary image BIM before it is fed to a classifier CNN-1. 
If the classifier predicts NL that the image do not contain 
a lung region, a function CBK generates an image TBK 
having only zero pixels as the segmented slice SGM. For 
prediction LR which indicate the presence of lung region, 
the quality of the test image is evaluated QEV using our 
previous contribution [31]. We set quality score of 0.9 as 
threshold τ1 to determine whether to enhance Y or not to 
enhance N the contrast quality of the test image before 
it is moved further for processing. The quality score of 
the test image is 0.81, hence the system apply contrast 
enhancement algorithm QEN proposed by [32] on the 
test image. We set the enhancement algorithm tuning 
parameter at β = 4 . The contrast-enhanced image TQM 
in Fig. 6b is moved to the processing stage.

Processing
At the processing stage, a trained U-net UNET-1 con-
verts the grayscale test image to a binary image TCB 
shown in Fig.  6c. The binary image is further fed to 
a function LCR which extract candidate lung region 
TCR  shown in Fig.  6d. The candidate lung region are 
the dark pixels in Fig. 6a that lies within the foreground 
region of the grayscale image.

Post‑processing
The image TCR  that contains the candidate lung region 
is moved to a function CRX which computes a variable 
τ2 that determines whether to refine N or not to refine Y 
the borders of the extracted lung region. The CRX func-
tion incorporates a Canny edge detector to compute edge 
image (Fig.  6e) of the extracted lung region and a mor-
phological operator (Fig. 6f ) to fill holes in the extracted 
lung region. We define τ2 = A2/A1 where A1 , A2 are the 
areas of the edge image and the filled image in Fig.  6e 
and Fig.  6f, respectively. The reasoning behind the defi-
nition of τ2 is that correctly extracted lung regions have 
completely filled regions with smooth and closed con-
tours. Therefore, τ2 will generally increase with the qual-
ity of the smoothness and contours that define the lung 
region. We set a threshold τ2 = 12 , but A2/A1 = 10 for 
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Fig. 4 Binary image tagged as a containing and b not containing lung region in the CNN-1 training data. Connected component tagged as c 
containing and d not containing lung region in the CNN-2 training data. e Binary mask of a grayscale CT slice that doubles as training image and 
training label in UNET-1 training data. f Plot of loss versus number of iterations during the training of UNET-1. g Zoomed-in version of the plot in the 
preceding subfigure. h CT slice from the ILD database. i Binary image of the slice in the preceding subfigure. j Lung region of the CT slice from the 
ILD database. k Contour image of the lung region shown in the preceding subfigure. l Plot of loss versus number of iterations during the training of 
UNET-2
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the image under consideration. Therefore, the candidate 
lung region TCR  is fed to a trained network UNET-2 
which refines the contours of the lung borders. The out-
put of the trained network TCM shown in Fig. 6g is filed 
with holes and each region in the filled image is identified 
using connected component analysis CCX and fed to a 
classifier CNN-2. The classifier performs extra self-veri-
fication on the image by filtering out none lung regions 
and passing on only regions considered as lung to form 
the segmented image SGM in Fig. 6h.

Evaluation metric
The accuracy of the segmentation was evaluated using 
the Dice similarity coefficient D. Specifically, all images 

segmented using UNET-1 trained on the five different 
configurations of the training data were evaluated based 
on the dice similarity score with respect to their corre-
sponding ground truth. The dice score is a popular statis-
tical tool used for the validation of deep learning-based 
image segmentation algorithms. It measures the similar-
ity between the segmented region X and the ground truth 
Y based on how they overlap [33].

Experiments and results
There were two experiments to evaluate the performance 
of the proposed method. The first experiment utilizes 
1230 slices from the 3DIRCAD database. The second 
utilize 1100 slices from the ILD database. Tables  2 and 
3 display the performance evaluation results for each 
experiment based on the Dice score. The first and second 
columns of Tables 1 and 2 are five different configurations 
of the training data. The remaining columns are the three 
different configurations of our segmentation system.

Four images displayed in each column of Fig.  7 are 
slices from the 3DIRCAD database. The second, third, 
fourth and fifth rows in each column are the binarized 
image, candidate lung region, segmented lung region 
and ground truth. Two sets of four images from the ILD 
database are displayed separately in Figs.  8 and 9. The 
binarized image, candidate lung region, segmented lung 
and the ground truth are displayed in the second, third, 
fourth and fifth row in each column of the respective 
figures.

The proposed method was also evaluated on 500 and 
700 images from the LIDC and the phantom databases. 
Ground truth are not available for these two databases, 
however, we display four test images from each database 
in each column of Figs.  10 and 11. The second, third, 
fourth and fifth rows in each column of these figures 
are the corresponding binarized image, candidate lung 
region, segmented lung and the ground truth images.

Discussion
In the past five years, artificial intelligence (AI) has dem-
onstrated potential as a subspecialty in the filed of radiol-
ogy and medicine by providing useful tools to facilitate 
physician’s interpretation of images for the diagnosis of 
diseases [34]. Deep learning-based AI generally demon-
strate better performance than traditional image pro-
cessing methods and has pushed the limits for machine 
learning, artificial intelligence and computer vision in 
many applications [35, 36]. Trained deep learning mod-
els, unlike the traditional methods, have relatively few 
operating parameters. Traditional methods formulated 

(1)D(X ,Y ) =
2|X ∩ Y |

|X | + |Y |

Fig. 5 The three successive steps of the proposed lung region 
segmentation. Preprocessing: The CNN-1 identifies only the CT slices 
that contains lung region followed by quality evaluation. Processing: 
The identified CT slice is fed to a UNET-1 which converts the slice to a 
binary image. Postprocessing: Each connected components in the 
binary image are fed to CNN-2 and UNET-2 to extract only connected 
components associated with the lung region and for contour 
refinement, respectively, before the segmented image is displayed
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Fig. 6 Implementation of the proposed method using image from the ILD database. a Original image. b Contrast enhancement of the original 
image. c Binary image of the original image. d Candidate lung region. e Perimeter feature of the binary image. f Area feature of the original image. g 
Refined contour. h Segmented image. i Ground truth

Table 2 3DIRCAD database: performance of the proposed method using five configurations of training data at the processing stage 
and three configurations of the segmentation system

Training data Dice score

Training images Training labels Three-stage
system

Without
CNNs

Without
contrast
enhancement

Ground truth images Ground truth images 0.81 0.76 0.79

Otsu-based binary images Otsu-based binary images 0.85 0.81 0.80

Foreground images Foreground images 0.83 0.77 0.80

Grayscale images Two-class k-means clustered images 0.90 0.81 0.80

Grayscale images Three-class k-means clustered images 0.92 0.83 0.82
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as a three-stage system have relatively large operating 
parameters, thereby making it difficult to optimize seg-
mentation accuracy across images with different attrib-
utes. For this reason, there is growing interest among 
researchers to apply deep neural network in the imple-
mentation of the different steps within traditional 
methods. The authors in [37] and [38] apply deep CNN 
techniques at the preprocessing stage for the removal of 
noise in low dose CT images. An instance segmentation 
technique inspired by the intuitive and classical water-
shed transform was proposed in [39]. The authors use 
deep CNN to develop a model that generates a modi-
fied watershed energy landscape from which high qual-
ity objects can be extracted. The authors in [40] propose 
a multilevel wavelet CNN. Their design philosophy is to 
embed wavelet transform into a CNN architecture to 
simultaneously reduce the resolution of feature maps 
and increase receptive field. Following on this trend, we 
implemented the three stages of the traditional meth-
ods using deep neural networks. Below, we outline sev-
eral design features and the performance of the proposed 
method which makes it a useful tool in a clinical setting.

Importance of quality evaluation and enhancement
Image analysis is a critical step in the evaluation of 
chest CT radiological characteristics and lesion distri-
bution patterns in patients of respiratory diseases such 
as COVID-19 pneumonia [41]. Most current contribu-
tions ignore quality evaluation of the training images 
whereas the reliability of diagnosis is strongly depend-
ent on image quality. The proposed method incorporates 
a no-reference image quality evaluation and the quality 
of a CT slice can be enhanced when its quality score is 
below a predefined threshold. This approach reduces 
the manual task of subjective evaluation by radiologists 
and significantly reduces the time it takes for experts 
with differing opinions on image quality to arrive at a 
consensus. Columns 3 and 5 in Tables  1 and 2 are the 
dice scores recorded by the proposed method with and 

without quality evaluation and enhancement, respec-
tively. Results from the experiments shows that image 
quality evaluation and enhancement can improve seg-
mentation accuracy.

Simple and efficient algorithm
We utilize simplified versions of CNNs and U-nets 
to implement each stage of the segmentation system. 
Images at the processing stage are binary images. The 
proposed method can be considered simple, fast, com-
putationally efficient with reproducible segmentation 
results. Therefore, it is potentially a valuable and price-
less friend rather than a foe of radiologists as it can assist 
radiologists to overcome challenges encountered in the 
diagnosis of diseases so that they have more time attend-
ing to patients [42].

Exploring different configurations of training data
Our proposed method explore five different approaches 
to configure a training data. The five different configura-
tions of training images and training labels are displayed 
in the first and second columns of Tables 1 and 2. Limited 
training time was recorded for training data configura-
tions shown in the first, second and third rows. The plot 
of loss versus number of iterations for the training data 
containing only ground truth images (first row of Table 2) 
is displayed in Fig. 4f. The plot shows that optimal accu-
racy is attained in less than 50 iterations, approximately 
15 min. Two factors contribute to limit the length of the 
training phase. First, all the training data are in the binary 
domain which is naturally computationally efficient. Sec-
ond, the training labels are duplicate copy of the training 
images. Thus, our proposed method can be considered as 
a step towards the application of deep learning to real-
time operations.

Deep learning-based contour refinement
The presence of ground-glass opacities in COVID-
19 patients [2] and fibrosis in ILD patients [3] causes 

Table 3 ILD database: performance of the proposed method using five configurations of training data and three configurations of the 
segmentation system

Training data Dice score

Training images Training labels Three-stage
system

Without
CNNs

Without
Contrast
Enhancement

Ground truth images Ground truth images 0.87 0.85 0.81

Otsu-based binary images Otsu-based binary images 0.92 0.91 0.83

Foreground images Foreground images 0.88 0.84 0.79

Grayscale images Two-class k-means clustered images 0.93 0.87 0.85

Grayscale images Three-class k-means clustered images 0.95 0.86 0.87
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Fig. 7 Performance of the proposed method on four CT images from the 3DIRCAD database are displayed in columns 1, 2, 3 and 4. (Row 1) Original 
image, (Row 2) Binarized image, (Row 3) Candidate lung region, (Row 4) Segmented lung region (Row 5) Ground truth
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Fig. 8 Performance of the proposed method on four CT images from the ILD database are displayed in columns 1, 2, 3 and 4. (Row 1) Original 
image, (Row 2) Binarized image, (Row 3) Candidate lung region, (Row 4) Segmented lung region (Row 5) Groundtruth
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Fig. 9 Another performance of the proposed method on four CT images from the ILD database are displayed in columns 1, 2, 3 and 4. (Row 1) 
Original image, (Row 2) Binarized image, (Row 3) Candidate lung region, (Row 4) Segmented lung region (Row 5) Groundtruth
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discontinuity in the border of lungs in CT images. This 
feature makes it difficult for automated systems to accu-
rately extract the lung region. To the best of our knowl-
edge, current approaches are based on traditional image 
processing methods. For example, the contribution by 
[3] refines the candidate lung region by correcting the 

contour of the left lungs using the Smallest Univalue 
Segment Assimilating Nucleus (SUSAN) algorithm [43] 
and repairing the regions of the right lungs. Another 
contribution [44] that propose to segment multiple 
organs of the thoracic cavity using U-net-generative 
adversarial network (U-net-GAN) refines the lung using 

Fig. 10 Images describing the performance of the proposed method on four CT images from the LIDC database are displayed in columns 1, 2, 3 
and 4. (Row 1) Original image, (Row 2) Binarized image, (Row 3) Candidate lung region, (Row 4) Segmented lung region
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morphological operations. Traditional methods are nat-
urally prone to errors in the presence of varying image 
attributes. The proposed deep learning-based method 
potentially overcomes the limitations of traditional meth-
ods as it learns the attributes of examples images with 
pathology during the training phase.

Cheap and quality data
The implementation of deep learning-based AI requires 
reasonable large volume of example images from which 
the model can learn patterns and features [45]. Local, 
regional and international regulations on patient pri-
vacy makes it difficult to obtain enough data for the 

Fig. 11 Images describing the performance of the proposed method on four CT images from the PHTM database are displayed in columns 1, 2, 3 
and 4. (Row 1) Original image, (Row 2) Binarized image, (Row 3) Candidate lung region, (Row 4) Segmented lung region
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implementation of deep learning-based AI. Furthermore, 
the generation of large volume of labeled data for train-
ing is a daunting and expensive task as it requires the 
recruitment of several radiologists. This paper addresses 
the problem of data availability by utilizing k-means clus-
tering to automatically generate cheap and large volume 
of labeled CT data across different databases to augment 
limited training data. Review of the generated data by 
radiologists will require minimal manual labour.

Reduction of false positives
The efficacy of automated image analysis for the diagnosis 
and treatment of respiratory disease such as COVID-19 
can be compromised by presence of intensity inhomoge-
neity, artifacts, and closeness in the gray level of differ-
ent soft tissues in the thoracic region [46]. All the slices 
acquired during CT examination do not contain lung 
regions. Examples are CT slices located towards the infe-
rior and superior regions of the thorax. Some diagnostic 
task require manual identification and exclusion of slices 
containing none lung regions before the useful slices are 
fed to a automated system. This paper eliminates manual 
task by the use of a CNN classifier at the pre-processing 
stage to identify and exclude slices that do not contain 
lung region. Another CNN classifier located at the post-
processing stage is an extra verification step to reduce 
false positives and enhance segmentation accuracy. Com-
parison of Dice scores in the third and fourth columns 
of Tables 1 and 2 show that the use of CNNs can reduce 
false positives and increase segmentation accuracy.

Comparative performance evaluation
We utilize three publicly available databases for this 
study. Two of the databases, the 3DIRCAD and the ILD 
databases have ground truths but the images in both 
databases were not categorized into training and test 
sets. Several researchers who utilized the databases for 
segmentation arbitrarily selected their training and eval-
uation data from the databases. For this reason, it was 
impossible to have a common dataset for a fair quantita-
tive comparison of our proposed method with the algo-
rithms proposed by other authors.

Limitations and future work
The proposed paper does not address all the chal-
lenges which limits the deployment of AI in a clinical 
setting. For example, the deep learning algorithm does 
not include explainable AI that can provide insight on 
how and why the model makes a decision at different 
stages of the segmentation. Also, we did not involve the 
services of a radiologist to evaluate the accuracy of the 
automatically generated images that were used to aug-
ment the training data. Future research direction will 

incorporate explainable AI and explore the use of pre-
trained models to enhance segmentation accuracy.

Conclusions
Traditional image processing methods are considered 
efficient because they incorporate explicit mathemati-
cal models that can easily be optimized for a single or 
limited number of images. However, its performance 
can be limited by the variability of attributes across 
large volumes of images in a clinical setting. The inte-
gration of several traditional techniques with the aim of 
improving performance increases the algorithm operat-
ing parameters, thereby making it difficult to optimize 
the algorithm operating performance and segmentation 
accuracy. This paper exploit the benefits of deep learn-
ing techniques by proposing a three-stage segmentation 
where each stage of the segmentation is implemented 
using deep learning technique. The trained network at 
the different stages of the segmentation significantly 
reduces the algorithm operating parameters by learning 
the variations in image attributes from example images 
across three different databases. The proposed method 
was evaluated on images from two publicly available 
databases and the results are promising for application 
in a clinical setting.
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