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Abstract 

Background: One challenge to train deep convolutional neural network (CNNs) models with whole slide images 
(WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate 
the scarcity of annotated data include: using transfer learning, data augmentation and training the models with less 
expensive image-level annotations (weakly-supervised learning). However, it is not clear how to combine the use of 
transfer learning in a CNN model when different data sources are available for training or how to leverage from the 
combination of large amounts of weakly annotated images with a set of local region annotations. This paper aims to 
evaluate CNN training strategies based on transfer learning to leverage the combination of weak and strong anno-
tations in heterogeneous data sources. The trade-off between classification performance and annotation effort is 
explored by evaluating a CNN that learns from strong labels (region annotations) and is later fine-tuned on a dataset 
with less expensive weak (image-level) labels.

Results: As expected, the model performance on strongly annotated data steadily increases as the percentage of 
strong annotations that are used increases, reaching a performance comparable to pathologists ( κ = 0.691± 0.02 ). 
Nevertheless, the performance sharply decreases when applied for the WSI classification scenario with 
κ = 0.307± 0.133 . Moreover, it only provides a lower performance regardless of the number of annotations used. The 
model performance increases when fine-tuning the model for the task of Gleason scoring with the weak WSI labels 
κ = 0.528± 0.05.

Conclusion: Combining weak and strong supervision improves strong supervision in classification of Gleason pat-
terns using tissue microarrays (TMA) and WSI regions. Our results contribute very good strategies for training CNN 
models combining few annotated data and heterogeneous data sources. The performance increases in the controlled 
TMA scenario with the number of annotations used to train the model. Nevertheless, the performance is hindered 
when the trained TMA model is applied directly to the more challenging WSI classification problem. This demon-
strates that a good pre-trained model for prostate cancer TMA image classification may lead to the best downstream 
model if fine-tuned on the WSI target dataset. We have made available the source code repository for reproducing the 
experiments in the paper: https:// github. com/ ilmar o8/ Digit al_ Patho logy_ Trans fer_ Learn ing
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Background
Prostate cancer (PCa), the fourth most common can-
cer worldwide, is the sixth leading cause of cancer death 
among men, with 1.2 million new cases and more than 
350,000 deaths in the world in 2018  [1]. PCa also has 
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the second-highest incidence of all cancers in men  [1]. 
The gold standard for the diagnosis of PCa is the visual 
inspection of tissue samples from needle biopsies or 
prostatectomies. The Gleason score (GS) is the standard 
grading system currently used to describe the aggressive-
ness of PCa [2].

The Gleason scoring assigns a number given the 
architectural patterns shown in prostate tissue samples 
observed under a microscope. The system describes 
tumor appearance and aberrations in the prostate tis-
sue glands in biopsies or radical prostatectomy speci-
mens. GS staging is required for treatment planning, 
and pathologists use it to help in prognosis and guide the 
therapy. The Gleason score comprises the sum of the two 
patterns (Gleason patterns, from 1 to 5) most frequently 
present in the tissue slide producing a final score in the 
range of 2 to 10. The revised Gleason score from the 
International Society of Urological Pathology (ISUP) is 
used in pathology routine [3].

Thanks to the recent improvements in digital pathology 
and the availability of slide scanners, the diagnosis is now 
also increasingly performed through the visual inspec-
tion of high-resolution scans of a tissue sample, known as 
Whole-Slide Images (WSIs) [4].

Computer assisted diagnosis (CAD) systems in digital 
pathology cover tasks such as the automatic classification 
or grading of a disease, segmentation of regions of inter-
est like mitotic cells and tumor-infiltrating lymphocytes, 
as well as the retrieval of similar cases, among others [5, 
6].

One of the aims of computational pathology (CP) is the 
development of CAD tools for helping pathologists in the 
analysis of WSIs, that can easily be over 100, 0002 pix-
els in size. The lack of a large set of images annotated in 
detail (pixel level) is one of the constraints that research-
ers have when training deep learning models in com-
putational pathology. Despite the lack of annotations, 
methods have shown partial success in medical imaging 
when trained with small sets of annotations using tech-
niques such as multiple instance learning, active, transfer 
and weakly supervised learning [7–18].

Deep Convolutional Neural Network (CNN) models 
are currently the backbone of the state-of-the art meth-
ods to analyze prostate WSIs [7, 8, 17] in computational 
pathology. The success of CNNs relies on automatically 
learning the relevant features to classify the input images 
using a large set of annotated data with supervised learn-
ing. Obtaining big annotated datasets can be feasible for 
natural images, where the annotation effort is reduced 
by leveraging crowd-sourcing platforms such as Ama-
zon mechanical turk  [19]. In medical imaging, and par-
ticularly in histopathology, annotations from regions of 
interest require qualified personnel that undergoes years 

of training and often has limited time for such activities 
due to a heavy clinical workload. Manually increasing 
the number of annotations the number of annotations 
in a training dataset is well-known to improve the gen-
eralization performance in machine learning models. 
This is difficult in medical applications because of the 
costly annotations. For this reason, alternative sources of 
supervision using readily available and inexpensive labels 
(i.e., from clinical or pathology reports) are being stud-
ied to obtain larger annotated datasets without the time 
and cost of the pixel-wise annotations. Transfer learning 
refers to the set of techniques where models are trained 
on one dataset (or task) and then applied to another task 
(or dataset), where the features that are learned by the 
model can be reused. Empirical results show that it is 
better to transfer the weights of an ImageNet pre-trained 
network than to train from scratch for histopathology 
classification tasks[20]. The effect of transfer learning can 
be seen as a good choice of initial parameters for a deep 
neural network that will have a strong regularizing effect 
on its performance  [21]. There are several motivations 
for transfer learning. One of the principal reasons is to 
discover generic features likely to be of interest for many 
classification tasks on similar data  [22]. In the context 
of medical imaging, two types of transfer learning are 
commonly described in the literature [17, 23]: (1) where 
model features, for example the weights of a CNN archi-
tecture, are used to extract a continuous vector represen-
tation, i.e. a feature vector, from which a linear classifier 
is trained on top of this generic inferred representation 
to predict labels that were not used for the initial training 
of the model. (2) When a pre-trained model is used as the 
initialization for a second model and optimized or fine-
tuned using a new set of labels that correspond to the 
new task. For computational pathology tasks, the second 
strategy of fine-tuning models from natural image data-
sets, such as ImageNet, was shown to yield better results 
than the off-the-shelf feature extraction  [23]. Transfer 
learning is also a good strategy to speed-up model train-
ing time, since the models converge faster. Strong labels 
refer to manually delineated regions of interest in the 
images. These labels are also commonly called pixel-wise 
labels since usually each pixel can be assigned to one cat-
egory depending on the contour of the manually delin-
eated region. In computational pathology, such datasets 
with strong labels are rare because having a thoroughly 
annotated dataset is very expensive with such large 
images.

Weak labels refer to general categories such as cancer, 
benign tissue, or a score in a grading system of a specific 
organ, e.g., the Gleason grade in prostate cancer  [7, 8] 
that are attached to an image as a whole and not to image 
regions. Spatial details are often lacking in pathology 
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reports, since the exact location of the relevant areas is 
not given.

The line of research that investigates how to use inex-
pensive weak labels, known in the machine learning liter-
ature as weakly supervised learning has recently obtained 
good results in medical imaging, including computational 
pathology [8, 9, 15, 24–27]. In computational pathology, 
weak labels (or WSI-level labels), such as a grade for the 
entire image are often readily available for digital pathol-
ogy applications since they are usually included in pathol-
ogy reports summarizing the findings of the pathologist 
about the tissue slide or WSI. Weakly supervised learning 
allows to bypass the need for strong supervision by using 
weaker labels that are often easier to obtain with limited 
efforts, also in large quantities. However, this usually 
comes at the cost of requiring a large amount of weakly 
annotated data to reach good performance, i.e., a number 
of WSIs in the order of thousands [9].

A potential solution to the need for a large annotated 
dataset is to gather different supervision sources to train 
and test a model for a specific task leveraging from sev-
eral datasets and transfer learning. Alleviating the poten-
tial of overfitting to one dataset allows obtaining a robust 
model that accounts for a higher variability of the sample 
classes [28].

This opens the question of how to use different types 
of supervision and data sources together in practice, 
since this can alleviate the requirement of many weak 
annotations. Furthermore, the trade-off between strong 
and weak supervision for CNN models in computational 
pathology is not clearly defined.

As discussed in the above paragraphs, weakly super-
vised CNN models pose feasible solutions to tackle clas-
sification tasks in computational pathology, particularly 
with the help of transfer learning approaches using the 
most frequently ImageNet pre-trained models. However, 
the computational pathology literature lacks methods 
dealing with the problem of building upon knowledge 
acquired in one histopathology dataset to another with 
similar characteristics or with the same underlying clas-
sification task.

There are many weakly annotated datasets available 
and also federated learning in hospitals is starting to be 
used  [9]. The investigation of deep learning methods 
that leverage from different supervision levels, as well as 
knowing how many annotations are required for training 
such models, is of paramount importance for the prac-
tical deployment of computational pathology models in 
digital pathology laboratories.

In this paper fully and weakly supervised CNN models 
are compared using two openly accessible data sets and 
transfer learning, targeting prostate cancer scoring. Tis-
sue microarrays with strong annotations and WSI with 

weak labels. We evaluated the performance gap between 
the models with an increasing number of strong annota-
tions and the models trained with weakly labeled images 
and also both sources of data.

The organization of the article is as follows: first, we 
discuss the related work dealing with transfer learn-
ing and weakly supervised learning in computational 
pathology and how our contributions fit into the context 
of automatic PCa grading with deep learning. Then, in 
the experimental setup section, we describe the charac-
teristics of the datasets, baseline CNN models and the 
transfer learning strategies. "Results" section, presents 
the results of the experiments and finally in "Discussion" 
section discusses the results in the context of similar 
approaches and models that might benefit from the strat-
egies presented in the paper (Table 1).

Related work
The related work is summarized in Table  4. Both, the 
notion of combining weak and strong supervision  [15] 
and transfer learning approaches  [23] exist in the com-
putational pathology literature. In this section we dis-
cuss the existing work and explain the contributions of 
this paper in the context of the related work. Recently, 
Otálora et  al.  [29] compared weakly supervised strate-
gies for the fine-grained task of Gleason grading, report-
ing that the use of class-wise data augmentation and a 
DenseNet architecture using transfer learning lead to 
a kappa-score of κ = 0.44 in a set of 341 WSIs from the 
TCGA-PRAD repository. Nevertheless, the authors did 
not include strong supervision into the training of their 
models, despite having a limited number of WSIs. In the 
work of Ström [12] the authors obtained a κ = 0.62 . The 
authors trained models with transfer learning using an 
ImageNet pre-trained InceptionV3 deep CNN architec-
ture, for the Gleason scoring task using 1631 strongly-
annotated WSIs. Arvaniti et  al.  [15] present a CNN 
architecture that combines weak and strong supervision 
for the classification tasks of high vs. low and Gleason 
scoring groups (6, 7 = 3+ 4 , 7 = 4 + 3 , 8, 9–10) used 

Table 1 Number of TMA cores in the TMAZ dataset

Class/set Train Val Test

Benign 61 42 12

GS6 165 35 88

GS7 58 25 38

GS8 120 15 91

GS9 26 2 3

GS10 78 14 13

Total 508 133 245
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in clinical practice  [30]. The model penalizes the weak 
supervision signal of patches by weighting them using 
predicted probability of the strong labels. The model 
using self-weighted weak supervision obtained an accu-
racy of 0.848 for the binary task and a Kendall’s τ=0.540 
for Gleason scoring using 447 WSIs and 886 annotated 
tissue microarrays.

Campanella et al.  [9] use transfer learning and a mas-
sive dataset of more than 44,000 WSIs to weakly train 
CNN classifiers. The ImageNet pre-trained classifiers 
were trained using a multiple instance learning paradigm, 
using bags in which the assigned label referred only to a 
non-empty subset of elements in the bag, accounting for 
the inherent label noise. While their results paved the way 
for automated screening tools in computational pathol-
ogy (where the pathologist can discard non-cancerous 
slides), their generalization to different clinical scenarios 
with highly heterogeneous data and fine-grained classes 
remains to be confirmed. Bulten  [7] and colleagues use 
several CNN classifiers and immunohistochemistry 
labels to distill the noisy weak WSI-level labels obtaining 
a Gleason grade classifier with a performance compara-
ble to the pathologist inter-rater agreement on a set of 
∼ 1250 IHC-H&E registered biopsies.

Recently, multiple instance learning techniques and 
attention models have had partial success in weakly 
supervised scenarios [9, 13, 26]. It was shown that despite 
the noise, the use of weak labels only allows a good per-
formance for the low vs. high Gleason score classifica-
tion  [9, 31], as well as the Gleason score tasks  [8]. This 
might be due to the definition of the Gleason scoring 
system itself, where the score directly correlates with the 
percentage of areas with the most frequently repeated 
Gleason patterns present in the image. However, to reach 
a clinical-grade performance, the number of images 
needed for training sometimes can be in the order of 
thousands of slides, as shown by Campanella et al. [9] for 
PCa detection.

Contributions
This paper aims at contributing to answer two questions: 
(1) How to build up knowledge from different datasets 
to train histopathology image classifiers. We are par-
ticularly interested in how to distill the less-expensive, 
weakly annotated data in conjunction with few annotated 
regions. (2) How many annotations are necessary to train 
a model for automatic Gleason grading. For answering 
the questions we evaluate the trade-off of using small 
amounts of strong annotations from one data source, 
jointly with weak annotations from another data source 
to train supervised CNN models. CNN models are fine-
tuned with different levels of pixel-wise labels of pros-
tate cancer grading from TMA images. Then, the trained 

model is evaluated on Gleason scoring in the same type 
of TMA cores and then on WSIs from the TCGA-PRAD 
repository. Second, the pre-trained model is further 
fine-tuned with images that use the weak labels from the 
TCGA-PRAD reports to perform Gleason scoring at the 
WSI level. Despite the TMA dataset with strong labels 
having different visual characteristics from the WSI data-
set with weak labels, fine-tuning the best model trained 
with TMA cores with the weak labels reduces the effect 
of domain shift, obtaining considerably better results 
than directly predicting on the external datasets and also 
better than training with the weak labels only, as reported 
in the results in "Results" section. In this paper we use 
only   400 slides, the weakly supervised training serves 
as a performance baseline to compare against other pre-
sented strategies. The main technical contributions of 
this paper are the following:

• A thorough evaluation of transfer-learning, using 
fixed amounts of strong labels, in the task of prostate 
cancer image classification with CNNs, using openly 
accessible datasets for evaluation of the generaliza-
tion power of the model.

• Systematic evaluation of the CNN performance 
dependency on strong, weak labels and a combina-
tion of the two types of labels in the task of prostate 
cancer image classification with heterogeneous data-
sets.

Methods
Figure  1 summarizes the overall workflow of the pro-
posed approach to measure the dependency on annota-
tions with different data sources in CNN models for PCa 
grading. First, we gather and preprocess the PCa grad-
ing datasets with heterogeneous characteristics ("Data-
sets" section), and with a different level of specificity in 
the labels. The first dataset consists of TMAs that are 
thoroughly annotated with pixel-wise Gleason pattern 
annotations. The second dataset is composed of WSIs 
of prostactectomies, in this case we used the WSI-level 
label that was extracted from the pathology reports.

Next, the CNN models are trained according to three 
strategies ("Datasets" section) as follows. The first one 
takes fixed percentages of pixel-wise annotations and 
trains fully supervised CNN models for each percent-
age. Like this we can evaluate how the performance of 
the CNN depends on the number of strong annotations 
provided for training the model. This is reported in 
"Results" section. The second strategy consists of tak-
ing each of the previously trained CNN architectures 
and fine-tune the weights using the weakly supervised 
dataset from the external source. Here, we evaluated if 
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Fig. 1 The main components of our approach: Datasets for PCa grading with strong and weak labels ("Datasets" section, CNN model training 
with three strategies "Datasets" section and third, the tests performed in two scenarios of PCa grading: tissue microarrays of prostate tissue and 
prostactectomy WSIs, "Results" section. The patches from the strongly labeled TMAs are used to train CNN models with an increasing number of 
annotations, evaluating the performance depending on the number of strong labels used for training. The ImageNet pre-trained models are either 
trained using only the weak WSI-level label or fine-tuned with WSI patches and weak labels, combining different sources of supervision. The models 
are tested in the two scenarios of PCa grading: tissue-microarrays, and prostactectomies. Arrows of the same color indicate the data or model input 
from the previous step
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it was better to perform direct inference with the pre-
viously trained models or to transfer the weights of 
the fully supervised CNN and combining them using 
weakly supervised fine-tuning. In the third strategy, 
we trained the CNN model from scratch using only the 
WSI-level labels as supervision. While there are many 
non-relevant areas used for training the models, results 
show that the performance is robust in a test set with 
similar preparation conditions.

Datasets
For the evaluation of the approaches, two openly acces-
sible datasets are used in the experiments for Gleason 
scoring and Gleason pattern classification. The datasets 
originate from different sources. Despite the fact that the 
tissue is stained in all cases with hematoxylin and eosin 
(H&E) and that all the datasets are from prostate tissue, 
the visual appearance of the images shows many differ-
ences in the preparation. As shown in previous work [32, 
33], not using color augmentation or stain-invariant 
methods decreases the performance of CNN models in 
WSI analysis. We account for this variability using image 
augmentations as described in "Datasets" section.

TMAZ: tissue microarrays with strong annotations
The first dataset is the pixel-wise pathologist-annotated 
tissue microarrays dataset released by Arvaniti et al. [34], 
referred to as TMAZ (Tissue MicroArrays Zürich). This 
dataset contains 886 prostate TMA cores, each of 30002 
pixels, from a cohort of 641 patients for model training/
validation and 245 for testing, with one image core per 
patient. The TMAs were scanned at a 40x resolution (0.23 
microns per pixel) at the University Hospital of Zurich 
(NanoZoomer-XR Digital slide scanner, Hamamatsu). 
Tumor stages and Gleason scores were assigned accord-
ing to the criteria of the Union for International Cancer 
Control and the World Health Organization/Interna-
tional Society of Urological Pathology. In this dataset the 
annotated classes are benign epithelium, Gleason pat-
terns 3, 4 and 5. Given the pixel-level region annotations, 
the Gleason score is computed using the two most prom-
inent patterns present in the core, if only one pattern is 
present in the core, the Gleason score is twice that pat-
tern. Overlapping patches corresponding to areas of 7502 
pixels that cover enough gland context are extracted from 
the annotations mask. All the patches are scaled to 2242 
pixels for feeding them to the CNN models, which are 
pre-trained with ImageNet  [18]. The number of patches 
extracted from the annotations for each Gleason pattern 
are listed in Table 2 and the number of TMA cores used 
in the experiments is listed in Table 1.

TCGA‑PRAD: Prostactectomies with weak labels
The second dataset consists of 301 cases of prostatec-
tomy WSIs from the public resource of The Cancer 
Genome Atlas (TCGA) repository of prostate adeno-
carcinoma (TCGA-PRAD)  [35, 36]. Removal of the full 
prostate (radical prostatectomies) is only done in severe 
cases. There are thus no fully benign tissue slides in the 
TCGA-PRAD dataset. Having a benign prostatectomy 
implies a resection of the whole prostate when the tis-
sue was healthy. When more benign lesions are present, 
the imaging technique chosen is usually an ultrasound 
or magnetic resonance imaging. In contrast with TMA, 
a single TMA core might contain only benign tissue due 
to its small size ( 0.7 mm in diameter vs. 3 cm of height in 
a prostatectomy slide) and the potential tissue sampling 
strategies, which do not always account for the tumor 
area.

From the 301 cases, 171 are used for training, 84 for 
validation and 46 for testing. The selected cases are a sub-
set of all the available cases in TCGA-PRAD. We selected 
only the Formalin-Fixed Paraffin-Embedded slides. The 
other available slides also contained frozen sections, 
which include morphological changes due to the dehy-
dration process that can lead to more noisy region extrac-
tion. Each WSI is paired with its corresponding primary 
and secondary Gleason pattern (weak) labels from the 
available pathology reports  [35, 37]. Due to the massive 
size in pixels of a WSI, which can be over 100, 0002 pix-
els, the patch extraction used for the supervised CNN 
training is performed only within relevant tissue regions. 
The HistoQC tool [38] is used to avoid extracting patches 
from connective tissue, also avoiding background and 
pen marks. After HistoQC generates a mask with the 
usable tissue areas, relevant areas (patches) need to be 
extracted. The blue-ratio ranking (BR), as described 
in Rousson et  al.  [39], is applied to obtain patches with 
high-cell density. We extracted 3000 patches of 7502 pix-
els at random locations within the HistoQC mask and 
selected the top 1000 blue-ratio ranked regions. To keep 
a comparable pixel size in the areas extracted and in the 
TMA images, all the patches are computed at a roughly 

Table 2 Number of patches for each Gleason pattern in the 
TMAZ dataset

Due to high class-imbalance, particularly for the high GP 5 and the benign 
tissue, class-wise data augmentation was applied

Class/Set Train Val Test

Benign 1831 1260 127

GP3 5992 1352 1602

GP4 4472 831 2121

GP5 2766 457 387

Total 15,061 3901 4237
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40× apparent magnification (0.25 microns per pixel) but 
include some heterogeneity. Each region is then down-
sampled to a patch of 2242 pixels, which covers enough 
context and gland content. The detailed number of cases 
is given in Table 3.

Model training
In the second row of Fig. 1, an overview of the approaches 
for the CNN model training is illustrated. The three 
strategies differ in what type of dataset is used (weakly 
labeled, strongly labeled, or a combination of both) and 
how the model is trained (incrementally fully supervised, 
fine-tuned with weak annotations, or only with weakly 
supervised learning). The architecture chosen for all the 
CNN models is the Mobilenet architecture  [40], with 
a width Multiplier α = 1 . Mobilenet was chosen as it 
allows comparability to the previously reported results 
of Arvaniti et  al  [14]. Mobilenet is a lightweight CNN 
architecture with fewer than ∼ 5 million parameters and 
was shown to obtain a performance that is compara-
ble to pathologists on the TMAZ dataset  [14]. Training 
the CNN classifiers from scratch is not optimal consid-
ering the relatively small size of the training set and the 
heterogeneity of data in color and tissue structures. For 
this reason, the models are initialized with pre-trained 
weights that were computed on the ImageNet challenge 
and then fine-tuned with the respective datasets  [18, 
41]. The ImageNet pre-trained Mobilenet architecture 
is kept constant throughout the three strategies. Drop-
out and weight regularization techniques were applied to 
avoid over-fitting. A dropout layer is placed in between 
the dense layers, with a probability of 0.2. This value 
was selected in line with the analysis made by Arvaniti 
and colleagues, where it is also stated that networks that 
were not regularized exhibit divergence in the valida-
tion cross-entropy loss scores. In the intermediate layers 
of the CNN, L2 regularization was used, with a lambda 
parameter equal to 0.01. All the CNN models are trained 
to predict the Gleason pattern of an input image patch. In 
the case where strong labels are available, i.e. the TMAZ 

dataset, the performance is compared against the ground 
truth labels. For the weakly annotated TCGA-PRAD 
dataset, the models are optimized to predict the primary 
Gleason pattern reported for the WSI, and the Gleason 
score is computed using a majority voting of probabilities 
for the patches extracted in each WSI. This aggregation 
is simple but it reflects the nature of the grading system: 
adding the two most common patterns seen in the tissue 
sample. In the rest of this section, we discuss the details 
of each of the strategies.

To avoid model overfitting, it is usually good to have 
more samples that exploit the symmetries in histopathol-
ogy images (where orientation does not influence the 
prediction), as well as to account for the subtle differ-
ences in stain and preparation methods. For this reason a 
pipeline for data augmentation is implemented for all the 
models using the Augmentor open-source library  [42]. 
Augmentation is preferred over stain normalization since 
recent studies show the former has often better results 
than normalization techniques to tackle color heteroge-
neity  [33, 43] Class-wise data augmentation is applied 
to alleviate the imbalance of the classes. The number of 
augmentations applied are inversely-proportional to the 
number of samples in each class as previous studies sug-
gests  [8]. The procedure includes four kinds of opera-
tions: rotation, flipping, morphological distortions and 
color augmentation. We obtain the equivalent of an extra 
half of training data by applying the operations to the 
images in the training set with a probability of 0.5. Rota-
tion augmentation is performed by choosing a rigid rota-
tion ( 90◦ , 180◦ , or 270◦ ) randomly with equal probability 
for each rotation. Flipping augmentation can be a vertical 
or horizontal flipping of the image. Morphological aug-
mentation is a random elastic distortion applied to the 
image patch. The patch was divided into a 5x5 grid and 
the magnitude of the distortion was set to 8. Color aug-
mentation was also applied, changing the colors of the 
input patches. The StainTools library  [44] is used here, 
with the Vahadane stain extractor  [45] and both sigma 
parameters set to 0.3. All the CNN architectures are opti-
mized and evaluated using the internal validation parti-
tion and then evaluated in different test set scenarios as 
described in the results section.

Incremental supervised learning
In the supervised strategy, a comparison of the classifi-
cation performance of patch-wise Gleason pattern clas-
sifiers is performed training CNN classifiers using an 
increasing number of strong annotations. The MobileNet 
architecture is fine-tuned using 7502 patches extracted 
from the pathologist annotations, following the approach 
of Arvaniti et al. [34]. The CNN is trained to classify the 
patches into the four patterns: benign tissue, Gleason 

Table 3 Number of WSIs from the TCGA-PRAD dataset that were 
used

Class/set Training Validation Test

GS6 13 20 5

GS7 (3+4) 42 10 6

GS7 (4+3) 30 14 11

GS8 37 12 13

GS9-10 49 28 11

Total 171 84 46
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pattern 3, 4 and 5. To evaluate the contribution of the 
number of annotations (strong supervision) to the per-
formance of the models, five subsets of the TMA train-
ing set are extracted. Each subset has a percentage of 
samples and associated pixel-level annotations from the 
original training set: 20% ⊂ 40% ⊂ 60% ⊂ 80% ⊂ 100% . 
The number of patches in each subset are 3090, 6030, 
9029, 12059 and 15061 patches, respectively. Following 
the original dataset partitions from the setup of Arvaniti 
et al. [46] the TMA training dataset includes cores from 
three arrays (ZT111, ZT199, ZT204), the validation set 
includes the cores from the ZT76 array and the test parti-
tion includes cores from the array ZT80. The TMA cores 
are heterogeneous in color representation, as it can be 
noticed by visual inspection of the arrays that are charac-
terized by slight different stain colors. A fixed number of 
cores from each array from the training set are selected 
to have a balanced number of samples for each class. 30 
patches are extracted from each TMA core. This value 
was chosen considering the size of each patch and the 
amount of tissue covered. It represents a good trade-off 
between the amount of overlap of the patches and the 
percentage of tissue extracted in the TMA, evaluated 
qualitatively. The patches are randomly generated within 
the annotation mask of the pathologist. We discard the 
patches with less than 60% tissue. This criterion is applied 
for avoiding the extraction of uninformative patches from 
the slide background. To have more robust performance 
estimates we did not fixed the random seed in the experi-
ments. We performed ten experiments to account for 
the different random seeds and SGD convergent solu-
tions. The ten classifiers for each percentage were trained 
with the same configuration of hyper-parameters. All the 
models were trained for 25 epochs until convergence in 
validation performance was observed. The input for the 
models is a batch size of 32 image patches, using the 
Adam optimizer with a learning rate of 0.001 and a decay 
rate of 10−6 , that are the standard values for many image 
classification tasks  [47]. The learning rate was explored 
with the values of the set {10−5, 10−4, 10−3, 10−2, 10−1

} , 
and despite having robust performance measures regard-
ing the learning rate, we observed the model to have a 
slightly better validation error with the value of 10−3.

Fine‑tuning with weak annotations
Fine-tuning a model that is initially trained with few 
annotated samples using a new set of samples for the 
same underlying task (i.e., Gleason grading) is a suitable 
technique for combining several levels of supervision 
since it allows to reuse the knowledge acquired on one 
dataset to others where the input distribution might shift 
slightly, for example due to slide preparation. In this strat-
egy, we start with an ImageNet pre-trained Mobilenet 

CNN, which is initially fine-tuned with a fixed number of 
strongly annotated data from the TMAZ dataset. Finally, 
the model is further fine-tuned with the regions extracted 
from the whole slide images of the TCGA-PRAD dataset. 
Strictly, this means that there are two stages of fine-tun-
ing, the first one from the ImageNet pre-trained models 
to the TMAZ and then from TMAZ to TCGA dataset.

The loss function of the classification models mini-
mizes the categorical cross-entropy between the pre-
dicted and the pathologist-reported primary Gleason 
pattern of each of the WSIs. The models are trained at 
the patch level and then the results are aggregated using 
majority voting to obtain the Gleason score. Since there 
are ten models for each percentage of supervised anno-
tations with the fully supervised training, each model is 
fine-tuned and the performance for each percentage of 
strongly annotated data is averaged over the ten models.

The transfer learning models are trained with the same 
hyperparameters as the supervised models. They are 
trained for 5 epochs, with a batch size of 32 samples, 
using the Adam optimizer with a learning rate of 0.001 
and a decay rate of 10−6 . As in the TMA, also the patches 
from the WSIs are highly heterogeneous in color rep-
resentation. In total, there are 50 fine-tuned Mobilenet 
models using the TCGA-PRAD dataset: There are 10 
models for each annotation percentage.

Weakly supervised learning
In this strategy, we use only the weakly labeled dataset 
to train the network to predict the global Gleason score. 
Training a model only with weak labels is a challenging 
scenario since many of the patches that are fed to the net-
work might not contain the relevant visual characteristics 
or patterns that are associated with the global Gleason 
score [8, 48].

The weakly supervised models are trained with all 100% 
of the weak labels available. The models are trained for 5 
epochs, with an input batch size of 32 samples and the 
Adam optimizer with a learning rate of 0.001 and a decay 
rate of 10−6 . Since the prediction is at the patch level but 
the labels used for evaluation are at the WSI level, the 
predictions have to be aggregated. The WSI label com-
puted by taking the majority voting of the most frequently 
predicted Gleason patterns. Similar to the training phase, 
there are two test sets for evaluating the models of the 
three proposed strategies: the strongly annotated TMAZ 
weakly annotated TCGA-PRAD test sets. The classifica-
tion performance is measured as the inter-rater agree-
ment with the ground truth. The raters can be either the 
pathologist who annotated the dataset and made a report, 
or the prediction model, that assigns classes to the image 
patches. The used performance measure is Cohen’s kappa 
( κ ) that is often used in PCa grading [12, 14, 15] because 
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it really chose the agreement between the algorithm and 
the human raters and is also used to quantify inter-rater 
disagreement. A perfect agreement has a score of κ = 1 
and since κ is normalized by random chance, a random 
assignment of ratings (classes) has a κ = 0 . The kappa 
score that is used throughout reporting all the results in 
this section is the quadratically weighted κ that penalizes 
predicted values that are far from their actual class, i.e. if 
the annotation for a patch is GP4 and the predicted class 
is GP5, it is penalized less than if the predicted class is 
benign. The quadratically weighted κ score is defined as:

where i, j are the ordered scores, N = 5 is the total num-
ber of Gleason scores, or N = 4 in the case of Gleason 
patterns. Oi,j , is the number of images that were classified 
with a score i by the first rater and j by the second. Ei,j 
denotes the expected number of images receiving rating 
i by the first expert and rating j by the second. The quad-
ratic term wi,j penalizes the rating-predictions that are 
separated. When the predicted Gleason score is far from 
the ground-truth class, wi,j gets closer to 1.

Results
After all models are trained, an evaluation in different 
PCa grading scenarios is performed. In order to evaluate 
the generalization power of the models, they are evalu-
ated on different test-sets where possible. Results sug-
gest that the strategy of training with a small number of 
annotations and fine-tuning the models with weak labels 
of the data at hand, is better than performing direct infer-
ence with pre-trained models and than training the mod-
els from scratch using the weak labels.

The plots presented in this section have 5 data points 
(except for the weakly supervised training), correspond-
ing to the subsets of strong annotations used to train 

κ = 1−

∑
i,j wi,jOi,j

∑
i,j wi,jEi,j

,wi,j =
(i − j)2

(N − 1)2

the models (20%, 40%, 60%, 80%, 100%). Each of the five 
points represents the average of the results of the ten 
trained models for each percentage. Along with the aver-
age, confidence intervals at 95% are drawn as a shaded 
area. Between each pair of points, the intermediate values 
are interpolated to display the performance tendencies. 
The figures and tables display the performance on the 
different test partitions that are used neither for training 
nor model selection. The tests carried out for each strat-
egy are described in the following subsections (Table 4).

Incremental supervised learning (TMAZ test set)
In this setup the MobileNet classifiers, trained with an 
increasing number of annotations from the TMAZ data-
set, are used to perform inference on the TMAZ test set. 
The full training and test procedures on the TMAZ data-
set correspond to the leftmost branch (blue arrows) in 
Fig. 1. On the TMAZ test set, the evaluation is straight-
forward: for each percentage of annotation, the best 
model for each of the ten repetitions, as evaluated on the 
validation partition, is selected. Then, the ten models are 
used to predict the Gleason patterns and aggregate them 
to compute the Gleason score for the patches in each 
TMA core. In this evaluation the patches are of the same 
center of the input patches and the labels are the same 
that were used for training of the models.

In the case of Gleason pattern classification on the 
TMAs using the models trained with strong labels, the 
performance is monotonically increasing, as shown in 
Fig.  2 . The average performance of the models when 
using 100% of the annotations is κ = 0.55± 0.03 , which 
is comparable to the performance reported by Arvaniti 
et al. [14] of κ = 0.55.

The plot in Fig. 3 represents the Gleason score classi-
fication on TMAs using the models trained with strong 
labels. As reference, the inter-pathologist agreement 
is represented in both cases with a star. The model 

Table 4 Reported performance for prostate cancer grading and scoring using deep learning models

The first four rows correspond to strongly supervised methods using pixel-level annotations. The last four rows are weakly supervised methods that use global labels. 
Multi-Center studies involve training with images from multiple institutions, which increases complexity and requires good generalization performance

Reference Classes Results #Patients Annotations Multicenter

Arvaniti [14] GS6,GS7,GS8,GS9,GS10 κ = 0.75 641 Strong No

Nagpal [10] GS6,GS7,GS8,GS9,GS10 ACC = 0.70 342 Strong Yes

Burlutskiy [11] With/out basal cells F1 = 0.80 229 Strong No

Ström [12] ISUP: 1,2,3,4,5 κ = 0.67 976 Strong Yes

Otálora [8] GS6, GS7, GS8, GS9, GS10 κ = 0.44 341 Weak Yes

This work ISUP: 1,2,3,4,5 κ = 0.52 341 WSI + 641 TMA Weak and strong Yes

Arvaniti [15] ISUP: 1,2,3,4,5 τ = 0.54 447 WSI + 641 TMA Weak and strong Yes

Bulten [7] ISUP: 1,2,3,4,5 κ = 0.72 1243 Weak and strong Yes

Campanella [9] Benign versus cancer AUCs of 0.98 7159 Weak Yes
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performance increases until 40% of the annotations are 
used and then it remains approximately stable until 100% 
of the annotations are used. The average performance 
of the 10 models when using 100% of the annotations 
is 0.69± 0.02 , which is comparable to the pathologists 
agreement of κ = 0.71.

Weakly labeled prostatectomies (TCGA‑PRAD test set)
The results of the three strategies on the TCGA-PRAD 
evaluation are shown in Fig. 4 and in Table 5 the results 
are summarized for the case where the inference and 
fine-tuning models use 100% of the strong labels. To 
compare the weak ground-truth label with the predic-
tion of the models, the individual patch predictions 
need to be aggregated. The probabilities inferred for 
all the 1000 patches of each WSI are aggregated with 
a majority voting rule. The following rule is applied 
to take into account WSIs with the same primary and 
secondary Gleason patterns: if the most frequently 

represented pattern has more than twice the number 
of patches of the second, then this pattern is assumed 
to be both the primary and the secondary Gleason 
pattern. In the prostatectomies TCGA-PRAD test set, 
the evaluations correspond to the three arrows in the 
weakly labeled prostactectomies branch of Fig. 1. where 
all of the three model training strategies are evaluated: 

1 Incremental fully supervised learning models In 
this test, the MobileNet classifiers trained with an 
increasing number of annotations from the TMAZ 
dataset, are used to perform inference on the patches 
of the TCGA-PRAD whole slide test images. Here, 
the models perform inference in the automati-
cally extracted region patches, without further fine-
tuning. The hypothesis is that the model can be 
transferred, since the patterns learnt on the TMAZ 
dataset are similar to those using the TCGA-PRAD 
WSIs (which is likely the case since the grading sys-
tem is the same and pathologists usually do not have 
problems in grading in either of the image sources). 
Despite the difference in image size and visual char-
acteristics, the trained models should learn high-level 
representations of the visual Gleason patterns that 
are transferable to external prostate cancer image 
datasets.

2 Weakly supervised training This is the case where the 
models do not use the annotations from the TMA 
dataset at all, but only the weak labels as the source 
of supervision. The last dense layer of the model pre-
dicts both the primary/secondary Gleason pattern. In 
this case, the model should capture the relevant pat-
terns on the TCGA-PRAD dataset due to the large 
number of selected patches used to train ( ∼171,000 
patches), which are also processed with the data-aug-
mentation pipeline described in "Datasets" section.

Incremental fully supervised

Pathologist inter-rater agreement ( =0.67)

-S
co

re

TMAZ dataset: Gleason pattern results

Percentage of strong labels used in training

Fig. 2 Results for the average performance of the trained models as 
measured by κ-score as function of the strong annotation percentage 
used for training

Incremental fully supervised

Pathologist inter-rater agreement ( =0.71)

TMAZ dataset: Gleason score results

-S
co

re

Percentage of strong labels used in training

Fig. 3 Results for the average performance of the trained models 
as measured by the κ-score as function of the strong annotation 
percentage used for training

TCGA-PRAD: Gleason score results 
Finetuning TMA models with weak labels
Weakly supervised training = 0.49
Incremental fully supervised

-S
co

re

Percentage of strong labels used in training

Fig. 4 Results for the average performance of the trained models 
using the TCGA-PRAD test dataset. The performance is measured by 
the κ-score as function of the strong annotation percentage
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3 Fine-tuning TMA models with weak labels These 
models infer using the fine-tuned TCGA-PRAD fea-
tures. In this case the transferred features are learned 
on the TMAZ dataset. The model weights used in 
each percentage as initialization are the weights of 
the best TMA model (as measured by κ-score in the 
TMAZ validation set) for the corresponding percent-
age of the annotations, changing the last dense layer 
to predict both the first and second Gleason patterns. 
In this case, the model is expected to further reduce 
the difference between the datasets by adapting with 
the particularities of the TCGA-PRAD dataset.

Figure 4 shows the performance for the three strategies 
on the TCGA-PRAD test set. The performance is meas-
ured by the weighted Cohen Kappa ( κ-score) as a func-
tion of the percentage of TMAZ annotations used to 
train the models.

The performance of the first strategy of the models 
using incremental full supervision is shown as the blue 
line. This strategy reaches κ = 0.31± 0.13 as the aver-
age for the 10 trained models when using the 100% of 
the annotations. This strategy obtains the worst perfor-
mance, regardless of the number of the annotations used. 
The second strategy of weakly supervised training, i.e. 
fine-tuning Mobilenet from ImageNet weights using only 
the TCGA-PRAD dataset, achieves κ = 0.49± 0.08 and 

is represented with the green line. The weakly supervised 
strategy obtained better performance than the incremen-
tal fully supervised models, despite being trained only 
with the noisy, weak labels. The third transfer learning 
technique that fine-tunes the incremental fully super-
vised models reaches a κ = 0.52± 0.05 as performance 
when fine-tuning the TMAZ model with 100% of the 
annotations. The performance for the fully supervised 
models with each percentage of data used is repre-
sented as the orange line. This transfer learning strategy 
outperformed the other two strategies and it suggests a 
performance increase when the number of annotations 
used to train the fine-tuned models also increases. The 
performance seems to be more robust, i.e., having a nar-
rower confidence interval, as long as more annotations 
are provided to the fine-tuned models. The performance 
gap between the incremental fully supervised strategy 
is broader than between the weakly supervised strategy. 
The results for Gleason score and primary and second-
ary Gleason patterns are summarized in Table 5. The cor-
rect and misclassified cases for each ISUP grade and each 
method are in the confusion matrices shown in Fig. 5.

Discussion
In the following paragraphs we discuss the results and 
trade-offs in sample efficiency of each of the methods. 
An increase of the classification performance on the 

Confusion Matrices for the TCGA-PRAD test set

Supervised using 100% of stong labels Weakly Supervised Fine-tuning using 100% of strong labels

Fig. 5 Confusion matrices displaying the correct cases classified for each of the five ISUP grades (diagonals of the matrices) in the TCGA-PRAD 
dataset. The top row shows the normalized matrices from the bottom row matrices displaying the total number of cases
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TMA dataset is observed when increasing the number of 
annotations used to train the model. This was expected 
because of the controlled conditions of the experiment 
and annotations, where all the data originates from the 
same pathology laboratory. The performance trend sug-
gests that more pixel-wise annotations can further 
increase the performance in Gleason pattern classifi-
cation. The performance for Gleason scoring is always 
above the performance of Gleason pattern classification. 
This may be due to the way in which the Gleason score 
is calculated, since the order of the patterns is irrelevant 
to the final score in this evaluation, thus making the task 
easier.

The inter-dataset heterogeneity is evident when the 
best model trained with the TMA dataset failed to gen-
eralize on the TCGA-PRAD dataset directly. The image 
heterogeneity in the TMAZ dataset is lower than in the 
TCGA-PRAD dataset. Furthermore, the strongly anno-
tated training dataset is relatively small (up to 15,000 
patchs). Besides the visual differences, the lack of anno-
tations makes the patch extraction process more prone 
to errors, which is tackled only partially by extracting 
patches from usable tissue masks only and ranking the 
patches with the blue-ratio criterion. The augmentations 
used for the TCGA-PRAD dataset make the training of 
the CNN more robust to tissue appearance.

For this, the fine-tuning alleviated the performance 
decrease considerably, surpassing the performance of 
the weak training only, which shows that the model is 
correctly leveraging upon the TMA weights transferred 
and adjusting to the particularities of the TCGA-PRAD 
dataset.

There is an important gap between the performance 
of the model in the controlled TMAZ dataset with 
κ = 0.69± 0.02 , and the best models on TCGA-PRAD 
κ = 0.52± 0.05 which suggests that there is room for 
improvement by designing a model that can better lever-
age the usage of a combination of a small set of strong 
labels and a large set of weakly annotated data. The most 
effective transfer learning method for the WSI dataset 
was fine-tuning the trained TMA model weights using 
the weakly annotated patches, despite the fact that these 
patches are less reliable than those from the TMAZ data-
set (because they refer to the global WSI diagnosis rather 
than local structures). This shows a similar behaviour 

to what occurs in transfer learning with CNN models 
trained on natural images  [41], where even if the task 
or dataset differs substantially there is still a set of basic 
features that linger to the fine-tuned models and allow to 
have better generalization.

Our strategy is easy to implement and applicable to dif-
ferent scenarios but also has a few limitations. The prin-
cipal limitation is that weak labels introduce some degree 
of noise that is difficult to quantify. There are no ground-
truth regions of interest to compare with; nevertheless, 
this problem is evident in the performance gap from 
strong supervision to the weakly trained models. For the 
limitation introduced by the noise in the weak labels, 
we foresee improvements by adopting attention mecha-
nisms and multiple instance learning models that allow 
the model to discard the noisy non-relevant samples and 
already proved useful and effective in histopathology use 
cases [9, 13, 26].

Second, the combination of weakly and fully supervised 
learning are the best experimental results at the whole 
slide image level, consistent with previous similar work 
using such a combination  [15]. An interesting observa-
tion is that for achieving the best performance, it comes 
with the cost of using at least the 70% of the strong anno-
tations in conjunction with all the weak labels to outper-
form the baseline of weakly supervised training. The need 
for such a large number of strong labels might be a draw-
back in the case of having very few strong labels. This 
need for additional supervision can be reduced using 
active and semi-supervised learning techniques [48, 49]. 
We also performed internal experiments using a large 
set of prostate biopsies(https:// www. kaggle. com/c/ prost 
ate- cancer- grade- asses sment/, dataset is currently under 
embargo). The results also showed the same trend and 
similar results as for the TCGA dataset, thus making the 
approach applicable to the commonly used images in 
clinical practice.

Conclusion
In this paper, transfer learning strategies that combine 
strong and weak supervision are evaluated in two cases 
of prostate cancer image classification in histopathol-
ogy: tissue microarrays of prostate tissue and prosta-
tectomy WSIs. The results of the techniques show that 
the Gleason pattern classification performance of a 

Table 5 Performance for the evaluated methods on the test data of the TCGA-PRAD dataset

Model κ‑GS κ‑PGP κ‑SGP Avg. acc. Error rate Micro‑precision

Supervised (100%) 0.30 ± 0.13 0.23 ± 0.16 0.10 ± 0.1 0.51 ± 0.06 2.45 ± 0.33 0.27 ± 0.05

Weakly supervised 0.49 ± 0.08 0.36 ± 0.11 0.30 ±0.09 0.67 ± 0.03 1.65 ± 0.18 0.43 ± 0.04

Fine-tuning (100%) 0.52 ± 0.05 0.34 ±0.10 0.40 ± 0.10 0.69 ±0.02 1.51 ± 0.14 0.46 ± 0.03

https://www.kaggle.com/c/prostate-cancer-grade-assessment/
https://www.kaggle.com/c/prostate-cancer-grade-assessment/
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CNN model can be improved using a combination of 
strong and a large amount of weak labels using transfer 
learning.

The performance increases in the controlled TMA 
scenario with a larger number of annotations used to 
train the model. Nevertheless, the performance is hin-
dered when the trained TMA model is applied directly 
to the more challenging WSI classification problem. 
This demonstrates that a good pretrained model for 
prostate cancer image classification may lead to the 
best downstream model if fine-tuned on the target 
dataset but it may not be the most transferable and 
generalizable pretrained model otherwise. In future 
work, we plan to close the generalization gap even fur-
ther between the weakly supervised trained models and 
the fully supervised ones, by better leveraging on the 
combination of both sources of supervision, by design-
ing and training better semi and weakly-supervised 
learning models.
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