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Abstract 

Background: This study aimed to develope and validate a radiomics nomogram by integrating the quantitative 
radiomics characteristics of No.3 lymph nodes (LNs) and primary tumors to better predict preoperative lymph node 
metastasis (LNM) in T1-2 gastric cancer (GC) patients.

Methods: A total of 159 T1-2 GC patients who had undergone surgery with lymphadenectomy between March 2012 
and November 2017 were retrospectively collected and divided into a training cohort (n = 80) and a testing cohort 
(n = 79). Radiomic features were extracted from both tumor region and No. 3 station LNs based on computed tomog-
raphy (CT) images per patient. Then, key features were selected using minimum redundancy maximum relevance 
algorithm and fed into two radiomic signatures, respectively. Meanwhile, the predictive performance of clinical risk 
factors was studied. Finally, a nomogram was built by merging radiomic signatures and clinical risk factors and evalu-
ated by the area under the receiver operator characteristic curve (AUC) as well as decision curve.

Results: Two radiomic signatures, reflecting phenotypes of the tumor and LNs respectively, were significantly associ-
ated with LN metastasis. A nomogram incorporating two radiomic signatures and CT-reported LN metastasis status 
showed good discrimination of LN metastasis in both the training cohort (AUC 0.915; 95% confidence interval [CI] 
0.832–0.998) and testing cohort (AUC 0.908; 95% CI 0.814–1.000). The decision curve also indicated its potential clini-
cal usefulness.

Conclusions: The nomogram received favorable predictive accuracy in predicting No.3 LNM in T1-2 GC, and the 
nomogram showed positive role in predicting LNM in No.4 LNs. The nomogram may be used to predict LNM in T1-2 
GC and could assist the choice of therapy.
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Background
Gastric Cancer (GC) is rampant around the world, 
especially in East Asia [1]. Surgery is the primary treat-
ment for patients with early gastric cancer (EGC), how-
ever, a number of sequelae (indigestion, iron deficiency, 
etc.) can seriously reduce the patient’s quality of life for 
open surgery [2]. In order to improve the prognosis, less 
invasive surgical alternatives, such as endoscopic sub-
mucosal dissection and endoscopic mucosal resection, 
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are used for the treatment of EGC [3]. However, endo-
scopic resection is only considered for tumors with a 
low risk of lymph node metastasis (LNM) [4].

Studies have found that LNM exist in 8.2–19.7% EGC 
[5–8]. Sentinel lymph node (SLN) biopsy, an invasive 
method, was used for detection of metastatic LNs in 
GC [9]. SLN biopsy was a promising tool to assess the 
LNM in T1-2 GC patients [10–12]. However, there are 
still debates regarding the effectiveness of LN detec-
tion techniques and oncological safety of biopsy. Kita-
gawa et al. [13] and Miyashiro et al. [14] used different 
SLN biopsy methods, but consequently obtained dif-
ferent false-negative rates (7% and 46.4%, respectively). 
Besides, noninvasive medical imaging like CT is rou-
tinely used to assess perigastric LNs. However, the 
accuracy of CT detection of LN in early GC is approxi-
mately 60%, which is unsatisfactory [15]. At present, 
it is still unable to accurately predict LNM of EGC 
preoperatively.

In recent years, Artificial Intelligence (AI) has been 
widely used in the field of medicine. Machine Learn-
ing (ML)-based tools have been used in Prediction of 
LNM, Risk assessment of cancer, lesion detection, stag-
ing, evaluation of prognosis and curative effect analy-
sis. Radiomics based on this technology may improve 
the tumor patient management, screening strategy 
and customized treatment plan [16–22]. Studies have 
shown that radiomics, the technique of converting 
medical images into mineable data and high-dimen-
sional features, has been proven to improve diagnostic 
and prognostic accuracy in oncology [23–26]. It had 
been widely applied to the prediction of LN metastasis 
in GC, colorectal cancer and occult peritoneal metas-
tasis in advanced GC and achieved satisfactory results 
[27–35].

At present, the published radiomics research in find-
ing the predictors of LNM mainly use tumor radiom-
ics characteristics or other characteristics related to 
patients. However, the ability to accurately predict 
LNM may be affected by relying solely on the radiom-
ics characteristics of primary tumors [33]. Thus, this 
study aimed to predict preoperative LNM in T1-2 
GC patients by integrating the radiomics characteris-
tics of LN and primary tumors. The LNs of the stom-
ach are given station numbers as No.1–No.16 [36, 37]. 
Researches showed that the incidence rate of LNM in 
No.3 station was the highest (No.1, 2.5%; No.2, 4.8%; 
No.3, 11.6%; No.4, 6.5%; No.5, 0.5%; No.6, 7.6%) in EGC 
[38–40]. Therefore, by integrating the quantitative radi-
omics characteristics of No.3 LNs and primary tumors, 
we developed and validated a radiomics nomogram 
to better predict preoperative LNM in patients with 
T1-2GC.

Methods
Patients
The Institutional Review Board of our hospital approved 
this retrospective study and the requirement for 
informed consent was waived.

The inclusion criteria for the training and testing 
cohorts were as follows: (a) patients who underwent sur-
gery with curative intent for T1-2 GC and with patholog-
ical results; (b) LN dissection performed; (c) excisional 
LN with detailed grouping and pathological diagnosis; 
(d) standard contrast-enhanced CT performed less than 
10  days before surgical resection. The exclusion crite-
ria were: (a) hypotensive drug taboo (such as glaucoma, 
prostatic hypertrophy, etc.); (b) preoperative therapy 
(radiotherapy, chemotherapy, or chemoradiotherapy); (c) 
concurrent with other tumors or diseases; (d) patients 
with variation of the left gastric artery; (e) invisible 
lesions on CT images.

A total of 159 patients between March 2012 and 
November 2017 were enrolled in this study (113 males, 
46 females; average age, 61.78 ± 10.47  years). All the 
patients were randomly divided into two independent 
cohorts: a training cohort, containing 80 patients (53 
males, 27 females; average age, 61.78 ± 11.11 years), and 
a testing cohort, containing 79 patients (60 males, 19 
females; average age, 61.78 ± 9.77 years).

Clinical data, including gender, age, carcinoembryonic 
antigen (CEA: 0–5  ng/mL), carbohydrate antigen 19-9 
(CA19-9: 0–40  03B  u/mL), cancer antigen 125 (CA125: 
0–35  u/mL), pathologic grade (see detailed description 
in Additional file 1: Table S1), CT-reported LN metasta-
sis status from radiologist, and tumor infiltration depth, 
were obtained by reviewing the medical records.
CT data acquisition
All patients fasted for at least 4 h, and 20 mg anisodamine 
(654-2) was administered intramuscularly to reduce gas-
trointestinal peristalsis 10 min prior to CT examination. 
800–1000 mL warm water was drank to distend the stom-
ach. CT was performed using a 256-Slice (Brilliance iCT, 
ROYAL PHILIPS, Eindhoven, Netherlands) or a 64-slice 
(SOMATON sensation64, SIEMENS Healthineers, 
Muenchen, Germany) multi-slice spiral CT. Patients 
underwent both unenhanced and two-phase enhanced 
CT examinations (arterial phase: 35  s after injection; 
venous phase: 70  s after injection). The CT scans, cov-
ering the entire stomach region, were acquired during a 
breath-hold with the patient supine in all of the phases. 
During the enhanced CT scan, patients were infused with 
1.5  mL/kg of the non-ionic contrast material (iohexol, 
Yangzi River Pharmaceutical Group, Jiangsu, China; iIo-
dine concentration: 300  mg/mL) with a pump injector 
(Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany) at 
a rate of 3.0 mL/s into the antecubital vein. The imaging 
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parameters were as follows: 120 kV; 220–250 mAs; rota-
tion time: 0.5  s; detector collimation: 128 × 0.625  mm 
or 32 × 0.6  mm; field of view: 400 × 400  mm; matrix: 
512 × 512; reconstruction slice thickness: 5 mm for axial 
plane, and 3 mm for coronal and sagittal plane.

Pipeline
The pipeline of this study includes five steps: lesion 
detection, region of interest (ROI) segmentation, radi-
omic feature extraction, radiomic signature building, and 
nomogram construction and evaluation (Fig. 1).

Detection of lesion on CT images
All CT images were reviewed by a radiologist with more 
than 10  years of experience in GC diagnosis. Localiza-
tion of GC lesions: the 159 patients selected in this study 
all had the results of gastroscopy and CT examination. 
Combined with gastroscopy and CT images (axial, cor-
onal and sagittal images), the lesions could be located. 
The diagnostic criteria of CT-reported LN metastasis-
positive were shown as follows: short-axis diameter of 
LN ≥ 5 mm, the ratio of short diameter to long diameter 
of LN ≥ 0.7, and the plain CT value of LN ≥ 25 HU or 
venous phase CT value of LN ≥ 75 HU; or multiple LNs 
were fused together even if above conditions were not 
satisfied.

ROI segmentation on CT images
Two 2-dimensional ROIs were manually segmented by a 
radiologist with more than 10 years of experience in GC 
diagnosis. The first ROI (ROI-1) was delineated on the 
tumor in the slice with the maximum tumor lesion. The 
second ROI (ROI-2) was delineated on the region of No.3 

station LNs around the lesser curvature of stomach. ROI 
segmentation was performed using ITK-SNAP software 
(version 2.2.0; www. itksn ap. org) on the venous phase 
CT images with axial view (see Additional file 1: A1 for 
detail).

Extraction of radiomic features
Two feature groups were extracted from two ROIs, with 
each group containing 273 features [41, 42]. These fea-
tures were divided into 4 categories: (a) shape and size 
features, (b) gray intensity features, (c) texture features, 
and (d) wavelet features. The feature extraction was 
implemented using MATLAB (version 2014a; Math-
works, Natick, MA, USA). Radiomic features of all 
patients were standardized by the z-score method, based 
on the parameters calculated from the training cohort. 
More information about the radiomic feature extraction 
is shown in Additional file 1: A2.

Radiomic signature construction
Radiomic feature selection and signature building were 
performed in the training cohort for ROI-1 and ROI-2, 
respectively. More details are described as follows. In 
order to avoid model over-fitting and improve perfor-
mance, feature selection was performed to match the 
sample size (Additional file 1: A3).

First, the minimum redundancy maximum relevance 
algorithm (mRMR) ranked each feature based on its rel-
evance to LN metastasis status, and the ranking process 
was able to consider the redundancy of these features 
at the same time [43]. Since the number of predictors 
should be kept within 1/10–1/3 of the size of the group 
that contains the smallest cases in the training cohort 

Fig. 1 Radiomic workflow in this study

http://www.itksnap.org
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(LN metastasis-positive group, n = 22) [44], the number 
of potential features was limited to 7 or less in this study.

Second, five-fold cross-validation was performed mul-
tiple times on the training cohort to find the optimal 
number of features with the best performance based 
on ranked features. Then a radiomic signature (RS1) 
reflecting phenotype of ROI-1 and a radiomic signature 
(RS2) reflecting phenotype of ROI-2, were built as inde-
pendent predictors of LN metastasis using selected fea-
tures, respectively. It should be noticed that the feature 
selection and radiomic signatures construction were 
implemented based on training cohort alone. For each 
radiomic signature, the signature score was calculated 
to reflect the risk of LN metastasis. The predictive per-
formance of the radiomic signatures were quantitatively 
tested using the area under the receiver operator char-
acteristic (ROC) curve in both the training and testing 
cohorts.

Construction and evaluation of nomogram
Univariate analysis and multivariate analysis were used to 
screen out significant clinical risk factors. For univariate 
analysis, continuous variables were assessed using inde-
pendent t-test or Mann–Whitney U test for differences 
between different groups, and categorical variables were 
assessed by Chi-squared test. A two-sided P value < 0.05 
was used to indicate statistical significance. As for mul-
tivariate analysis, we performed multivariate logis-
tic regression to screen out key factors. Furthermore, 
multivariate logistic regression was used to merge two 
radiomic signatures and clinical risk factors into a nomo-
gram. Similarly, the building of radiomic nomogram was 
conducted based on training cohort alone. For compari-
son, we construct two more models which combine clini-
cal risk factors with RS1and RS2, respectively. After that, 
the calibration curves and Hosmer–Lemeshow test were 
used to assess the goodness-of-fit of the nomogram, and 
the AUC was used to quantify its predictive performance. 
For assessing overfitting, DeLong test was adapted to 
compare AUCs between training and testing cohorts. 
Moreover, we used net reclassification index (NRI) to 
compare the performance between nomogram and clini-
cal risk factors, and quantify the improvement in predic-
tive performance.

Furthermore, a stratified analysis was used to evalu-
ate the influence of clinical factors to the nomogram. In 
addition, we performed a subgroup analysis to evaluate 
the additional value of the nomogram in the CT-reported 
LN metastasis-negative (CT-LNM0) subgroup. Since the 
number of metastasis in No.4 station LNs (left greater 
curvature) ranked only behind No.3 station LNs (Addi-
tional file  1: Table  S2), we further validated our nomo-
gram on No.4 station LNs.

Finally, to estimate the clinical utility of the nomo-
gram, decision curve analysis (DCA) was performed by 
calculating the net benefits using a range of threshold 
probabilities.

Results
Clinical characteristics
Table  1 summarizes the patients’ clinical risk factors in 
both the training and testing cohorts. There is no sig-
nificant difference in the probability of LN metastasis 
between the two cohorts (P = 0.384). Univariable analysis 
showed that CT-reported LN metastasis status from the 
radiologist were significantly correlated with pathologi-
cal LN metastasis status (P < 0.05), while CA125 was sig-
nificantly correlated with LN metastasis status only in the 
training cohort and tumor infiltration depth in the test-
ing cohort. After multivariable analysis we chose the CT-
reported LN metastasis status to predict LN metastasis.
Establishment of radiomic signature
During the feature selection, mRMR selected top 10 
radiomic features from ROI-1 and top 10 radiomic fea-
tures from ROI-2 in the training cohort, respectively. As 
shown in Additional file  1: Figure S1 and Table  S3, the 
cross-validation reserved 4 features from ROI-1 and 2 
features from ROI-2. The heatmaps of these features and 
unsupervised cluster partitioning are shown in Addi-
tional file 1: Figure S2. Significant association was found 
between these features and LN metastasis status. Two 
radiomic signatures were built using linear combination 
of these radiomic features (4 features from ROI-1 for RS1 
and 2 features from ROI-2 for RS2), and the signature 
score calculation are presented in Additional file  1: A4. 
As shown in Fig. 2 and Table 2, both of the two radiomic 
signatures showed significant predictive ability of LN 
metastasis in training cohort (AUC of RS1: 0.831, 95% 
confidence interval [CI] 0.725–0.937, and AUC of RS2: 
0.761, 95% CI 0.629–0.893) and testing cohort (AUC of 
RS1: 0.852, 95% CI 0.742–0.962, and AUC of RS2: 0.763, 
95% CI 0.626–0.900).

Construction of nomogram
During the multivariate logistic regression analysis, the 
two radiomic signatures and one clinical risk factor (CT-
reported LN metastasis status, CTR) were identified as 
independent predictors of LN metastasis in T1-2 GC 
patients (Additional file  1: Table  S4). An individualized 
nomogram was built using the regression method to pre-
dict the LN metastasis probability (Fig. 3a).
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Evaluation of nomogram
As shown in Fig. 2 and Table 2, our nomogram reached 
an AUC of 0.915 (95% CI 0.832–0.998) in the training 
cohort and an AUC of 0.908 (95% CI 0.814–1.000) in 
the testing cohort, which were better than CTR, RS1, 
RS2, RS1 + CTR, and RS2 + CTR. The NRI also dem-
onstrated that the nomogram had better predictive 
ability than the CT-reported LN metastasis status in 
the training cohort (NRI = 0.339, P < 0.001) and test-
ing cohort (NRI = 0.301, P < 0.001). The DeLong test 
revealed that difference was not significant between 
AUCs of our nomogram in training and testing cohorts 
(P = 0.908), further indicating the robust of our nomo-
gram. As shown in Fig.  3b, c, the calibration curves 
of the nomogram demonstrates a good fitness of 
nomogram in both the training and testing cohorts. 

The Hosmer–Lemeshow test also showed good per-
formance of our nomogram in the training cohort 
(P = 0.147) and testing cohort (P = 0.903).

Notably, the subgroup analysis showed that our 
nomogram had a good discriminatory ability in the 
CT-LNM0 subgroup (n = 109, AUC 0.904; 95% CI 
0.816–0.993; Fig. 4).

We also implemented stratified analysis, more details 
were presented in Additional file  1: A5 and Figure S3. 
The results showed that our nomogram worked well 
in gender, age, pathologic grade and tumor infiltration 
depth subsets (DeLong test, P > 0.05).

Moreover, we selected 9 patients with LN metastasis 
and 11 patients with non-LN metastasis at No.4 station 
as a validation set to further validate our nomogram. 

Table 1 Characteristics of patients in the training and testing cohorts

P-value was derived from the univariable association analyses between each characteristic and LNM status; For univariate analysis, independent t test or Mann–
Whitney U test were used for continuous variables and Chi-squared test for categorical variables. *P value < 0.05; LNM0 refers to CT-reported LNM-negative; LNM1 
refers to CT-reported LNM-positive

LNM lymph node metastasis, SD standard deviation, CEA carcinoembryonic antigen, CA19-9 carbohydrate antigen 19-9, CA125 cancer antigen 125, CT computed 
tomography

Characteristic Training cohort P-value Testing cohort P-value

LNM (+) LNM (−) LNM (+) LNM (−)

Sex, No. (%) 0.451 0.366

 Male 16 (72.73) 37 (63.79) 11 (64.71) 49 (79.03)

 Female 6 (27.27) 21 (36.21) 6 (35.29) 13 (20.97)

Age, mean ± SD, years 59.82 ± 11.93 62.52 ± 10.69 0.276 58.82 ± 8.83 62.60 ± 9.86 0.173

CEA, No, (%) 0.114 0.204

 Median (IQR) 2.19 (1.44–2.54) 1.31 (1.02–2.44) 2.46 (1.50–3.10) 1.86 (1.14–2.76)

 Normal 22 (100.00) 55 (94.83) 17 (100.00) 59 (95.16)

 Abnormal 0 (0.00) 3 (5.17) 0 (0.00) 3 (4.84)

CA19-9, No, (%) 0.171 0.867

 Median (IQR) 11.95 (8.22–16.46) 8.97 (6.24–15.59) 12.30 (7.12–16.11) 9.99 (6.56–15.81)

 Normal 21 (95.45) 57 (98.28) 17 (100.00) 60 (96.77)

 Abnormal 1 (4.55) 1 (1.72) 0 (0.00) 2 (3.23)

CA125, No, (%) 0.035* 0.308

 Median (IQR) 14.18 (8.70–22.66) 8.81 (5.43–16.04) 10.25 (8.69–13.10) 8.85 (4.95–15.69)

 Normal 20 (90.91) 57 (98.28) 16 (94.12) 60 (96.77)

 Abnormal 2 (9.09) 1 (1.72) 1 (5.88) 2 (3.23)

Pathologic grade, No, (%) 0.349 0.410

 Low grade 12 (54.55) 22 (37.93) 6 (35.29) 20 (32.26)

 Median grade 9 (40.91) 34 (58.62) 11 (64.71) 36 (58.06)

 High grade 1 (4.54) 2 (3.45) 0 (0.00) 6 (9.68)

CT-reported LNM status, No, (%) < 0.001* < 0.001*

 LNM0 12 (54.55) 54 (93.10) 11 (64.71) 58 (93.55)

 LNM1 10 (45.45) 4 (6.90) 6 (35.29) 4 (6.45)

Tumor infiltration depth, No, (%) 0.181 < 0.001*

 T1a 4 (18.18) 20 (33.48) 0 (0.00) 20 (32.26)

 T1b 9 (40.91) 25 (43.10) 4 (23.53) 31 (50.00)

 T2 9 (40.91) 13 (22.41) 13 (76.47) 11 (17.74)
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Interestingly, our nomogram also showed a good per-
formance on this station (AUC 0.824; 95% CI 0.517–1; 
Additional file 1: Figure S4).

The decision curve of the nomogram is presented 
in Fig.  5. With a threshold of 0 to 0.85, patients using 
nomogram will have more diagnostic benefits than all-
metastasis or none-metastasis strategies.

Discussion
In this study, an easy-to-use radiomic nomogram was 
established to identify LN metastasis of T1-2 GC pre-
operatively. The nomogram, incorporating two radi-
omic signatures and CT-reported LN metastasis status, 
showed the best discrimination ability of LN metastasis 
in both the training and testing cohorts. The nomogram 

Fig. 2 Performance of nomogram, signatures and CT-reported metastasis LN status in training and testing cohorts. AUC  area under the curve. The 
black line represents the result of the nomogram. The blue line represents the result of the radiomic signature-1. The green line represents the result 
of the radiomic signature-2. The red line represents the result of the CT-reported metastasis LN status. Abbreviations RS1 Radiomic signature 1, RS2 
radiomic signature 2

Table 2 Performance evaluation of models

R1 radiomic signature-1, R2 radiomic signature-2, CTR  CT-reported LN metastasis status, TP true positive, TN true negative, FN false negative, FP false positive, Acc 
accuracy, Sen sensitivity, Spe specificity, PPV positive predictive value, NPV negative predictive value, AUC  area under curve, CI confidence interval

Cohort Models TP TN FN FP Acc Sen Spe PPV NPV AUC (95% CI)

Training cohort R1 18 44 4 14 0.775 0.818 0.759 0.563 0.917 0.831 (0.725–0.937)

R2 14 46 8 12 0.750 0.636 0.793 0.538 0.852 0.761 (0.629–0.893)

CTR 10 54 12 4 0.800 0.455 0.931 0.714 0.818 0.693 (0.581–0.804)

R1 + CTR 16 51 6 7 0.837 0.727 0.879 0.695 0.895 0.869 (0.789–0.949)

R2 + CTR 16 46 6 12 0.775 0.727 0.793 0.571 0.885 0.814 (0.704–0.925)

Nomogram 20 54 2 4 0.925 0.909 0.931 0.833 0.964 0.915 (0.832–0.998)

Testing cohort R1 12 54 5 8 0.835 0.706 0.871 0.600 0.915 0.852 (0.742–0.962)

R2 12 42 5 20 0.684 0.706 0.677 0.375 0.894 0.763 (0.626–0.900)

CTR 6 58 11 4 0.810 0.353 0.935 0.600 0.841 0.644 (0.523–0.765)

R1 + CTR 14 48 3 14 0.784 0.823 0.774 0.500 0.941 0.863 (0.772–0.954)

R2 + CTR 14 45 3 17 0.747 0.824 0.726 0.452 0.938 0.753 (0.618–0.889)

Nomogram 15 56 2 6 0.899 0.882 0.903 0.714 0.966 0.908 (0.814–1.000)
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could assist the formulation of clinical treatment 
scheme.

Although the lymphatic system around the stomach is 
very complex [45], previous researches showed that the 
incidence rate of LN metastasis of EGC in No.3 station 
was the highest (No.3, 11.6%; No.1, 2.5%; No.2, 4.8%; 
No.4, 6.5%; No.5, 0.5%; No.6, 7.6%, respectively) (Addi-
tional file 1: Table S5) [38–40]. Therefore, we developed 

and validated a radiomics nomogram by integrating radi-
omics characteristics of No.3 LNs and primary tumors to 
better predict preoperative LNM in T1-2 GC patients.

We analyzed the radiomic features in the two signifi-
cant radiomic signatures. The radiomic features used 
in RS1 included: (1) ‘X1_fos_skewness’ describes the 
shape of a probability distribution of the voxel intensity 
histogram, and reflects the distribution symmetry. (2) 

Fig. 3 Nomogram and calibration curves. a Nomogram for the prediction of lymph node metastasis. b Calibration curves of the nomogram in the 
training cohort and c testing cohort. Calibration curves depict the calibration of the nomogram in terms of agreement between the predicted risk 
of lymph node metastasis and observed outcomes. The 45-degree blue dotted lines represent perfect prediction, and the pink lines represent the 
predictive performance of the nomogram. The closer the dotted line fit to the ideal line, the better the predictive accuracy of the nomogram. LN 
lymph node, CT computed tomography. Abbreviation RS1 Radiomic signature 1, RS2 radiomic signature 2
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‘X0_fos_variance’ measures the spread of intensity distri-
bution about the mean value, and reflects the uniform-
ity of distribution. (3) ‘X3_fos_root_mean_square’ is the 
root mean square of the voxels intensity value. (4) High 
‘X1_GLCM_dissimilarity’ means there is a great disparity 
in intensity value among neighboring voxels. These radi-
omic features might quantify intratumor heterogeneity, 
and thus could predict the invasiveness of the tumor and 
the probability of LN metastasis [46]. The final selected 
radiomic features of lymph nodes consisted of: (1) ‘X1_
GLRLM_energy’ measures of the magnitude of voxel val-
ues in an image describes the overall density of the lymph 
volume, (2) High ‘X1_GLCM_cluster_prominence’ 
implies more asymmetry. These radiomic features might 
indicate the high image intensity and heterogeneity in the 
No.3 station LN region, and thus the sign of LN metasta-
sis. We have showed two examples of patients with and 
without LN metastasis (Additional file 1: A6 and Figure 
S5). The CT images also demonstrated that higher het-
erogeneity of the primary tumor and No.3 LN region 
leaded to higher probability of LN metastasis.

In this study, CT-reported LN metastasis status from 
the radiologist was significantly correlated with LN 
metastasis in univariable analysis. This subjective judge-
ment was also included in our nomogram. We also found 
that CA125 was significantly associated with LN metas-
tasis in the training cohort (P = 0.035), but had no sig-
nificance in the testing cohort. This may be caused by the 
relatively small sample size and baseline deviation. More-
over, the positive rate of CA125 was very low in EGC [47].

We conducted some stratified analysis, the results 
showed that the performance of our nomogram was 
not affected by gender, age, pathologic grade and tumor 
infiltration depth factors. In addition, we tested the cor-
relations between the radiomic features and clinical risk 
factors using Pearson correlation analysis (Additional 
file 1: Figure S6). There was no correlation between radi-
omic features and clinical risk factors, which pointed that 
the radiomic features might be a good supplement to 
clinical factors. The good performance of our nomogram 
in CT-LNM0 subgroup also demonstrated the additional 
value of the nomogram to the radiologists.

More interestingly, the nomogram trained from phe-
notype of No.3 station LNs also showed a positive role in 
predicting LN metastasis in No.4 station LNs. This finding 
indicated that the radiomic signature from the LN region 
did reflect the early change of phenotype of LNs. Thus, 
our nomogram may be used in other stations of LNs.

There are some limitations in this study. Firstly, the rel-
atively small sample size of this study. Secondly, the lack 
of the external validation. Thirdly, the presence of lym-
phatic invasion and LN micrometastasis have also been 
considered as important risk factors for LN metastasis in 

Fig. 4 The result of comparative experiments in the CT-reported 
LN metastasis-negative subgroup. The panel shows the ROC curve 
analysis for the nomogram in the CT-LNM0 subgroup. Abbreviations 
CT computed tomography, LN lymph node, ROC receiver operator 
characteristic, AUC  area under the curve

Fig. 5 Decision curve analysis for the nomogram. The y-axis 
represents the net benefit, and the pink line represents the 
nomogram. The blue line represents the hypothesis that all patients 
had lymph node (LN) metastases, and the black line represents the 
hypothesis that no patients had LN metastases. The x-axis represents 
the threshold probability. The threshold probability is where the 
expected benefit of treatment is equal to the expected benefit 
of avoiding treatment. The decision curves in the training cohort 
showed that if the threshold probability is between 0 and 0.85, using 
the nomogram to predict LN metastases adds more benefit than 
treating either all or no patients
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EGC [48–50], however, these factors were not routinely 
collected in our center. Fourth, given the use of manual 
segmentation, the radiomic features reproducibility 
should be further evaluated. Finally, cases with invisible 
lesions on CT images were excluded, so some patients 
could not use the nomogram. These problems need to be 
further studied.

Conclusions
In summary, the nomogram received favorable predictive 
accuracy in predicting No.3 LNM in T1-2 GC, and the 
nomogram showed positive role in predicting LNM in 
No.4 LNs. The radiomics nomogram may assist the for-
mulation of clinical treatment scheme.
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