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Abstract

Background: The Logan graphical analysis (LGA) algorithm is widely used to quantify receptor density for parametric
imaging in positron emission tomography (PET). Estimating receptor density, in terms of the non-displaceable binding
potential (BPND), from the LGA using the ordinary least-squares (OLS) method has been found to be negatively biased
owing to noise in PET data. This is because OLS does not consider errors in the X-variable (predictor variable). Existing
bias reduction methods can either only reduce the bias slightly or reduce the bias accompanied by increased variation
in the estimates. In this study, we addressed the bias reduction problem by applying a different regression method.
Methods: We employed least-squares cubic (LSC) linear regression, which accounts for errors in both variables as
well as the correlation of these errors. Noise-free PET data were simulated, for 11C-carfentanil kinetics, with known
BPND values. Statistical noise was added to these data and the BPNDs were re-estimated from the noisy data by three
methods, conventional LGA, multilinear reference tissue model 2 (MRTM2), and LSC-based LGA; the results were
compared. The three methods were also compared in terms of beta amyloid (Aβ) quantification of 11C-Pittsburgh
compound B brain PET data for two patients with Alzheimer’s disease and differing Aβ depositions.
Results: Amongst the three methods, for both synthetic and actual data, LSC was the least biased, followed by
MRTM2, and then the conventional LGA, which was the most biased. Variations in the LSC estimates were smaller than
those in the MRTM2 estimates. LSC also required a shorter computational time than MRTM2.
Conclusions: The results suggest that LSC provides a better trade-off between the bias and variability than the other
two methods. In particular, LSC performed better than MRTM2 in all aspects; bias, variability, and computational time.
This makes LSC a promising method for BPND parametric imaging in PET studies.
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Background
This study aims to propose an algorithm to improve the
accuracy in the quantification of receptor density for para-
metric imaging in positron emission tomography (PET).
By applying parametric imaging methods such as Logan
graphical analysis (LGA) and multilinear reference tis-
sue models (MRTM) to PET data, we can acquire the
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receptor density in terms of the non-displaceable bind-
ing potential (BPND) index [1]. LGA is a time-efficient
and a computationally efficient algorithm applicable to
reversibly binding receptors [2, 3]. It transforms data of
PET tissue time-activity curves (tTACs) into a simple lin-
ear relationship, and BPND can then be estimated from the
slope of this relationship using the ordinary least-squares
(OLS) method.
BPND compares the concentration of the administered

radiotracer in receptor-rich to receptor-free regions[1].
It can therefore be defined as the equilibrium ratio of
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specifically bound radiotracer (in receptor-rich region) to
nondisplaceable radiotracer (in receptor-free region) [1].
Moreover, BPND is proportional to the density of bind-
ing sites [1, 2], which denotes the concentration of target
receptors in the region of interest.
Despite the advantages of the LGA, the estimated

BPND values have been found to be underestimated in
cases of noisy PET data. This bias has been observed
to increase with an increase in the magnitude of both
BPND and noise [4–6]. Specifically, the bias is due to
noise in the X-variable (predictor variable). The noise
in the predictor variable is attributed to the noisy term,
C(t) (see Eq. (1)), which is the denominator in both
the LGA variables [6, 7]. Accordingly, the noise due to
C(t) propagates correlatively in the LGA variables, pre-
senting a correlated errors-in-variables (EIV) problem.
Thus, both the predictor and response variables of the
LGA are contaminated with correlated noise, yet the OLS
method only accounts for the errors in the response vari-
able. This explicitly makes OLS unsuitable for estimating
the BPND.
A variety of methods have been proposed to reduce

the bias in BPND estimates. These methods range from
tTAC smoothing methods, based on the kinetics of an
administered radiotracer, such as the generalized linear
least-squares (GLLS) [8] technique, to methods based on
a rearrangement of the original LGA equation, such as the
multilinear reference tissue models (MRTM 1 & 2) [7, 9].
Other methods including orthogonal distance regression
(ODR) [10] simply employ a different line estimation tech-
nique. These methods, however, have been found to either
only slightly reduce the bias or reduce the bias at the cost
of worsened estimation deviation [4, 5]. This necessitates
the need for an improved method.
It has been shown that the regression method used

to estimate the Logan slope influences the resulting bias
in BPND estimates [6, 10]. On this basis, the present
study employs an alternative linear regression method
referred to as least-squares cubic (LSC) [11–13], which
fully accounts for errors in both variables, to estimate
BPND. LSC minimizes the squared residuals in both the
predictor and response variables and incorporates the
correlation of errors in these variables [12, 13]. Thus,
LSC is expected to be appropriate for correlated errors
in LGA variables. Furthermore, LSC has been shown to
improve regression parameter estimates in the fields of
biogeosciences [14] and geophysics [13].
To the best of our knowledge, LSC regression (as in

[12, 13]) has not been applied to the LGA. In this study,
LSC was applied to the LGA in an effort to reduce bias in
the estimates of BPND. With the OLS-based LGA as the
conventional method, the viability of LSC in reducing bias
in BPND estimates was assessed against MRTM2, which is
currently a widely accepted method.

The three methods, LSC, MRTM2 and the conventional
LGA, were compared using a well known radiotracer,
11C-carfentanil (CFN), for simulation studies. To account
for differing binding characteristics, for human data stud-
ies, the three methods were verified using a different and
relatively new radiotracer, 11C-Pittsburgh compound B
(11C-PIB), which is gaining popularity owing to its
usage in the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) studies. Both CFN and 11C-PIB have specific
binding sites in the brain. CFN binds to μ-opioid recep-
tors, and 11C-PIB binds to beta amyloid (Aβ) plaques.

Methods
Logan graphical analysis
LGA is a well-established algorithm for estimating the
density of specific binding sites of receptors in terms of
the BPND [1]. The operational equation of the LGA is as
given as [2],

∫ t
0 C(u) du
C(t)

= (1 + BPND)

·
⎛

⎝

∫ t
0 C

R(u) du + 1
kR2
CR(t)

C(t)

⎞

⎠ − int. (1)

C(t) and CR(t) represent the total radioactivity concen-
tration in a brain tissue and a reference region, respec-
tively. A reference region is such that it has ignorable
specific binding sites and a density of nonspecific binding
sites equal to that of the other brain tissues. It is defined by
the biochemical aspects of the administered radiotracer,
and in terms of amyloid imaging, cerebellum gray matter
is used as the reference region [15].
Equation (1) is such that after some time t∗, the y-

intercept term, int, becomes constant with time, and thus,
Eq. (1) becomes a linear relationship between

∫ t
0 C(u)du
C(t) and

∫ t
0 C

R(u) du+ 1
kR2

CR(t)

C(t) , with a slope of, 1 + BPND.
We can then apply a linear regression to Eq. (1), for

T > t∗, to compute BPND from its slope. A linear regres-
sion is fast and stable, and therefore, it is suitable for
application in a voxel-by-voxel fashion to construct a
BPND parametric image.
Figure 1 shows a compartmental model used to

describe the kinetics of a radiotracer in brain tissues

Fig. 1 Two-tissue compartmental model. Transportation of the
administered radiotracer between the compartments, CP , CND and CS
is described by the rate constants, K1, k2–4
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[16]. The compartments CP, CND and CS represent the
concentration of the radiotracer in arterial plasma, non-
displaceable (bound-free + non-specifically bound) radio-
tracer, and specifically bound radiotracer, respectively.
The transportation of the radiotracer between neighbor-
ing compartments is described by the rate constants,
K1 [ml g−1min−1] and k2–4 [min−1]. K1 denotes the
delivery rate of the radiotracer from the arterial plasma to
tissues. k2 is the clearance rate from the tissues back to
the plasma, and k3 and k4 are the respective association
and dissociation rates of the radiotracer to and from the
specific binding sites. More details on the compartmental
model can be found in [16].
MRTM1 reduces the noise by rearranging the original

LGA equation such that the noisy term, C(t), only appears
on the side of the response variable, thus allowing OLS
to account for all errors in the LGA variables due to C(t)
[9]. MRTM1 results in multilinear regression, with three
regression parameters that have to be estimated. To fur-
ther stabilize MRTM1, MRTM2 was developed by reduc-
ing the number of regression parameters from three to
two [9]. BPND can then be estimated from the regression
parameters obtained by MRTM2.

Least-squares cubic
LSC is an EIV-based regression method. LSC fully con-
siders the errors in both variables, by minimizing the sum
of weighted squared errors in both the involved variables,
and by including the correlation of these errors [11–13].
Under specific assumptions, LSC can be shown to reduce
to either OLS or other common regression methods, ren-
dering LSC to be a general solution to the linear regres-
sion problem [11]. Here, we introduce LSC regression
and demonstrate how it can be used to estimate BPND
from LGA.
To fit a straight line model, y = αx + β , LSC [12]

estimates the regression parameters by minimizing the
equation,

N∑

i=1
d2i =

N∑

i=1

{
w(Xi)(x′

i − Xi)
2

− 2r
√
w(Xi)w(Yi)(x′

i − Xi)(y′
i − Yi)

+w(Yi)(y′
i − Yi)2

} 1
1 − r2

, (2)

where α and β are the slope and y-intercept of the fit-
ted straight line, respectively. (w(Xi),w(Yi)) is a pair of
weights for the corresponding pair of observed data,
{(Xi,Yi) | i = 1, 2, ...,N}, and r is the correlation of the
errors in the observed data. (x′

i, y′
i) is a pair of the estimates

of the true points (xi, yi).
It can then be seen from Eq. (2) that LSC accounts for

the weights (w(Xi), w(Yi)) and errors (x′
i − Xi, y′

i − Yi)
in both variables, as well as the correlation of these

errors (r). Accordingly, a regression method that does
not consider either of these aspects makes assump-
tions about them in certain ways. For example, an
unweighted method assumes equal weights of ones;
minimizing only the residuals of the response variable
means assuming that the predictor variable is error-
free and not considering the correlation of errors means
assuming that the errors in the measured data are
uncorrelated.
Solving Eq. (2) for the slope (α′) and y-intercept

(β ′) gives,

α′ =

N∑

i=1
WiBiVi

N∑

i=1
WiBiUi

and β ′ = Y − α′X, (3)

where,

Ui = Xi − X and Vi = Yi − Y

Wi = w(Xi)w(Yi)
α′2w(Yi) + w(Xi) − 2α′r

√
w(Xi)w(Yi)

,

Bi = Wi

(
Ui

w(Yi)
+ α′Vi

w(Xi)

−(α′Ui + Vi)
r√

w(Xi)w(Yi)

)

. (4)

X and Y are given by,

X =
N∑

i=1
WiXi/

N∑

i=1
Wi; Y =

N∑

i=1
WiYi/

N∑

i=1
Wi. (5)

A step-by-step derivation of Eqs. (3) and (4) can be
found in previous papers [11–13]. A more thorough
derivation, including one of Eq. (2), is demonstrated
in [17].
The expression for α′ in Eq. (3) includes α′, which is con-

tained in Wi and Bi as shown in Eq. (4). This means that
LSC requires an initial guess of α′; that is, it is an itera-
tive procedure. The slope obtained by OLS can be used as
the initial guess of α′. Given the PET data, C(t) and CR(t),
LSC can be used to estimate BPND by the slope in Eq. (3).

Weights, {w(Xi), w(Yi)}, and correlation of errors in variables
(r)
For LGA, the weights, w(Xi) and w(Yi), and the cor-
relation of errors, r, are unknown; therefore, they have
to be estimated. To this end, we adopted the method
of "relative error regression" [18, 19]. In relative error
regression, instead of minimizing the squared-sum of the
absolute errors,

∑
(y′

i − Yi)2, the squared-sum of the rel-
ative errors,

∑
[ (y′

i − Yi)/Yi]2, is minimized. In statistical
prediction, relative errors are considered to bemore infor-
mative than absolute errors [19]. Expressing the relative
errors in this manner can help adjust measurements in a
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weighted linear regression with the weights given by, 1/Y 2
i

[18, 19]. After adopting this technique for LSC, the X and
Y weights can be respectively given as,

w(Xi) = 1/X2
i and w(Yi) = 1/Y 2

i . (6)

A detailed analysis demonstrating the viability of these
weight functions for LSC-based LGA is given in Addi-
tional file 1.
The errors in the variables were unknown; thus, their

correlations were estimated by the correlations between
the variables themselves. These correlations were esti-
mated by the “correlations of determination." The corre-
lation of determination is a number between 0 and 1, and
it determines the proportion of variation in the response
variable that can be explained by the predictor variable
[20, 21]. To iterate, the slope obtained in the first run was
substituted in Wi and Bi in Eq. (4). The iteration process
was repeated until the relative differences between con-
secutive estimates of the slope, (α′

i − α′
i+1)/α

′
i+1, were less

than 10−10. A thorough step-by-step guide for using LSC
can be found in [13].

Simulation studies
In order to assess the performance of LSC against that of
MRTM2 and conventional LGA when estimating BPND, a
set of PET data of the two-tissue compartmental model
was simulated using a clinically measured plasma time-
activity curve in a PET study. The kinetic parameters,
K1, k2–4 and the non-displaceable distribution volume
(VND) used for simulations were adopted from the range
of values used in [22], mimicking CFN;

• 11 values of BPND were set in the range of [ 0.0, 3.0],
covering a range of [ 0.0, 0.35] for k3.

• [K1 k4]=[ 0.1835 mLcm−1min−1 0.115/min].
• [ k2 k3]=[K1/VND BPND · k4].
• VND = 1.59 mLcm−1.

The reference region was formed with a zero noise level,
zero BPND, and delivery and clearance rates equal to those
of the target tissues, due to its physiological assumptions.
Using these kinetic parameter values, 11 noise-free tTACs
corresponding to the 11 BPND values were formed. Statis-
tical noise was added to these noise-free tTACs, and 1024
noisy tTACs were simulated as a slice of 32-by-32 pixels
for each noise-free tTAC. The BPND values were then re-
estimated from the noisy tTACs by LSC, MRTM2, and
conventional LGA, and the results were compared. The
true value for the dissociation rate of the reference region
(kR2 ), which was used to produce the simulation data, was
used for all methods.
The noise was assumed to have a zero-mean Gaus-

sian distribution with a variance proportional to the true
tTAC; this is the same as the one used in previous studies

[4, 8]. The noise scaling factor was set such that the actual
magnitude of the noise level in the simulated tTACs varied
within a range of 0 to 30%; this range covered the actual
noise observed in voxel-based PET data. The magnitudes
of the noise level were calculated by the percentage of the
ratios of the “standard deviation of the noisy tTACs" to the
“mean of the noise-free tTAC" for the portion of the time
range used for the BPND estimations. Figure 2 shows the
simulated noise-free (thick lines) and their correspond-
ing noisy (thin lines) tTACs for the 11 BPND values. The
12th blue curve at the bottom is the curve of the reference
region.

Human data studies
Two patients, of which one is Aβ-negative and the other
is Aβ-positive, participated in this study. The two patients
underwent a 11C-PIB PET scan for 70 minutes. The scan
was carried out according to the standard ADNI 11C-PIB
PET procedure. The study protocol was approved by the
Ethics Committee of Kindai University Hospital, and writ-
ten informed consent was obtained from the participants.
The data were collected in matrices of 128 × 128 ×

47 slices, and voxel sizes of 2.1 × 2.1 × 3.4 mm3. BPND
parametric images – reflecting Aβ deposits in the brain
regions – were then generated using the three algorithms,
LSC, MRTM2, and conventional LGA, implemented in
MATLAB (The MathWorks, Inc., Natick, MA, United
States).
Time t∗(30 min.), which was used for both synthetic and

actual data, was graphically determined from simulated
data, as demonstrated in Additional file 2.
For actual data, the values of kR2 that were used for

all methods were estimated by MRTM1. MRTM1 allows
estimation of kR2 with little bias [9]. Specifically for each
slice, the average value, k̄R2 , calculated from the | kR2 | of all
voxels in the reference region, was used.

Results
Simulation studies
The results in Fig. 3 compares the percentage bias in the
BPND values estimated by the three methods from the
noisy tTACs. The standard deviations (in percentages) are
shown as error bars.
In these results, LSC estimates are the least biased along

the entire range of BPND, with up to a maximum of 12%
and 28% bias difference in comparison with MRTM2 and
conventional LGA, respectively. The error bars show that
while the conventional LGA estimates have the small-
est variability, LSC estimates have smaller variability than
MRTM2 estimates.

Human data studies
Figure 4 shows the BPND parametric images obtained by
LSC, MRTM2, and conventional LGA. These images are
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Fig. 2 Simulated tTACs. The 12 thick curves denote the noise-free tTACs. Eleven of these correspond to the 11 BPND values. The remaining one
(lowermost) represents the reference region. The thin curves denote the noisy tTACs. Only one noisy tTAC is shown out of the 1024 simulated noisy
tTACs for each of the noise-free tTACs

generated from 11C-PIB PET brain images, and there-
fore they reflect Aβ deposits in the brain regions. This
is because Aβ is the target receptor for 11C-PIB radio-
tracer. The left panel shows images of three slices of
the Aβ-negative patient, obtained by each of the three

methods, whereas the right panel shows the images of the
Aβ-positive patient.
The images obtained by LSC have significantly higher

total BPND estimates than those of conventional LGA
for both patients. The images obtained by MRTM2 have

Fig. 3 Comparisons of the percentage bias and variability in the estimated BPND values. The percentage bias and variability in the BPND estimated
from the noisy tTACs by LSC, MRTM2, and the conventional LGA, are compared for the 11 values of true BPND
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Fig. 4 Axial slice images of brain regions obtained by the three methods, LSC, MRTM2 and conventional LGA. These are BPND images of Aβ

quantification of 11C-PIB brain PET data of the two patients. The left panel shows the images of the Aβ-negative patient, and the right panel shows
the images of the Aβ-positive patient

the highest total BPND estimates. For MRTM2 images,
however, considerably higher levels of noise are observed.
These results are consistent with those of CFN observed
in the simulated data.
Table 1 shows the average computational time taken by

each method for the corresponding sets of three images in
Fig. 4. LSC took moderate computational time, one order
of magnitude higher than the conventional LGA, for both
patients’ images. This was expected of LSC because it is
an iterative procedure. MRTM2 took the longest compu-
tational time amongst the three methods, two orders of
magnitude higher than the conventional LGA, for both
patients’ images.

Discussion
In this study, LSC estimates of the BPND emerged to
be less biased than those of MRTM2 and conventional
LGA. Moreover, LSC estimates have smaller variations in
comparison with those for MRTM2, providing a better
trade-off between bias and variability.

Table 1 Means (± standard deviations) of computational times
taken by each method for the respective slice images in Fig. 4

Human data computational time (seconds)

L R

LSC 0.161 ±0.033 0.156 ±0.016

MRTM2 1.045 ±0.031 1.014 ±0.031

LGA 0.073 ±0.024 0.083 ±0.009

The two columns indicated by L and R denote the left and right panel images,
respectively

The underestimation which is observed in the simulated
data for the conventional LGA estimates is also reflected
in the real data, and accordingly, the reduction of the
underestimation seen in the simulated data for the LSC
method is also reflected in the real data. Furthermore,
the underestimations observed for the conventional LGA
method in both simulation and human data studies are
in consistency with previous studies [15, 22], and this
strengthens the reliability of the results reported here.
Both LSC and OLS are based on the assumption that

the errors in the measurements are normally distributed.
However, this assumption may not always be satisfied. A
visual inspection of the distributions of the LSC error val-
ues and the OLS residuals showed that the LSC error
values have a better normal distribution compared with
that of the OLS residuals (Additional file 3). This can
be attributed to the fact that LSC takes into account
the varying magnitude of errors at each data point as
demonstrated in [12].
LSC considers the errors in both variables without

altering the original LGA equation, thus maintaining its
simplicity and inducing less variability. In addition, LSC
does not only consider the errors associated with term
C(t), but also the errors associated with each LGA vari-
able as a whole. The effort to include more details in
LSC has increased the number of parameters in Eq. (2),
compared with the fundamental OLS regression, which
only comprises the residuals of the response variable. This
could be a factor in the slight increase in the variability
of LSC estimates, compared with the conventional LGA
estimates.
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MRTM2 rearranges the conventional LGA equation
into a multilinear regression form so that the noted noisy
term, C(t), only appears in the response variable [7, 9].
This only considers the errors associated with C(t). How-
ever, the rest of the terms in the LGA equation are not
entirely noise-free; they are less noisy compared withC(t).
Not considering the noise in the rest of the terms could
lead to the bias in the MRTM2 estimates.
Based on the computational times of the three methods

for obtaining slice images, the conventional LGA has the
highest computational efficiency, followed by LSC, and
MRTM2. The computational time for LSC would depend
on the number of iterations, which in turn depends on the
iteration condition, with the computational time increas-
ing with the number of iterations. All LSC images in Fig. 4
required at most three iterations. The iteration limit-
ing condition in this study, (α′

i − α′
i+1)/α

′
i+1 < 10−10, was

arbitrarily chosen. However, it was found that by choosing
a stricter condition, say 10−11, the number of iterations
did not increase.
Although the weighting formulas in Eq. (6) are inverse

squares of the measurements, they will not cause the
usual problem of overproportional weighting of smaller
measurements. This is because they are not the direct
weighting coefficients. The final weighting coefficients
are appearing in Eq. (3) as WiBi. Because they appear
in both the numerator and denominator, the overpror-
tional weighting effect can be canceled out. Based on
an analysis of LSC regression carried out in [12], it was
shown that a set of weight functions satisfying the rela-

tion,
√

w(Xi)
w(Yi) =

∫ ti
0 CT (u) du

∫ ti
0 CR(u) du+CR(ti)/kR2

, would be appropriate
weights for the LSC-based LGA. The weighting formulas
given in Eq. (6) satisfy this condition, therefore making
them appropriate (See Additional file 1 for details).

Conclusions
The proposed method, LSC-based LGA, significantly
reduced the bias in the estimates of BPND, up to 12% and
28% difference compared with MRTM2 and the conven-
tional LGA, respectively. Considering the conventional
LGA as the standard method, LSC reduced the bias at
a slight expense of increased variation. However, LSC
caused smaller variations and required shorter compu-
tational times than MRTM2. Thus, LSC outperformed
MRTM2 in all aspects (bias, variability, and computational
efficiency), making it a promising tool for the BPND esti-
mation. These results are consitent as such for the two
radiotracers respectively used for simulated and human
data studies.
This study investigated the performance of LSC-based

LGA mostly based on simulations, and thus, the method
must be validated using a larger cohort of actual data.
In addition, different weighting techniques may perform

differently. Therefore, a further study is required to seek
an adequate weighting technique for LGA.
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Additional file 1: Mathematical analysis of the LSC regression method.
This analysis demonstrates the appropriateness of the weight functions
used in this study.

Additional file 2: tTACs and the corresponding Logan plot. The upper
panel shows the mean tTACs of the region of interest (BPND = 3.00) and
the reference region. The lower panel shows the corresponding Logan
plot. By visual observation of where the data points in the Logan plot attain
a linear relationship, the point corresponding to Time = 30 minutes was
chosen; hence, t∗ = 30 min was used in this study. The data points (in the
lower panel) used for BPND estimation are dotted in the middle.

Additional file 3: Comparisons of the distributions of the errors. This
figure shows the distributions of the errors estimated by LSC (upper panel)
and those estimated by OLS (lower panel).
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