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Abstract

Background: Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In
quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling.
However, the underlying linear assumption of CPH model limits the prognostic performance. In this work, using
transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative
CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients.

Results: The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in
terms of concordance index and index of prediction accuracy, providing a better fit for patients’ survival patterns.

Conclusions: The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC
prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations
of conventional survival models.

Keywords: Cox proportional hazard model, Radiomics, Convolutional neural network, Survial analysis

Background
In clinical practice, medical imaging plays an increas-
ingly important role in informed decision making of cli-
nicians for disease management. Radiomics is a
systematic approach to study the latent information in
medical imaging for improved accuracy in prognosis. A
typical radiomics study involves image acquisition, fea-
ture extraction, feature analysis, and predictive modeling
for a clinical outcome such as patient survival [1]. Efforts
have been made to standardize quantitative imaging fea-
tures (radiomic features) by implementing open source
libraries such as PyRadiomics [2]. These feature banks
contain thousands of hand-crafted formulas, designed to
extract the distribution or texture information from
medical images. In radiomics studies, a feature reduction
method (e.g., principle component analysis) is used to
select representative features [3]. The prognostic features
are usually determined using Cox proportional hazard
model (CPH) [4]. In the past decade, several radiomics

features have shown prognostic value in different dis-
eases especially different types of cancer [5–9]. However,
the high dimensionality nature of radiomics features
makes the feature selection prone to multiple testing,
leading to false positives and low performance in the val-
idation cohorts.
As a statistical method, survival models are commonly

used in clinical research to identify potential risk factors
and predict risks for a variety of clinical outcomes in-
cluding patients’ overall survivals for different diseases
such as cancer. CPH is one of the most commonly used
survival analysis tools [10–12]. CPH is a type of semi-
parametric model that calculates the effects of features
(independent variables) on the risk of a certain event
(e.g., death) [13]. For example, CPH can measure the ef-
fect of tumor size on the risk of death.
The CPH-based survival models can help clinicians

make more personalized treatment decisions for individ-
ual patients. Traditional CPH models assume that the
independent variables make a linear contribution to the
model, with respect to time [13]. In many conditions,
this assumption oversimplifies the relationships between
biomarkers (e.g., radiomic features) and outcomes, espe-
cially in cancer diseases with poor prognosis including
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Pancreatic Ductal Adenocarcinoma (PDAC) [11]. With a
limited sample size, the violation of linear assumption
may not be obvious. However, as data sizes increase, the
violation of linear assumption in CPH models increasingly
becomes more obvious and problematic, diminishing the
performance and reliability of such models [10–12]. In
modern survival modeling approaches, restricted cubic
splines have been applied to fix this weakness of CPH
models [14, 15]. However, most radiomics studies have
failed to address this shortcoming and instead, either they
have adopted binary classification methods discarding
duration (time to event) information altogether or contin-
ued to use conventional CPH Methods [16–21].
The binary classification methods solve the nonlinearity

by using a classifier such as Random Forest or Support
Vector Machine (SVM) [22, 23]. Although these classifiers
perform well in diagnosis and prognosis, they discard the
time information in the modeling. For disease with poor
prognosis such as pancreatic cancer, the 5-year survival
rate is very low (e.g., less than 10% for pancreatic cancer)
[24–26]. Consequently, binary predictions only offer lim-
ited information for clinicians in designing personalized
treatment plans and hence, a nonlinear survival model
that takes duration (time to an event such as death) into
account to provide useful information on the survival is
desired.
A recent development in artificial neural networks

(ANNs) has provided an alternative solution for survival
modeling. ANNs can learn complex and nonlinear rela-
tionships between prognostic features and an individual’s
risk for a given outcome [27]. Therefore, the ANNs-based
model can provide an improved personalized recommen-
dation based on the computed risk. Nevertheless, previous
studies have demonstrated mixed performance for risk-
prediction models [27–29]. This may be due to the small
sample size and limited feature space leading to ANNs
models that are underfitted [28]. To exploit the ANNs
architecture and successfully apply them to complex cases,
larger datasets are required. Recent work has shown that,
given enough sample sizes, ANNs can, in fact, outperform
traditional CPH survival models [10–12].
The majority of previous works on deep learning based

survival analysis including DeepSurv and NNET-survival
are ANNs-based survival models with modified loss
function to capture more accurate survival patterns [10,
11]. These models take features (e.g., age, gender, height)
as input and return risks for patients at different time-
points. However, feeding radiomics features into these
ANNs as input is not the optimal solution due to the
multicollinearity issue.
In this research, we used medical images as input, re-

placing radiomics feature extractors with a Convolu-
tional Neural Network (CNN) architecture to extract
disease-specific image features which are associated with

survival patterns. As the most well-known architec-
ture in deep learning, CNNs extract imaging features
by applying multiple layers of convolution operations
to the images. Furthermore, the weights of the convo-
lution filters are finetuned during training via back-
propagation process [30, 31]. Thus, given sufficient
data, CNNs can be used to extract disease-specific
features, which can be used for diagnosis or prognosis
purposes [32–35]. Although traditional medical im-
aging based CNNs use “binary” or “multinomial” clas-
sification loss function, the loss function can be
modified to also capture the survival patterns [11]. By
doing so, CNN can be tuned to extract features that
are associated with the risk of the outcome in a cer-
tain duration. We hypothesized that the proposed
CNN-based Survival (CNN-Survival) model with a
modified loss function would outperform conventional
radiomics and CPH-based prognosis models.

Methods
Data
Three independent cohorts were used in this study. Co-
hort 1 consists of publicly available pretreatment CT
scans of 422 Non-small cell lung cancer (NSCLC) pa-
tients [7]. Cohort 2 has 68 resectable pancreatic adeno-
carcinoma (PDAC) patients collected from a local
hospital from 2008 to 2013. Cohort 3, which is the test
data, consists of 30 resectable PDAC patients enrolled in
another independent hospital site from 2007 to 2012 [3].
For all the patients in these three independent cohorts,
CT scans, annotations (contours) of tumor performed by
radiologists, and survival data were available. For PDAC
patients, the CT scans were preoperative contrast-
enhanced images of resectable patients, and the survival
data was collected from the date of surgery until death.
CT images from all three cohorts were read from
DICOM file without further processing. As CT scans
were from different institutions, the image acquisition
protocol information (e.g., exact contrast bolus volume,
timing, and injection rate) was not consistent over the
time period. The institutions’ Research Ethics Boards ap-
proved these retrospective studies and all methods were
carried out in accordance with relevant guidelines and
regulations.

Architecture of the proposed CNN-survival
A CNN architecture with six-layered convolutions
(CNN-Survival) was trained as shown in Fig. 1. Input
images have dimensions of 140 × 140 × 1 (grayscale),
which contain the CT images within the manual con-
tours of the tumors (example shown in Fig. 2). All pixels
outside of the contoured region were 0 in the 0 to 255
grayscales. All convolutional layers have kernel size of
3 × 3 with 32 filters following by Batch Normalization
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layers (BN). The first Max Pool layer has pool size of
2 × 2, and the latter two Max Pool layers have pool size
of 3 × 3. Through the Max Pool layers, number of train-
able parameters was significantly reduced. To avoid
overfitting with this small sample size, dropout layers

were added after every two convolutional layers with
dropout rate at 0.5. Finally, passing through the flatten
and dense layer, images were converted into 19 features
and finally, survival probabilities for a given time t were
calculated.

Fig. 1 The proposed CNN-Survival architecture: 6-layer CNN, batch normalization, and Max Pooling layers. There are also three dropout layers to
control the potential overfitting

Fig. 2 Example of the input CT images. Left: NSCLC tumor from Cohort 1. Right: PDAC tumor from Cohort 2
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Loss function
To better fit the distribution of survival data, a modified
loss function, proposed by Gensheimer et al. [11], was
applied to the CNN architecture (Eq. 1).

loss ¼ −
Xd j

i¼1
ln hij
� �

−
Xr j

i¼d jþ1
ln 1−hij
� �

ð1Þ

In Equation 1, hij is the hazard probability for individ-

ual i during time interval j. r stands for individuals “in
view” during the interval j (i.e., survived in this period)
and d means a patient suffered a failure (e.g., death) dur-
ing this interval [11]. As it can be seen from Equation 1,
the left part penalizes if the model gave low hazard for
failure (e.g., death), while the right part penalizes if the
model gave high hazard for a survived case. The overall
loss function is the sum of the losses for each time inter-
val [11].

Training process and transfer learning of CNN-survival
Training a CNN-based survival model needs to finetune
a large number of parameters. Given this CNN architec-
ture, there were 73,587 trainable parameters. As such,
the larger dataset, cohort 1, was used to pretrain the net-
work. In Cohort 1, 422 patients had 5479 slices contain-
ing manually contoured tumor regions. However, the
region of interest (ROI) on some of the slices were too
small (e.g., less than 250 pixels) to be fed as input to the
CNN (shown in Fig. 3). To mitigate this, we ranked
slices using their ROI size and pixel intensity and picked
the top 2500 slices. This ensured the minimum ROI size
of 250 pixels.

These 2500 slices were fed into the proposed CNN
model without augmentation. After training the initial
model at learning rate 0.0001 for 50 epochs, all the
weights in the pretrained model were frozen except
for the final dense layer. Next, 68 patients of Cohort
2 were used to finetune the dense layer (containing
627 parameters) for 20 epochs with learning rate of
0.0001 without augmentation. The finetuning was ne-
cessary since Cohort 1 and Cohort 2 have CT images
from two different types of cancers (lung and pan-
creas cancer, respectively) with different survival pat-
terns. After 20 epochs of finetuning in Cohort 2, the
final model was tested in Cohort 3. The prognosis
performance was measured by two metrics: concord-
ance index (CI) [36] and index of prediction accuracy
(IPA) [37]. CI is calculated using Equation 2.

c ¼ 1
Ej j

X
Ti uncensored

X
T j>Ti

1f xið Þ< f x jð Þ ð2Þ

where the indicator function 1a < b = 1 if a < b, and 0
otherwise. Ti is the survival time for subject i. | E | is the
number of edges in the order graph. f(xi) is the predicted
survival time for subject i by model f. Under this for-
mula, concordance index (CI) is the probability of con-
cordance between the predicted and the observed
survival [36]. IPA is a recently proposed performance
measure for binary and time to event outcomes account-
ing for both discrimination and calibration, and can
identify harmful models as well [37]. IPA of 100% indi-
cates a perfect model, and harmful models will have
IPA < 0 [37].

Radiomics and CNN-survival features
In order to systematically compare the performance
of CNN-Survival with CPH models and rule out the
confounding variable, we built two additional models
using CPH. The first model (Model 1: Radiomics fea-
tures + LASSO-CPH) is a traditional radiomics-based
CPH model, which used 1428 2D radiomics features
extracted from the manually contoured regions using
PyRadiomics library [2] (version 2.0). A LASSO-CPH
[38] feature reduction method was used to find prog-
nostic radiomic features in the training cohort (Co-
hort 2), which were then tested in the test cohort
(Cohort 3). The second model (Model 2: Transfer
learning features + LASSO-CPH) was trained using
the 19 transfer learning features extracted from the
last dense layer of the CNN-Survival model. Similar
to Model 1, a LASSO-CPH method was used to select
prognostic features in Cohort 2 and test them in Co-
hort 3. Under this setting, Model 1 and Model 2 had
the same type of survival function (LASSO-CPH), and
hence, the differences in the input data would explain

Fig. 3 Example of small ROI in Cohort 1
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the differences in performance. On the other hand,
Model 2 had the same input data as our proposed
CNN-Survival (Model 3) as they both used features
from the dense layer. Given that, the performance
disparities of Model 2 and Model 3 can be explained
by the different survival functions where Model 2
uses LASSO-CPH and instead, Model 3 uses the
modified loss function to generate survival probabil-
ities for a given time. The performance of all three
models was validated in Cohort 3 (test set) at 18
months by concordance index (CI) and index of pre-
diction accuracy (IPA) using R software (version
3.5.3), Survival, Survcomp, and riskRegression library
[39–41].

Results
In the traditional radiomics with LASSO-CPH approach
(Model 1), an optimal CPH model was trained in Cohort 2
using four features (“gradient_gldm_SmallDependenceEm-
phasis”, “gradient_glszm_SmallAreaEmphasis”, “original_
glszm_LargeAreaLowGrayLevelEmphasis”, and “wavelet.
HLH_glszm_HighGrayLevelZoneEmphasis”). This model
was tested in cohort 3 for validation with CI and IPA at
0.491 and − 3.80%, respectively. Similarly, another LASSO-
CPH model (Model 2) was trained using transfer learning
features extracted from Cohort 2. Using three features se-
lected by LASSO-CPH, this model yielded CI and IPA of
0.603 and 4.40%, respectively when validated in Cohort 3.
In contrast, the proposed CNN-Survival model (Model 3)
achieved CI and IPA of 0.651 and 11.81%, respectively, in
Cohort 3, outperforming the previous two CPH-based
methods. Table 1 lists the results (IPA and CI) for all three
survival models.
As discussed above, CNN-Survival could depict the

survival probability of a patient at a given time. The
survival probabilities curves of two patients (one sur-
vived versus one deceased) in the test cohort are
shown in Fig. 4 and Fig. 5.
For the patient deceased within 1 year after surgery,

the survival probability dropped significantly, while for
the survived patient, the survival probability stays above
0.5.

Discussion
Using the proposed CNN-Survival model, the prognosis
performance was improved, elevating IPA from − 3.80 to
11.81%, and CI from 0.491 to 0.651 compared to a

traditional radiomic-based CPH model (Model 1). Even
when transfer learning features were used to build a
CPH model (Model 2), the proposed CNN-Survival
model was still superior (IPA: 11.81% vs 4.40%, CI: 0.651
vs. 0.603). These comparisons illustrate that transfer
learning features outperform radiomics features
(Model 2 vs. Model 1) and the proposed CNN-
Survival model using a modified loss function outper-
forms both CPH-based models (Model 3 vs. Model 1
and 2). Deep learning networks provide flexibility in
modifying the dimension of feature space and loss
function, enabling us to extract disease-specific fea-
tures and build more precise models. Using a CNN-
based survival model, we showed that, with the help
of transfer learning, deep learning architectures can
outperform the traditional pipeline in a typical small
sample size setting when modeling the survival for re-
sectable PDAC patients. The proposed transfer
learning-based CNN-Survival model has significant
potential to enable researchers to pretrain a model
using images from common cancers with larger data-
sets and transfer this model to target rare cancers.
Transfer learning-based CNN-Survival model miti-
gates the needs for large sample size, allowing the
survival model to be applied to a wide range of can-
cer sites.
The proposed CNN-Survival model provides better

prognostic performance compared to the traditional
radiomics analytic pipeline (IPA 11.81% versus −
3.80%). Although there was no prior publications
reporting IPA for PDAC biomarkers, the IPA of our
proposed CNN-Survival is comparable to the typical
IPA for other survival models [37]. From the feature
extraction perspective, parameters in a CNN can be
updated during backpropagation, allowing to extract a
large number of features that are associated with the
target outcome. For feature analysis, the CNN-
Survival model avoids the multiple testing, which is a
significant issue in the conventional radiomics analytic
pipeline. Finally, with the modified loss function,
CNN-Survival model does not rely on the linear as-
sumption, making it suitable for more real-world sce-
narios. These advantages contributed to the improved
performance of the proposed model. Compared to
transfer learning features-based CPH model (Model
2), which used the same feature sued by CNN-
Survival model (Model 3), the proposed CNN-Survival

Table 1 Results (IPA and CI) of three survival models for resectable PDAC

IPA in Cohort 3 (test set) CI in Cohort 3 (test set)

Model 1: Radiomics features + LASSO-CPH −3.80% 0.491

Model 2: Transfer learning features + LASSO-CPH 4.40% 0.603

Model 3: Proposed CNN-Survival 11.81% 0.651
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had higher IPA (11.89% versus 4.40%). Given that
these two models had the same data input, this result
indicates that the loss function in CNN-Survival
model outperforms the traditional linear CPH which
is commonly used in radiomic studies.
In this research, due to the small sample size in

PDAC cohorts, the proposed CNN-Survival model
was not optimal. We used CT images from 68 pa-
tients to finetune the pretrained CNN-Survival model
and tested in another 30 patients of an independent
cohort. Although through transfer learning, most of
the parameters were trained using the pretrained co-
hort, there were still 627 parameters in the dense
layer needed to be modified through finetuning. Thus,
if a larger dataset was available for finetuning, per-
formance may be further improved. Additionally, the
pretrained dataset are CT images from Non-Small
Cell Lung Cancer (NSCLC) patients. Although it is
the largest open source dataset we could find, NSCLC

has different biological traits and survival patterns
compared to PDAC. In future research, using a simi-
lar pretrained domain and a larger finetuning cohort,
further improvement may be achieved. A proper val-
idation of the proposed model is required through
clinical validation, which is beyond the scope of this
work.
In this study, using CT images from three independent

cohorts, we validated the proposed CNN-Survival model
with the modified loss function proposed by Gensheimer
et al. [11]. We showed that the proposed CNN-Survival
model outperformed and avoided the limitations of the
conventional radiomics-based CPH model in a real-
world small sample size setting. Further validation of
this loss function can be performed for other types of
diseases through transfer learning. The proposed CNN-
Survival model has the potential to be a standardized
survival model in quantitative medical imaging research
field.

Fig. 4 Survival probability curve generated by the proposed CNN-Survival model for a patient deceased 316 days after surgery

Fig. 5 Survival probability curve generated by the proposed CNN-Survival for a patient survived more than one year after surgery
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Conclusions
The proposed CNN-based survival model outperforms
traditional CPH-based radiomics and transfer learning
pipelines in PDAC prognosis. This approach offers a bet-
ter fit for survival patterns based on CT images and over-
comes the limitations of conventional survival models.
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