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Abstract 

Background: Melanoma has become more widespread over the past 30 years and early detection is a major factor 
in reducing mortality rates associated with this type of skin cancer. Therefore, having access to an automatic, reliable 
system that is able to detect the presence of melanoma via a dermatoscopic image of lesions and/or skin pigmenta‑
tion can be a very useful tool in the area of medical diagnosis.

Methods: Among state‑of‑the‑art methods used for automated or computer assisted medical diagnosis, attention 
should be drawn to Deep Learning based on Convolutional Neural Networks, wherewith segmentation, classification 
and detection systems for several diseases have been implemented. The method proposed in this paper involves an 
initial stage that automatically crops the region of interest within a dermatoscopic image using the Mask and Region‑
based Convolutional Neural Network technique, and a second stage based on a ResNet152 structure, which classifies 
lesions as either “benign” or “malignant”.

Results: Training, validation and testing of the proposed model was carried out using the database associated to the 
challenge set out at the 2017 International Symposium on Biomedical Imaging. On the test data set, the proposed 
model achieves an increase in accuracy and balanced accuracy of 3.66% and 9.96%, respectively, with respect to the 
best accuracy and the best sensitivity/specificity ratio reported to date for melanoma detection in this challenge. 
Additionally, unlike previous models, the specificity and sensitivity achieve a high score (greater than 0.8) simultane‑
ously, which indicates that the model is good for accurate discrimination between benign and malignant lesion, not 
biased towards any of those classes.

Conclusions: The results achieved with the proposed model suggest a significant improvement over the results 
obtained in the state of the art as far as performance of skin lesion classifiers (malignant/benign) is concerned.

Keywords: Mask R_CNN, Deep learning, Transfer learning, Convolutional neural network, Object detection, Object 
classification
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Background
By the year 2019, the American Cancer Society (ACS) has 
calculated that approximately 96,480 new cases of mela-
nomas will be diagnosed and that approximately 7230 
people will die from melanoma in the United States [1]. 

Melanoma is considered to be the most serious type of 
skin cancer, meaning it is particularly important to accu-
rately diagnose it as soon as possible, to allow treatment 
before any dissemination and/or metastasis, as this will 
significantly increase the chance of recovery [1–4]. Gen-
erally speaking, melanoma can be recognized via a visual 
inspection that focuses on the region of the cutaneous 
lesion. However, there is great similarity between mela-
nomas and other skin lesions such as nevus, increasing 
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the difficulty in performing cancer classification and 
diagnostic tasks in skin lesions [5]. Therefore, ensuring 
access to a reliable, practical system that is able to con-
duct an automated evaluation of a skin lesion would have 
a positive influence on patient care and increases the 
chance of early detection of cancer, thus reducing mor-
tality rates associated with this disease.

In dermatology, both diagnosis and monitoring of 
skin lesions have relied mainly on visual inspection and 
other non-invasive evaluations, invasive procedures are 
avoided because they can destroy the lesions and make it 
impossible to carry out a clinical monitoring of its evolu-
tion [6]. In highly selected patient populations, computer 
assisted diagnosis methods have demonstrated high sen-
sitivity and may be useful as a back-up diagnostic aid for 
specialists to reduce the risk of missing melanomas [7]. 
One of the non-invasive methods employed in diagnosis 
and monitoring is the use of confocal microscopes avail-
able for clinical use, which provide sharp images because 
they capture only the light from the plane of the sample 
in focus. In  vivo reflectance confocal microscopy cap-
tures high resolution images in real time and is used in 
the evaluation of various dermatological conditions [6]. 
Reflectance confocal microscopy may reduce unneces-
sary excisions without missing melanoma cases [8]. For 
its part, research results in [9] show that dermoscopy is 
more accurate than visual inspection alone; the results 
reported in [9, 10] indicate that melanomas would not be 
detected using visual inspection. In our proposed model, 
the conclusive analysis of dermatoscopic images is auto-
mated through artificial intelligence algorithms, obtain-
ing a preliminary characterization that serves as support 
for dermatologists in order to obtain faster and more pre-
cise diagnoses.

Deep automatic models base their learning on the sam-
ples used for their training, this work uses the ISIC 2017 
database, which has more than 2000 high resolution der-
matoscopic images grouped into 3 main categories: Mel-
anoma, nevus and keratosis. Testing determines if these 
data is enough to achieve high performance detecting 
and rejecting benign and malignant dysplasic lesions.

From a technical standpoint of the problem, it has been 
found that many cutaneous lesion detectors have been 
proposed using Deep Learning models based on Convo-
lutional Neural Networks (CNN), such as GoogLeNet-
AlexNet-ResNet-VGGNet ensembles [11], R_CNN [12], 
the Mask and Region-based Convolutional Neural Net-
work (Mask R_CNN) and DeeplabV3+ method ensemble 
[13] and in general many CNN structures, making this 
approach one of the most powerful for effective feature 
extraction and classification [14]. The method proposed 
in this work exploits the potentialities of Mask R_CNN 
for detection of objects, patterns and/or figures within an 

image together with potentiality of the ResNet152 model 
for classification purposes. The ResNet152 model was 
selected after testing with other ResNet, Inception and 
VGG structures, all of them with demonstrated high-per-
formance on several image classification tasks [15, 16].

The main factors that make classification of dermato-
scopic images difficult are: the presence of hairs, inks, 
ruler markings, colored patches, glimmers of light, drops, 
oil bubbles, blood vessels, hypopigmentation areas and/
or inflammation around the lesion, among others [17]. 
Extraction features in CNN is affected when this unde-
sired noise is present in the image, directly affecting per-
formance of the classifier. Therefore, accurate extraction 
of the region of interest (ROI) is considered an essential 
step towards improving performance of the system [18, 
19]. To solve the melanoma detection problem, taking 
into account the issues mentioned above, we propose a 
two-stage classification method:

• Stage 1: Use Mask R_CNN to create a bounding 
box around the skin lesion, with as few visual noise 
as possible. The output of this stage is the cropped 
bounding box.

• Stage 2: Classification of the cropped area using 
ResNet152. Although Mask R_CNN can also be used 
for image classification, not only for object detection 
as in Stage 1, we decided to separate the two tasks in 
order to be able to use higher performing classifica-
tion models.

Something that should be stressed in this work is the 
constant search for high-performance models using dif-
ferent balancing ratios for the training data used by the 
algorithms. This is of great interest for the scientific com-
munity, given that unbalanced repositories are very com-
mon in the medical field.

The most recently published dermatoscopic image clas-
sification work (malignant/benign) for the ISIC (Interna-
tional Skin Imaging Collaboration) 2017 challenge, using 
the data set from the International Symposium on Bio-
medical Imaging (ISBI) 2017 challenge, is taken as a ref-
erence within the reviewed state-of-the-art. An objective 
comparison of results is made with our proposed method 
using the evaluation metrics adopted by the challenge 
such as specificity, sensitivity and accuracy. However, we 
added another metric—balance accuracy—suggested for 
this particular case in which there is an unbalanced data-
base [20–22]. A Receiver Operating Characteristic (ROC) 
space is provided in order to compare and display per-
formance of various classifier models in a single graph, 
and this is a very useful metric for decision-making in 
the medical field, the use of which has been increasing in 
machine learning research [23].
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The rest of this paper is organized as follows: "Methods" 
section explains in detail the proposed method; "Results" 
section shows the results obtained from the experi-
ments carried out to select the best performing model 
for the proposed method and compares the best results 
obtained from the ISIC 2017 challenge with the proposed 
method; "Discussion" section provides a discussion and 
finally, "Conclusions" section explain the conclusions.

Methods
We propose an automated classification method for cuta-
neous lesion in digital dermatoscopic images, in order 
to detect the presence of melanoma. This method com-
prises two fundamental stages, which are: Stage 1: Crop-
ping a bounding box around only the skin lesion in the 
input image, using Mask R_CNN; and Stage 2: Classifi-
cation of the cropped bounding box using ResNet152, as 
described in Fig. 1 with a functional block diagram of the 
system.

In the first stage, Mask R_CNN makes a selection of 
candidates, i.e. it filters regions within the image that may 
contain a skin lesion in order to be classified. The main 
purpose of this step is to crop a bounding box of the 
image around the region of interest (ROI). We then train, 
validate and test the model in this stage using the dataset 
from the ISIC 2017 challenge [24], which contains 1995 
dermatoscopic images with their respective masks for 
training, 149 dermatoscopic images for validation and 
598 dermatoscopic images for testing [25].

Mask R_CNN trains the system with masks provided 
by a clinical expert, so as to be able to identify those pix-
els that correspond to a skin lesion within the image, i.e. 
our region of interest (ROI). Although there are many 
candidates in an image, calculating the probability that 

one candidate belongs to a skin lesion plays a major role 
when rejecting other elements from the image such as 
marks, patches or bubbles, among others. Mask R_CNN 
takes candidates and classifies them by generating prob-
abilities as shown in Fig.  2a, in which the area corre-
sponding to the yellow patch present in the image has a 
lower probability of being a skin lesion (0.505 probability) 
than the probability calculated in a second region that 
genuinely corresponds to a skin lesion (0.982 probability). 
Lastly, we crop the area defined by the refined bounding 
box and create a new image Fig. 2b that is then classified 
on Stage 2.

In Stage 2, in order to classify the cropped images iden-
tified as skins lesions from Stage 1, we decided to include 
a ResNet152 classifier that outputs a benign or malignant 
label. A “malignant” class being understood as refer-
ring to those skin lesions identified as melanoma and 
“benign” class referring to all those lesions not identified 
as melanoma.

Figure  1 also shows the generic internal structure of 
ResNet152, which comprises two blocks: one contain-
ing the feature extraction layers known as convolution 
layers, and the other performing the classification via a 
fully connected network. In overall terms, this convo-
lutional network is made up of over 60 million param-
eters that need to be adjusted in a process known as 
training, which usually requires a very large volume of 
images. The relatively small amount of data available in 
the ISBI 2017 database (1995 items for training and 149 
for validation) makes it unsuitable to train such a large 
network from scratch. Therefore, we decided to use the 
technique known as Transfer Learning, which uses a 
network pre-trained using a very large general-purpose 
database, and subsequently retrains it using an smaller, 

Stage 2: Classification of the cropped bounding
box using ResNet152

Convolutional Net

Generation
of

candidates

Feature 
extraction

Cropped image

Stage 1: Cropping a bounding box around the skin
lesion using Mask R_CNN

Refining the
bounding box and

cropping the image

Original Image

Malignant or
Benign class

Fully connected Net

Fig. 1 Functional block diagram of the proposed system
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a     b                      
Fig. 2 a ROIs after refining; b Cropped image

Configure and initialize 
ResNet 152 structure

Pre-train the network with 
the ImagiNet* database

Apply Transfer Learning by fine tuning with the 
ISBI 2017 database at a learning rate = 0.001 
until the lowest loss in validation is obtained.

Carry out for 

100 epochs

Carry out for

100 epochs

Begin

To the best model obtained, apply Transfer 
Learning fine tuning again at a learning rate = 

0.0001 until obtaining the lower loss in validation.

Save the model obtained

End

Fig. 3 Flowchart of the network training process. *ImagiNet database [26]
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specific-purpose database. In our case, this was under-
taken following the steps shown in Fig. 3.

An iterative adjustment of the learning rate [27] is 
undertaken following the procedure described in Fig.  3 
for the five training scenarios listed in Table 1, in which 
the ratio between the number of malignant and benign 
dermatoscopic images is modified.

The original dataset from the ISBI 2017 challenge was 
used to obtain model 1, unlike models 2, 3, 4 and 5, in 
which we expanded the size of the “malignant” class 
training data set by 90% by generating modified versions 
of the dermatoscopic images and applying the following 
data augmentation techniques: rotation augmentation 
(image rotation by 180 degrees) and vertical flip augmen-
tation (pixel reordering by row reversal). In models 3 and 
4, we also reduced the number of dermatoscopic images 
from the “benign” class by different ratios. Lastly, in 
model 5 we included dermatoscopic images with “malig-
nant” skin lesions extracted from the PH2 database [28].

The only hyper-parameters adjusted were the learning 
rate and the number of epochs, with the best perform-
ing values for each training scenario shown in Table  2. 
The momentum and batch size are set at 0.9 and 32 
respectively.

For our application, the ResNet152 classifies between 
“malignant” or “benign” classes, thus resulting in a binary 
classifier whose performance is evaluated using specific-
ity, sensitivity, accuracy and balance accuracy metrics, in 
which the reference class is the “malignant” class. Sen-
sitivity and specificity are the standard metrics used to 
evaluate performance of classifiers in the field of medi-
cine [13]. In the case of our skin lesion classifier, a speci-
ficity (Eq.  (1)) close to 1.0 indicates good performance 
when correctly classifying the “benign” class. Conversely, 
a sensitivity (Eq.  (2)) close to 1.0 indicates good perfor-
mance when correctly classifying the “malignant” class 
(melanoma lesion). Accuracy (Eq.  (3)) is another very 
commonly-used evaluation metric in the area of medical 
applications that measures the overall performance of a 
classifier [11–13, 17]; however, this metric is not suitable 

when the data set is highly unbalanced, as a classifier that 
is biased towards the most frequently occurring class 
leads to an optimistic estimate that would provide mis-
leading results. This problem can be addressed by replac-
ing this metric with a different one known as balanced 
accuracy for the specific case of a binary-type classifier 
[20, 21]. Specificity, sensitivity, accuracy and balanced 
accuracy of classifiers are calculated from the result-
ing confusion matrices, and also compared in a Receiver 
Operating Characteristic (ROC) space, as shown in Fig. 4.

A singular point in the ROC space is better than 
another if the latter is located closer to the northeast cor-
ner than the first, i.e. the coordinate (0,1) represents a 
perfect classifier. The ROC space is commonly used for 
decision-making in the field of medicine, as it shows the 
relative compensation that may exist between benefits 
(true positives) and costs (false positives) [23].

Results
This section shows the results obtained when applying 
proposed method to the five training scenarios described 
in Table 1, in which a range of data transform techniques 
are used to reduce the degree of data imbalance during 
training.

Model 1 was obtained by training the classifier with 
the data set from the ISBI 2017 challenge, which con-
tains 1995 dermatoscopic images for training, of which 
1620 correspond to benign lesions and 375 to malig-
nant lesions; as well as 149 dermatoscopic images for 

Table 1 Five different training scenarios

Model Technique to modify the malignant/benign training ratio Malignant/
Benign training 
ratio

Model 1 None 0.231

Model 2 Data augmentation applied to “malignant” class images, no changes to “benign” class images 0.440

Model 3 Data augmentation applied to “malignant” class images, down sampling applied to “benign” class images 0.463

Model 4 Data augmentation applied to “malignant” class images, down sampling applied in “benign” class images 1

Model 5 Data augmentation and addition of PH2 images applied to “malignant” class images, no changes to “benign” class 
images

0.256

Table 2 Adjustment of hyper-parameters

Model/
Hyper-
parameters

Number of epochs 
with learning rate 
0.001

Number of epochs 
with learning rate 
0.0001

Model 1 79 87

Model 2 85 95

Model 3 67 90

Model 4 93 74

Model 5 56 59
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validation purposes, 119 corresponding to benign lesions 
and 30 to malignant lesions. Model 1 was trained without 
applying any augmentation technique or reduction data, 
obtaining the confusion matrix shown in Fig.  5 when 
tested with the test data from ISBI 2017 challenge, which 
comprises 598 dermatoscopic images, 481 corresponding 
to benign lesions and 117 to malignant lesions. All testing 
results we provide in this section for the five models were 
obtained over this same test data set.

Despite the fact that excellent performance is noted 
when classifying the “benign” class, i.e. high specificity, 
the same behaviour is not observed when classifying the 
“malignant” class, i.e. low specificity. A possible funda-
mental reason for this is the clear bias in the training data 
set towards the “benign” class. This reason, justifies the 
use of data augmentation/reduction techniques in order 
to reduce the training imbalance ratio and achieve better 
overall results, as it is explored with models 2–5.

To obtain model 2, a 90% transform augmentation is 
applied on the dermatoscopic images from the “malig-
nant” class, thus increasing the balance ratio between 
the two classes from 0.231 to 0.440. The test data same as 

before is used to evaluate model 2, obtaining the confu-
sion matrix shown in Fig. 6.

The number of “malignant” test samples that are cor-
rectly classified improves from 43 to 84 with respect to 
model 1. While there is also a drop in the number of 
“benign” samples correctly classified, it is not nearly as 
significant, therefore model 2 is postulated as a better 
model since it achieves a better balance in specificity ver-
sus sensitivity than model 1.

In model 3, in addition to the same data augmentation 
procedure used in model 2 for the “malign” class, data 
down sampling is applied to the “benign” class images in 
order to increase the training balance ratio to 0.463. The 
confusion matrix shown in Fig. 7 was obtained from the 
evaluation of model 3.

We can see that despite the fact that the degree of 
data imbalance is lower, the number of “malignant” 
class images that had been correctly classified failed to 
improve with respect to model 2—rather, the opposite 
was true, it decreased.

Model 4 is obtained in the same way as model 3, but 
the down sampling and augmentation transforms are 

Fig. 4 Receiver operating characteristic ROC space

Fig. 5 a Confusion matrix of model 1; b Percentage confusion matrix 
of model 1

Fig. 6 a Confusion matrix of model 2; b Percentage confusion matrix 
of model 2
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adjusted to a 1.0 training balance ratio, i.e. until we 
get the same number of malignant and benign train-
ing images. The confusion matrix shown in Fig.  8 was 
obtained from the test data set.

Despite the fact that the training data is perfectly bal-
anced, the number of correctly classified images from 
the “benign” class was reduced considerably.

Lastly, for model 5 data augmentation for the “malign” 
class was performed using data from the PH2 data set 
[28], while no changes were made to the “benign” class 
data. This resulted in a 0.256 training balance ratio, i.e. 
a minimum increase with respect to the original situa-
tion used for model 1. The confusion matrix obtained is 
shown in Fig. 9.

Despite the fact that new images belonging to the 
“malignant” class from a new dataset are added, no 
improvement in classification of “malignant” class 
images is noted.

Lastly, the best model from the previous tests (i.e. 
model 2) was retrained for 60 more epochs and a lower 
learning rate of 0.0001. The resulting model is called 
model 6 and its confusion matrix is shown in Fig.  10. 
Meanwhile, Table  3 summarizes the results obtained 
for all 6 tested models, where it is clear that, overall, 
model 6 shows the best performance.

Table  4 compares the results of the proposed model 
(model 6 from the previous section, now called eVida) 
against the best performing models reported for the 
ISIC challenge 2017 for melanoma classification. For 
the purposes of comparison, the table has been sorted 
from highest to lowest according to the reported Area 
Under the RC Curve (AUC) value, since AUC is the 
metric chosen by the organizers to define the ranking 
in this challenge. The challenge not only considers the 
AUC for melanoma detection, but computes an over-
all score that averages the AUC for melanoma detection 
with the AUC for keratosis detection. In this research 
work, we only consider the AUC for melanoma detec-
tion, since no keratosis tests were performed.

The comparison between the proposed eVida model 
and the results reported by the RECOD Titans team 
(participant with the best previously reported AUC 
and ACC scores for melanoma detection) suggests an 
advantage for our proposed model since there is an 
increase in accuracy and balanced accuracy of 3.66% 
and 9.96% respectively for the test data. Meanwhile the 
reported AUC for both models is not significantly dif-
ferent. The proposed model also shows improvement 
over what is reported by Kazuhisa Matsunaga (Rank 
1 in overall Lesion Classification), whose model pre-
sents the best balance between sensitivity and specific-
ity among the previously reported results in melanoma 
detection for this challenge. Unlike the other reported 
models, in the proposed eVida model the specificity 

Fig. 7 a Confusion matrix of model 3; b Percentage confusion matrix 
of model 3

Fig. 8 a Confusion matrix of model 4; b Percentage confusion matrix 
of model 4

Fig. 9 a Confusion matrix of model 5; b Percentage confusion matrix 
of model 5

Fig. 10 a Confusion matrix of model 6; b Percentage confusion 
matrix of model 6
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and sensitivity are both improved simultaneously to a 
high value (greater than 0.8), which indicates that the 
model is good for the detection of melanoma and non-
melanoma (fewer overall errors). The metric called 
overall score in Table 4, which is defined as the average 
of the ACC, AUC, SE_M, and SP_M metrics, evidences 
the advantage of the eVida model over the previously 
reported models.

Figure 11 shows a ROC space in which the five mod-
els tested in this work are located with labels M1, M2, 
M3, M4, M5 and M6. The models proposed by Recod 

Titans and Kazuhisa Matsunaga are also located in the 
figure.

Bearing in mind that the best model is the one whose 
singular point in the ROC space is found closest to the 
coordinate (0, 1), where the perfect classifier is located, 
we then measured these Euclidean distances and the 
results listed in Table  5 were obtained, arranged from 
lower to higher. From those values it can be concluded 
that the best classifier is eVida M6.

Table 3 Result of evaluation metrics for the six models

Bold values indicate the most relevant and representatives in this rearch work

Evaluation metric Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Specificity 0.968 0.906 0.938 0.701 0.946 0.925

Sensitivity 0.367 0.718 0.556 0.752 0.393 0.820
Accuracy 0.851 0.870 0.863 0.711 0.838 0.904
Balanced accuracy 0.668 0.812 0.747 0.726 0.670 0.872

Table 4 Results of the proposed model versus models reported for the 2017 ISBI Challenge [29]

Bold values indicate the most relevant and representatives in this rearch work

ACC  accuracy, AUC  area under the RC curve, SE_M sensitivity, SP_M specificity for melanoma detection

Organization ACC_M AUC_M SE_M SP_M Balance accuracy Overall score

eVida (proposed method M6) 0.904 0.872 0.820 0.925 0.872 0.848
RECOD Titans 0.872 0.874 0.547 0.950 0.749 0.792

Popleyi 0.858 0.870 0.427 0.963 0.695 0.762

Kazuhisa Matsunaga 0.828 0.868 0.735 0.851 0.793 0.798
Monty python 0.823 0.856 0.103 0.998 0.551 0.687

T D 0.845 0.836 0.350 0.965 0.658 0.726

Xulei Yang 0.830 0.830 0.436 0.925 0.681 0.708

Rafael Sousa 0.827 0.805 0.521 0.901 0.711 0.727

x j 0.843 0.804 0.376 0.957 0.667 0.710

Cristina Vasconcelos 0.830 0.791 0.171 0.990 0.581 0.660

Cristina Vasconcelos 0.825 0.789 0.171 0.983 0.577 0.658

Euijoon Ahn 0.805 0.786 0.009 0.998 0.504 0.614

Balázs Harangi 0.828 0.783 0.470 0.915 0.693 0.701

Matt Berseth 0.822 0.782 0.222 0.967 0.595 0.652

INESC Tecnalia 0.480 0.765 0.906 0.377 0.642 0.601

Dylan Shen 0.832 0.759 0.308 0.959 0.634 0.663

Vic Lee 0.832 0.757 0.308 0.959 0.634 0.665

Masih Mahbod 0.732 0.715 0.402 0.812 0.607 0.610

Dennis Murphree 0.760 0.684 0.231 0.888 0.560 0.574

Hao Chang 0.770 0.636 0.103 0.932 0.518 0.541

Jaisakthi S.M 0.748 0.623 0.419 0.828 0.624 0.614

Wenhao Zhang 0.805 0.500 0.000 1.000 0.500 0.581

Wiselin Jiji 0.503 0.495 0.470 0.511 0.491 0.433

Yanzhi Song 0.723 0.475 0.068 0.882 0.475 0.467
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Discussion
According to the results from the different tests 
described in these work and by contrasting them with the 
appraisals highlighted in [11], an increase in the number 
of original images does not fully guarantee a better result 
in terms of classification metrics. This was the case when 
we added “malignant” skin lesion images from the PH2 
data set and obtained lower sensitivity than that what 
was obtained without PH2 images. Therefore, we are of 
the opinion that to get an improvement in classifier per-
formance, if we include new images then these need to be 
of the same nature, i.e. two databases that have not been 
subject to the same pre-processing are not necessarily 
complementary to each other.

The performance of image classification systems can 
be affected by common transformations or alterations in 
the images, such as: rotation, flipping, zooming, contrast 
/ brightness adjustment, etc. [30]. By introducing these 
transformations on the training data set, it is possible to 
increase the number of training samples while improving 
the robustness of the model against such transformations 

[31]. This data augmentation can act as a regularizer to 
prevent or reduce overfitting in neural networks [31–34] 
and improve performance in unbalanced data set [35]. 
In our work, the use of data augmentation techniques 
from the transformation of the original images, allowed 
to increase the training balance index (Malignant/Benign 
training ratio) and produced a positive impact that is 
used in the training stage, as shown in models 2–4.

Artificial intelligence (AI) algorithms focus primar-
ily on the injury image for which they were designed. 
Although the evaluation of the surrounding tissue is not 
necessarily a predictor of the disease, it is key when mak-
ing a diagnosis and in some cases, establishing a progno-
sis. In the case of actinic keratosis, chronic exposure to 
ultraviolet light causes damage to the tissue surrounding 
the main lesion, however, a human inspector still focuses 
on the main lesion, leaving aside this peripheral damage, 
which would improve the frequency of correct diagno-
ses by 32.5% [36]. In the case of melanoma, there may be 
involvement of the surrounding tissue, manifesting with 
metastatic lesions in transit, which are of poor progno-
sis or with satellite lesions that are locoregional cutane-
ous manifestations of dissemination as a consequence of 
embolization of tumor cells between the primary tumor 
and the regional lymph node; therefore, these lesions are 
highly predictive of lymphatic invasion and predict the 
development of disseminated disease [37, 38].

Morevoer, Tschandl et  al. [36] showed that in Kera-
toses actinic detection, the surrounding area have clues 
for diagnosis, however each disease is described with dif-
ferent techniques and characteristics [39]. Thus, although 
the importance of perilesional skin involvement is clear, 
the objective of our study is to identify a lesion corre-
sponding to melanoma and does not seek to establish a 
prognosis of the disease. Based on ABCDE [40] rule we 

Fig. 11 ROC space

Table 5 Distance between the singular point of the model 
and the coordinate (0, 1) of the perfect classifier

Rank Model Distance between model 
and coordinate (0, 1)

1 Model 6 0.195

2 Model 2 0.297

3 Kazuhisa Matsunaga 0.304

4 Model 4 0.388

5 Model 3 0.448

6 Recod Titans 0.456

7 Model 5 0.609

8 Model 1 0.634
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can assume the study is focused only on the probable 
Melanoma lesion area because the relevant data to dif-
ferentiate from other diseases is concentrated here, we 
make our model focus in this region by cropping the 
background before performing the classification task.

Conclusions
The comparative analysis shown in "Discussion" section 
suggests a better performance for the proposed eVida 
M6 model over the methods previously proposed for 
the ISIC 2017 challenge. Automatic extraction of the 
region of interest within a dermatoscopic image sug-
gests a significant improvement in classifier perfor-
mance by eliminating pixels from the image that do not 
provide the classifier with lesion information.

The experiments in data augmentation described in 
"Results" section  show that reducing data imbalance 
may be helpful to improve classification performance, 
but careful fine tuning is required, e.g. making training 
data perfectly balanced not necessarily results on a bet-
ter model.

Finally, the eVida M6 model is a reliable predic-
tor with an excellent balance between overall accu-
racy (0.904), sensitivity (0.820) and specificity (0.925). 
Within the set of tested models and also comparing 
with the best results reported in melanoma detection 
for the ISIC 2017 challenge, eVida M6 is an improve-
ment in the state-of-the-art for automatic diagnosis of 
melanoma from dermatoscopic images.
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