
Liu et al. BMC Med Imaging           (2021) 21:14  
https://doi.org/10.1186/s12880-020-00528-6

RESEARCH ARTICLE

Joint optic disc and cup segmentation based 
on densely connected depthwise separable 
convolution deep network
Bingyan Liu, Daru Pan* and Hui Song

Abstract 

Background: Glaucoma is an eye disease that causes vision loss and even blindness. The cup to disc ratio (CDR) is an 
important indicator for glaucoma screening and diagnosis. Accurate segmentation for the optic disc and cup helps 
obtain CDR. Although many deep learning-based methods have been proposed to segment the disc and cup for 
fundus image, achieving highly accurate segmentation performance is still a great challenge due to the heavy overlap 
between the optic disc and cup.

Methods: In this paper, we propose a two-stage method where the optic disc is firstly located and then the optic 
disc and cup are segmented jointly according to the interesting areas. Also, we consider the joint optic disc and cup 
segmentation task as a multi-category semantic segmentation task for which a deep learning-based model named 
DDSC-Net (densely connected depthwise separable convolution network) is proposed. Specifically, we employ depth-
wise separable convolutional layer and image pyramid input to form a deeper and wider network to improve seg-
mentation performance. Finally, we evaluate our method on two publicly available datasets, Drishti-GS and REFUGE 
dataset.

Results: The experiment results show that the proposed method outperforms state-of-the-art methods, such as 
pOSAL, GL-Net, M-Net and Stack-U-Net in terms of disc coefficients, with the scores of 0.9780 (optic disc) and 0.9123 
(optic cup) on the DRISHTI-GS dataset, and the scores of 0.9601 (optic disc) and 0.8903 (optic cup) on the REFUGE 
dataset. Particularly, in the more challenging optic cup segmentation task, our method outperforms GL-Net by 0.7% 
in terms of disc coefficients on the Drishti-GS dataset and outperforms pOSAL by 0.79% on the REFUGE dataset, 
respectively.

Conclusions: The promising segmentation performances reveal that our method has the potential in assisting the 
screening and diagnosis of glaucoma.
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Background
Glaucoma is an eye disease that damages the optic nerves 
and causes irreversible vision loss [1]. It has been esti-
mated that 60.5 million people globally were affected 
by glaucoma in 2010 and predicted to affect almost 80 

million people worldwide by 2020 [2]. Since vision loss 
is irreversible, early detection and diagnosis are very 
important to prevent vision loss and has been shown to 
decrease the rate of blindness by around 50% [3]. Hence 
it is essential to have a glaucoma screening technique to 
identify glaucomatous and healthy eyes. Intraocular pres-
sure assessment (IOP), visual field test and optic nerve 
head (ONH) assessment are three main techniques to 
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detect glaucoma, in which ONH evaluation is the most 
clinically significant screening technique for glaucoma. 
For ONH evaluation, cup to disc ratio (CDR), means 
optic nerve rim to disc ratio in diameters, is one of the 
most important indicators for glaucoma screening and 
diagnosis. Accurate segmentation of optic disc (OD) and 
optic cup (OC) is essential for the calculation of CDR. 
However, manual calculation of CDR by experienced cli-
nicians is time-consuming and expensive and is not suit-
able for population screening for glaucoma. Therefore, 
computer-aided diagnosis (CAD) methods for large-scale 
fundus image screening are needed. Segmenting the 
optic disc and optic cup is the preliminary step in CDR 
measurement and Glaucoma assessment. Many works 
have been proposed to segment the optic disc and cup 
from the fundus image to assist clinicians to diagnose 
glaucoma more effectively.

The main segmentation techniques include template-
based methods [4, 5], boundary detection [6, 7], hand-
crafted visual feature approach, and deep learning 
segmentation methods [8–11]. In these methods, the 
template-based method models the OD as s circular or 
elliptical object and employed a circular Hough trans-
forms [4, 5] or sliding band filter [6] to obtain an approxi-
mate boundary of the optic disc. The method based on 
boundary detection needs to mark multiple landmark 
points [6], or requires each pixel to have a direct edge 
in the 15-pixel neighborhood, and does not consider 
depth information [7]. The hand-crafted visual feature 
approaches convert boundary problems into pixel classi-
fication problems, and obtains satisfactory results. How-
ever, due to the quality change of the fundus image and 
the presence of internal and surrounding blood vessels, 
the precise boundary of the optic disc and cup cannot be 
robustly obtained through these approaches.

It has been shown that deep learning-based techniques, 
represented by convolution neural network (CNN) [12], 
achieve promising results for optic disc and optic cup 
segmentation [8–11]. Compared with the aforemen-
tioned hand-crafted design feature extraction methods, 
deep learning networks based on convolutional neural 
networks can automatically extract complex features 
from the input data. In [8], an optic disc and optic cup 
segmentation method based on CNN which used an 
entropy-based sampling technique to reduce computa-
tional complexity is proposed. Although the segmenta-
tion performance of this approach is better than that of 
the method of using hand crafted features, it leaves much 
to desire in terms of time-consuming. In [9], a fully con-
volutional neural network [13] based on VGG-16 net [14] 
is proposed to segment the optic disc. This method can 
segment retinal vessels and optic disc simultaneously, 
without segmenting the more challenging OC. In 2015, 

Ronneberger et  al. [15] proposes an architecture called 
U-Net, which has been widely used in biomedical image 
segmentation and has achieved good results. And many 
biological image segmentation networks are modified 
based on the U-Net convolutional network. In [10], a 
modified version of the U-Net convolutional network is 
presented for automatic optic disc and cup segmentation. 
Although this method has the advantages of fast process-
ing speed and fewer parameters, it fails to make full of 
the context information of the network, which results in 
the poor segmentation of OC. In [11], the authors uti-
lize fully convolutional networks with adversarial train-
ing for jointly segment the OD and OC, but assumes that 
the region of interest (ROI) can be accurately extracted 
by preprocessing. Furthermore, Fu et al. [16], proposes a 
deep learning architecture named M-Net which used a 
polar transformation with the multi-label deep learning 
concept. Although M-Net uses the same network archi-
tecture to segment the optic disc and the cup, it still con-
siders these two segmentation tasks as two independent 
problems.

At present, most segmentation methods consider the 
process of detection-then-segmentation mechanism. 
However, many location methods are susceptible to the 
influence of the image quality and pathological area [8, 
10], resulting in wrong location. Furthermore, the accu-
rate segmentation of the optic cup is a more challenging 
task in the task of disc and cup segmentation. Although 
most of the disc and cup segmentation networks based 
on deep learning can obtain satisfactory OD segmenta-
tion results, they cannot produce more accurate optic 
cup segmentation results [8–11, 16].

For the above problems, the purpose of this study is to 
explore a novel CAD model for joint OD and OC seg-
mentation that can assist clinicians in large-scale glau-
coma screening. The aims of this paper are as follow: (1) 
First, we aim at exploring an OD location method based 
on deep learning to solve the problem of instability loca-
tion of traditional hand-crafted design feature methods 
due to the change of fundus image quality and the influ-
ence of pathological areas; (2) Second, we aim at explor-
ing a deeper and wider CNN model structure to obtain 
richer and more complex fine-grained features in fundus 
images, so that the model can perform better OD and 
OC segmentation results, especially in the more difficult 
OC segmentation task. With correct OD and OC seg-
mentation results, accurate CDR values can be calculated 
to assist clinicians in screening and diagnosis.

Methods
The method proposed in this paper employed a two-stage 
approach to implementing the segmentation of the optic 
disc and cup. In the first stage, CNN and Hough circle 
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detection are used to obtain the center coordinates of 
the optic disc and extract the ROI. In the second stage, 
ROI is fed into the model to train a high-precision seg-
mentation network to obtain the accurate segmentation 
results of optic disc and cup. The proposed method is 
trained and evaluated on DRISHTI-GS [17] and REFUGE 
datasets [18], respectively. The overall flowchart of our 
proposed method is shown in Fig.  1. The details of the 
datasets and the framework are explained in the follow-
ing subsections.

Dataset
DRISHTI-GS dataset contains 101 retinal fundus images 
that were collected at Aravind eye hospital, Madurai. 
The resolution of these images is 2047× 1759 and store 
in uncompressed PNG format. And the ground truth of 
these images was marked by 4 ophthalmologists with dif-
ferent clinical experience and divided into 50 training and 
51 testing images. Retinal Fundus Glaucoma Challenge 
(REFUGE) dataset contains 1200 images which include 
120 glaucomatous and 1080 non-glaucoma images. The 
REFUGE dataset is divided into three parts: 400 training 
images, 400 validation images and 400 testing images, in 
which the validation and testing images are acquired with 
the same cameras. Brief information about these two 
datasets is shown in Table 1.

In our proposed method, 50 training images on the 
DRISHTI-GS dataset are adopted for the training the 
proposed model, and the other 51 testing images are used 
for evaluating the performance of the final trained model. 
Similarly, 800 images from training set and validation set 
on the REFUGE dataset are utilized for training, and the 
other 400 images from the testing set are employed to 
evaluate the performance of the final model trained with 
the REFUGE dataset.

Image processing and data augmentation
Because the dataset used for training has fewer images, 
for example, there are only 50 training images on the 
DRISHTI-GS dataset, and too few data for network 
training may lead to overfitting, so we utilize data 

augmentation to expand training images to prevent this 
problem. The augmentation methods include transla-
tion, rotation, noise addition, and brightness adjust-
ment. Among them, the images used for training in the 
DRISHTI-GS dataset are expanded to 5250, and training 
images in the REFUGE dataset are expanded to 30,000. 
Specifically, 90% of the data-augmented training images 
are randomly selected to train the proposed model, and 
the rest 10% images are employed for model evalua-
tion when training the model. For example, when using 
the GS dataset to train the segmentation network, 4725 
images out of the 5250 images are adopted to train the 
segmentation network, and another 525 images are used 
to evaluate the model during the training process.

ROI extraction network
Since the resolution of a complete fundus image taken 
by professional camera is generally relatively large, and 
the area of interest is only a small area in fundus image, 
locating and cropping out the region of interest can 
reduce the interference of unnecessary background infor-
mation on the segmentation result, and can improve 
the segmentation accuracy and reduce the amount of 
calculation. However, the methods which employ green 
channel images [8] or morphological operations [19] to 
detect optic disc is susceptible to the effects of images 
taken by different devices, fundus image quality, bright-
ness, internal blood vessels, and lesions in fundus images, 
resulting in low location accuracy. In our work, we utilize 
a method based on CNN network to extract features to 
solve this problem. The model and segmentation process 
are shown in the Fig.  2. At this stage, we design a sim-
ple convolutional neural network to segment the optic 
disc simply, then use Circular Hough Transform (CHT) 
[20] to calculate the center of the optic disc. With this 
method, we can locate the optic disc with 100% accuracy 
and crop the ROI area. The location result is shown in 
Table 2.

CHT is an extension of the Hough transform [21], 
which is mainly used to detect the circle object in the 

Fig. 1 Overview of our proposed method. Firstly, simple DDSC-Net without multi input is used to rough segment the optic disc, and located the 
optic disc by CHT. Then fed cropped image into segmentation network to joint segment OD and OC
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image. For circle detection, the HT is based on the equa-
tion of circle, defined as:

where (a,  b) represents the coordinates of circle center 
and r is radius. Center coordinates can be obtained by 
performing the CHT on the image. CHT can be defined 
as:

where pc = (ic, jc) and r represents the center position 
and the radius respectively which define the circle with 
the highest punctuation in the Circular Hough Trans-
form implemented by CHT. I is the input image. The 
radius r is restricted to be between rmin and rmax . In our 
method we set rmin and rmax as 40, 160 respectively. After 
obtaining the coordinates of the center of the disc, we use 
it as the center point to cut the original image into a small 
picture with a resolution of 480× 480 on REFUGE data-
set and 560× 560 on DRISHTI-GS dataset. The image 
contains the optic disc, optic cup and some background 
information. The visual result examples of ROI extraction 
are shown in Fig. 3

DDSC network architecture
In the object detection network [22–24], features 
extracted from shallow network can be used to detect 
small objects, while features extracted from deep net-
work can be used to detect large objects. In the segmen-
tation task of optic disc and optic cup, these ideas were 

(x − a)2 +
(

y− b
)2

= r2

(Pc, r) = CHT (I , rmin, rmax)

adopted to design our network structure. Considering 
the prior knowledge that the optic cup is located in the 
optic disk, we use dense and skip connection to make 
full use of the context semantics of the shallow lay-
ers and deep layers. The proposed network structure is 
detachedly shown in the Fig. 4. The proposed deep net-
work, named DDSC-Net, is consists of three main parts. 
The first part is the image pyramid [25], which is used as 
the multi-scale input of the network so that the network 
can receive image information of different scales. Multi-
scale input can solve the problem of losing part of the 
image information with the depth of the network. The 
second part of our DDSC-net is a U-shaped fully con-
volutional network which includes an encoder module 
on the left and decoder module on the right. The output 
map is activated by the softmax activation function, and 
then the cross-entropy loss function is introduced to cal-
culate the difference between the segmentation result 
and the real ground truth.

Image pyramid multi‑scale input
The input of the DDSC-Net is an image pyramid, which 
can effectively improve the segmentation quality of the 
network. This method employs the average pooling layer 
to build an image pyramid, which is then introduced into 
different layers of the encoder module. The advantages 
of this are as follow: (1) to avoid a large increase in net-
work parameters; (2) increase the network width of the 
decoder depth; (3) and reduce the loss of information 
caused by the deepening of the network.

Fig. 2 ROI extraction model. Simple DDSC-Net architecture is a simple version of DDSC-Net. After obtain the OD segmentation result, CHT is 
employed to calculate the center and radius of OD.ROI is a small image cut out from the center of the calculated circle
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Fig. 3 Location and cropping results of ROI. The first column of images is the original images, the second column is the position of the optic disc 
located, the third and fourth is the position of the optic disc after cropping and the cropping result

Fig. 4 Network architecture of the DDSC-Net. Our DDSC-Net architecture includes multi-scale input of image pyramid and DDSC-blocks. As shown 
in the figure, each DDSC-block is composed of five “BN + Relu + depthwise separable convolution” dense connection layers, the convolution kernel 
is 3 x 3.The down sample is the maximum pooling layer, and the upsample is transposed convolution. Finally, the output of the network uses a 
softmax activation function to classify the output map into three categories: 0, 1 and 2. 0 is the background, category 1 is the optic disc, and 2 is the 
optic cup
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DDSC network
Inspired by U-net [15], a fully convolutional network with 
a U-shaped structure that using skip connection for fea-
ture fusion in each stage, we designed the DDSC network 
structure based on the U-net structure. See from Fig.  4. 
The DDSC network consists of an encoder and a decoder 
connected by skip connection. Specifically, the encoder 
is employed to extract the high-level semantic features of 
the input image, and the decoder is adopted to restore the 
semantic features extracted by the encoder to the resolu-
tion of the original image. Skip connection is utilized to 
fuse multi-scale features between encoder and decoder. 
Different from the original U-net, in our proposed net-
work, we employ depthwise separable convolution layers 
to replace most of the standard convolutional layers in 
the network, which can significantly reduce the amount 
of computation. Therefore, we design a deeper network 
to learn more feature information from input data, espe-
cially the semantics of the optic cup. In addition,we exe-
cute more skip connections between encoder and decoder 
to enhance the transfer of contextual feature information 
in our model. The DDSC network is composed of three 
parts: densely connected depthwise separable convolution 
blocks, subsampled layers and upsampling layers. A dense 
depthwise separable convolution (DDSC) block contains 
five densely connected layers which consist of a batch 
normalization layer, a rectified linear unit (Relu) activa-
tion function, and a depthwise separable convolution layer 
with kernel size of 3× 3 . The subsampled layer is a max 
pooling layer with kernel size of 2 and stride of 2. And the 
upsampling layer is a 3× 3 transposed convolution layer.

For standard convolution, the output feature map F 
for standard convolutional when assuming stride and 
padding as one is computed as:

The parameters and computational cost of the standard 
convolutions are respectively computed as:

and

where I is the input feature map or input image, K is the 
convolution kernel size with k × k , M is the number of 
input channel, N is the number of output channel, H and 
W are the height and width of the input feature map or 
input image respectively. While depthwise separable 
convolution is made of depthwise and pointwise convo-
lutions [26]. The output feature map F for depthwise sep-
arable convolutional is computed as:

Fk ,l,n =
∑

i,j,m

Ki,j,m,n · Ik+i−1,l+j−1,m

k × k ×M × N

k × k ×M × N ×H ×W

And the parameters and computational cost of the depth-
wise separable convolutions are respectively computed 
as:

and

Comparing the parameters of the depthwise separa-
ble convolution with the standard convolution can be 
obtained as follows:

It can be seen that the depth separable convolution uses 
about 8 to 9 times less parameter than the standard 
convolution. Therefore, we can deepen and widen the 
network without causing an explosive increase in the 
number of parameters, and also enable the network to 
learn more contextual information.

Post‑processing
The output of the network is a map with resolution of 
240× 240 . We used cubic interpolation to restore it to 
480× 480 and 560× 560 . Then adopted morphological 
operations to smooth the edges. There are four kinds of 
operation methods of image morphology: erode, dilate, 
open and close. Based on the prior knowledge that most 
of the optic disc and cup are elliptical structure, we use 
the closed operation in the image morphology to fuse the 
pixel points with fine boundary connection and fill the 
concave angle of the image, so as to make the boundary 
of the segmented image smoother slippery. The closed 
operation can be expressed as follows:

where f is the image, s the Structure element, ⊕,⊖repre-
sent dilate and erode respectively. In our work, s is a 7× 7 
circular structure element.

Loss function
In our work, we regard the optic disc and optic cup segmen-
tation as a multi-category segmentation task and use One-
Hot encoding to process the data. Let x ∈ RC×H×W be the 
input image, and y ∈

{

yo, . . . , yi
}i×H×W is the One-Hot 

representation of the ground truth label, when the pixel 
belong to category i, yi = 1,otherwise, yi = 0 . We treat the 
output as 3 categories i = 3 and the output of our model is 
a map of fi(x, v) = y′ ∈ {po, . . . , pi}

i×C×W . In our work, we 

F ′
k ,l,n =

∑

i,j

K ′
i,j,m · Ik+i−1,l+j−1,m

k × k ×M +M × N

k × k ×M ×H ×W +M × N ×H ×W

k × k ×M +M × N

k × k ×M × N
=

1

N
+

1

k2

F = (f ⊕ s)⊖ s
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use Multi-class cross-entropy loss function to measure the 
difference between the output of the model and the ground 
truth label. The loss function Loss is defined as:

The output map fi(x, v) is a probability distribution, and 
each element{po, . . . , pi}i×C×W  represents the probability 
that the pixel belongs to the i − th category.

Experiments and results
In this section, we firstly introduce the details of experi-
ment implementation, then state the evaluation metrics. 
Finally, experimental results are given and discussed.

Implementation detail
All experiments are implemented in Python with the 
Pytorch framework on the workstation of Intel i7-8700K, 
16G RAM, Nvidia 1080Ti GPU and Ubuntu16.04. The 
Adam [27] optimizer and back-propagation are employed 
to train our model. The initial learning rate is set to 1e-4 
and decreased by a factor of 10 every 4 epoch. We train 30 
epochs with a batch size of 8. Early Stopping was adopted in 
the training, and the best performing model is taken as the 
final model. We adopt a cross-validation method to train our 
model, therefore, the training images are divided into 90% for 
training and 10% for validation after data augmentation. Both 
training and validation images are resized into the resolu-
tion of 240× 240 and then fed to the network for training. 
Figure 5 shows the training of our model on the GS dataset. 
As we can see from Fig.  5, our model has converged after 
training for 10,000 iterations. The loss of the training set and 
the validation set are basically the same, indicating that our 
model is easy to converge. We have released our codes on 
Github: https ://githu b.com/iceya nGG/DDSC-NET.

Evaluation metrics
In our paper, we adopt the Dice coefficients (DC), Jaccard 
(JAC), Sensitivity (SEN) and Precision (PRE) to evaluate 
the segmentation performance of the presented method. 
The criteria are defined as:

Loss = −

2
∑

i=0

yi log
(

fi(x, v)
)

Dice =
2× Ntp

2× Ntp + Nfp + Nfn

Jaccard =
Ntp

Ntp + Nfp + Nfn

Sensitivity =
Ntp

Ntp + Nfn

Precision =
Ntp

Ntp + Nfp

where the Ntp,Nfp,Nfn represent the number of true posi-
tive, false positive and false negative pixels, respectively.

Experimental results
To verify the effectiveness of our algorithm, we perform 
a lot of comparative experiments. Ablation experiments 
are firstly conducted to compare the performance with 
and without image pyramid input, multi-DDSC blocks, 
and post-processing in the model. Then, we compared 
the performance of our method with some state-of-the-
art deep learning-based methods. Finally, we compared 
our segmentation results with the results of the REFUGE 
challenge. Testing images of DRISHTI-GS and REFUGE 
datasets are employed to evaluate the performance of 
our model, and the final evaluation scores are the aver-
age of all the testing images of the dataset, respectively. 
The final experimental results of the proposed method 
are shown in Table  3. On the Drishti-GS dataset, our 
method obtains DC, JAC, sensitivity and precision of 
0.9780, 0.9570, 0.9784 and 0.9778 on OD segmentation 
results and 0.9123, 0.8442, 0.9220 and 0.9149 on OC 
segmentation results, respectively. On REFUGE dataset, 
our method achieves DC, JAC, sensitivity and precision 
of 0.9601, 0.9239, 0.9814 and 0.9412 on OD segmenta-
tion results and 0.8903, 0.8065, 0.9209 and 0.8749 on OC 
segmentation results, respectively. Figures 6 and 7 show 
some visual examples of the segmentation in DRISHTI-
GS and REFUGE dataset, respectively.

Ablation experiment results
In the ablation experiments, 4 comparative experi-
ments were conducted to verify the effectiveness of our 
proposed method, include DDSC-Net without image 
pyramid input, simple network with only one DDSC 

Fig. 5 Training and validation loss on the DRISHTI-GS dataset. The 
blue line is the training loss, and the orange line is the verification loss

https://github.com/iceyanGG/DDSC-NET
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blocks in each layer, DDSC-Net, and DDSC-Net with 
post-processing. Table 4 summaries the ablation results 
of the OD and OC segmentation on the Drishti-GS 
dataset and REFUGE dataset. From Table 4 we can see 

that both image pyramid input and multi-DDSC blocks 
can improve the performance of the model, and the 
proposed post-process method can further improve the 
segmentation results. Specifically, on the Drishti-GS 

Fig. 6 The visual examples of OD and OC segmentation on DRISHTI-GS dataset. The first row is the input image, the second and fourth rows are 
the ground truth of the OD and the OC respectively, and the third and fifth rows are the OD, OC segmentation results of our model, where the black 
denotes the background, and the white part denotes the OD and OC segmentations

Fig. 7 Some ablation experiment results on REFUGE dataset. The first row is the input image, the second is the ground truth, the third row is the 
segmentation result of simple DDSC-Net, the fourth row is the result of the DDSC-Net without image pyramid input, the fifth row is the result of 
DDSC-Net and the sixth row is the reprocess result, where the white region denotes the background, and the gray and black region denotes the OD 
and OC segmentations



Page 9 of 12Liu et al. BMC Med Imaging           (2021) 21:14  

dataset, when image pyramid is employed as the input 
of the DDSC-Net, the DC scores of the model are 0.36% 
(OD) and 0.47% (OC) higher than DDSC-Net without 
image pyramid inputs, and also outperform the simple 
network which has only one DDSC blocks in each layer 
by 0.33 % (OD) and 1.8% (OC). When post-processing 
is utilized, the segmentation performance is further 
improved. For example, on the REFUGE dataset, the 
OD and OC segmentation results on DC are increased 
by 0.09% (OD) and 0.09% (OC), respectively.

Some visual examples are shown in Fig. 7. We selected 
8 representative images among the 400 REFUGE test 
images to show the segmentation results. The first two 
rows are the cropped fundus images and ground truth, 
and the remaining 4 rows are the experimental results of 
4 comparative experiments. As can be seen from Fig. 7, 
using image pyramid input to replace standard input can 

effectively improve model performance, and using multi-
ple DDSC blocks can also improve model performance.

Compared with deep learning‑based methods
In order to verify that our method is better than other 
deep learning-based methods, we compare our pro-
posed method with the state-of-the-art approaches, such 
as pOSAL framework [28], GL-Net [29], M-Net [16], 
Stack-U-Net [30], WGAN [31], two-stage Mask R-CNN 
[32], multi-modal self-supervised pre-training network 
[33], Yu et  al. [34] and Sevastopolsky [10]. Additionally, 
we compare with the Fully convolutional network U-Net 
[15]. The segmentation results of these deep learning-
based methods on the testing set of Drishti-GS and REF-
UGE dataset are shown in Table 5 and 6, respectively.

Since our network structure is modified based on 
the U-Net architecture, we firstly compare our model 
with other methods that also use the U-shaped net-
work. Firstly, we compare with the original U-net on the 
Drishti-GS dataset. From Table  5, we can see that the 
proposed method achieves 2.8% and 9.23% higher than 
the original U-net in the Dice coefficients of the optic 
disc and the optic cup, respectively. When compared 
with the same methods modified based on the U-net 
structure [10, 16, 30, 34], our method outperform the 

Table 1 Statistics of the dataset used in evaluation the proposed method

DATASET Train and val Test Total Image size Release year

DRISHTI-GS 50 51 101 2047× 1759 2014

REFUGE 800 400 1200 2124× 2056 and 
1634× 1634

2018

Table 2 Localization accuracy results

Dataset Images accurately 
located

Total Accuracy

DRISHTI-GS 101 101 1.0

REFUGE 1200 1200 1.0

Table 3 Experiment results

DATASET OD OC

DC JAC SEN PRE DC JAC SEN PRE

DRISHTI-GS 0.9780 0.9570 0.9784 0.9778 0.9123 0.8442 0.9220 0.9149

REFUGE 0.9601 0.9239 0.9814 0.9412 0.8903 0.8065 0.9209 0.8749

Table 4 The model segmentation results with and without Multi input, deeper network and post-processing

Italics indicate the best results

 Method DRISHTI‑GS dataset REFUGE dataset

DCdisc (mean) DCcup (mean) DCdisc (mean) DCcup (mean)

Without image pyramid input 0.9743 0.9076 0.9589 0.8880

Without multi-DDSC blocks 0.9746 0.8939 0.9575 0.8837

DDSC-Net 0.9779 0.9123 0.9592 0.8894

DDSC-NET + post-processing 0.9780 0.9123 0.9601 0.8903
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best performance method proposed by Yu et  al. [34], 
which is 0.42% higher in OD, and 2.46% in the more dif-
ficult OC segmentation task. On the REFUGE dataset, 
our method is also better than that of M-net [16]. From 
Table 6 we can see that our method is 1.65% higher in the 
optic disc and 5.88% in the optic cup compared to M-Net.

GAN-based methods and other deep learning networks 
also achieved satisfactory segmentation results in OD and 
OC segmentation task. Therefore, we then compared the 
use of generative adversarial ideas, WGAN [28], GL-Net 
[29] and pOSAL framework [31] and other deep learning 
methods [32, 33]. From Table 5 and 6, we can see that our 
proposed method still performs better than these meth-
ods. Particularly in the optic disc and cup segmentation 
results on the Drishti-GS dataset, our model outperforms 
the state-of-the-art method GL-Net by 0.7% and 0.73% in 
term of dice coefficients, respectively. These comparative 
results demonstrate that our proposed method can effec-
tively improve the segmentation accuracy of the OC and 
obtain competitive results in the segmentation of the OD.

Compared with REFUGE challenge
We also compared our segmentation results with the 
results of the REFUGE challenge. The segmentation 
results of the 12 participating teams are shown in Table 7. 
It is obvious that in terms of DC metric our method 
achieves the best segmentation result in the segmen-
tation of the cup, which is 0.66% . higher than the best 
result of 0.8837. In the segmentation of the optic disc, we 
achieved the second-best segmentation result, showing 
strong competitiveness.

From the above, it can be concluded that our method 
can effectively segment the optic disc and the optic cup, 
especially in the segmentation task of OC, and achieved 
the start-of-the-art segmentation performance on the 
Drishti-GS and REFUGE dataset.

Discussion
In this paper, a densely connected depthwise separable 
convolution deep network for joint OD and OC segmen-
tation method is proposed. As experimental results and 
comparative experiments above, we can draw a conclu-
sion that Multi-scale image pyramid input and densely 

Table 5 Comparison with  the  deep learning methods 
on DRISHITI-GS dataset

Italics indicate the best results

Method DCdisc (mean) DCcup (mean) JCdisc (mean) JCcup (mean)

U-Net [15] 0.950 0.820 – –

M-Net [16] 0.959 0.866 – –

Stack-U-Net 
[30]

0.970 0.890 – –

Sevastopol-
sky [10]

– 0.850 – 0.750

Yu et al. [34] 0.973 0.887 – –

MULTI-
MODEL-
PRE-TRAIN-
ING [33]

0.960 0.902 0.924 0.823

WGAN [31] 0.954 0.840 0.912 0.724

pOSAL [31] 0.965 0.858 – –

GL-Net [29] 0.971 0.905 – –

Proposed 0.978 0.912 0.957 0.844

Table 6 Comparison with the deep learning methods on REFUGE dataset

Italics indicate the best results

Method DCdisc (mean) DCcup (mean) JCdisc (mean) JCcup (mean)

M-Net [16] 0.9436 0.8315 – –

MULTI-MODEL-PRE-TRAINING [33] – – 0.9225 0.7902

Two-stage Mask R-CNN [32] 0.9504 0.8546 – –

pOSAL [31] 0.9602 0.8826 – –

Proposed 0.9601 0.8903 0.9239 0.8065

Table 7 Result of OD and OC segmentation on the REFUGE 
dataset

Top three results are marked in italics

TEAM DCdisc (mean) DCcup (mean)

CHUKMED 0.9602 0.8826

Masker 0.9496 0.8837

BUCT 0.9525 0.8728

NKSG 0.9488 0.8643

VRT 0.9532 0.8600

AIML 0.9505 0.8519

Mammoth 0.9361 0.8667

SMILEDeepDR 0.9386 0.8367

NightOwl 0.9487 0.8257

SDSAIRC 0.9436 0.8315

Cvblab 0.9077 0.7728

WinterFell 0.8772 0.6861

Proposed 0.9601 0.8903
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connected deep separable network can effectively per-
form OD and OC segmentation. The correct segmenta-
tion of optic disc and optic cup is essential for calculating 
CDR, which helps clinicians diagnose glaucoma more 
effectively. Because OC is located in OD and there is no 
obvious boundary like OD, OC segmentation has always 
been a more challenging task in the segmentation task of 
OD and OC. In prior segmentation work, the proposed 
method could not obtain satisfactory OC segmentation 
results, whereas the network we designed can effectively 
improve the OC segmentation results. According to our 
experimental results, using DDSC blocks to deepen the 
network and enhance the fusion of contextual seman-
tic information through dense connections and skip 
connections can effectively improve the segmentation 
effect. Compared with the current optimal OD and OC 
segmentation network, our method obtains the state-
of-the-art segmentation results both in two public data-
sets. Our DDSC module is formed by densely connected 
deep separable convolution, which has 8 to 9 times 
fewer parameters than standard convolution. Therefore, 
the advantage of using the DDSC module is that it can 
deepen the network depth and learn deeper semantic 
information for feature fusion without increasing the net-
work parameters.

Although our method has achieved the best OD and 
OC segmentation results on the testing images of two 
public datasets. However, our proposed method still has 
limitations. The limitations of our research are that for 
fundus images used by different equipment and institu-
tions, the model parameters we trained cannot perform 
stable segmentation on fundus images of these different 
shooting devices. To use our method to perform segmen-
tation on fundus images of a new dataset, the network 
parameters need to be retrained. Improving the generali-
zation of the model and stably segmenting fundus images 
from different data sets are also our future research 
directions.

Conclusion
The research on joint OD and OC segmentation is an 
important part of the field of medical image processing 
and of great importance to computer-aided glaucoma 
technologies. In this paper, we aim at exploring a novel 
automatic OD and OC segmentation method based on 
deep learning techniques to improve the performance 
of CAD system for diagnosing glaucoma, which can 
be applied to assist clinicians in the diagnosis of glau-
coma and population screening. The proposed network 
employs a dense connection of deep separable convo-
lution network as the backbone network and adds a 
multi-scale image pyramid at the input end to widen 
the network. Finally, image morphology is employed 

to post-process the segmentation results. To verify 
the effectiveness of our proposed DDSC-Net, we con-
duct ablation experiments and compare our method 
with previous methods on the DRISHTI-GS and REF-
UGE dataset. The experimental results show that our 
model outperforms the state-of-the-art method on the 
DRISHTI-GS and REFUGE dataset, which show better 
potential for improving the accuracy of the CAD system 
in diagnosing glaucoma. In future research work, we will 
try to apply our method to other medical segmentation 
tasks, such as retinal vessel segmentation, liver lesion 
segmentation, etc. Besides, we will pay more attention 
to solving the problem of domain shift between differ-
ent datasets, so as to improve the generalization perfor-
mance of the proposed method.
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