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Feasibility study of using simultaneous
multi-slice RESOLVE diffusion weighted
imaging to assess parotid gland tumors:
comparison with conventional RESOLVE
diffusion weighted imaging
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Abstract

Background: To evaluate the feasibility of using simultaneous multi-slice (SMS) readout segmentation of long
variable echo-trains (RESOLVE) diffusion-weighted imaging (DWI) to assess parotid gland tumors, compared with
conventional RESOLVE DWI.

Methods: From September 2018 to December 2018, 20 consecutive patients with parotid tumors who underwent
MRI scan for pre-surgery evaluation were enrolled. SMS-RESOLVE DWI and conventional RESOLVE DWI were
scanned with matched imaging parameters, respectively. The scan time of two DWI sequences was recorded.
Qualitative (anatomical structure differentiation, lesion display, artifact, and overall image quality) and quantitative
(apparent diffusion coefficient, ADC; ratio of signal-to-noise ratio, SNR ratio; ratio of contrast-to-noise ratio, CNR
ratio) assessments of image quality were performed, and compared between SMS-RESOLVE DWI and conventional
RESOLVE DWI by using Paired t-test. Two-sided P value less than 0.05 indicated significant difference.

Results: The scan time was 3 min and 41 s for SMS-RESOLVE DWI, and 5 min and 46 s for conventional RESOLVE
DWI. SMS-RESOLVE DWI produced similar qualitative image quality with RESOLVE DWI (anatomical structure
differentiation, P = 0.164; lesion display, P = 0.193; artifact, P = 0.330; overall image quality, P = 0.083). Meanwhile,
there were no significant difference on ADCLesion (P = 0.298), ADCMasseter (P = 0.122), SNR ratio (P = 0.584) and CNR
ratio (P = 0.217) between two DWI sequences.

Conclusion: Compared with conventional RESOLVE DWI, SMS-RESOLVE DWI could provide comparable image
quality using markedly reduced scan time. SMS could increase the clinical usability of RESOLVE technique for DWI
of parotid gland.

Keywords: Parotid gland, Magnetic resonance imaging, Diffusion-weighted imaging, Readout segmentation of long
variable echo-trains, Simultaneous multi-slice
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Background
Diffusion weighted imaging (DWI) is a widely-used tech-
nique for evaluating the rate of microscopic water diffu-
sion in tissues. Its derived apparent diffusion coefficient
(ADC) has been accepted as an important diagnostic
marker for characterizing parotid gland tumors [1–6]. In
clinical practice, single-shot echo-planar imaging (SS-
EPI) is commonly used for DWI scan. Despite the scan
speed is fast, SS-EPI based DWI is prone to geometric
distortions, image blurring and susceptibility artifacts
[7]. Recently, readout segmentation of long variable
echo-trains (RESOLVE) based DWI attracts increasing
attention. It can significantly reduce distortions and arti-
facts, however it was restricted for the long scanning
time [7–12].
Recently, simultaneous multi-slice (SMS) imaging with

blipped ‘Controlled aliasing in parallel imaging results in
higher acceleration’ (blipped-CAIPIRINHA) technique at-
tracts increasing attention [13–21]. In this approach, mul-
tiple slices are excited by a single radio frequency pulse
and spatially shifted in the phase encoding direction to
improve the utilization of coil sensitivity information. In
the end, the slice-GRAPPA (Generalized Auto Calibrating
Partially Parallel Acquisitions) is used to separate the col-
lapsed slices [13]. Till now, few studies involving breast
and kidney tried to combine SMS and RESOLVE DWI for
reducing scanning time [14, 19], while study evaluating
the feasibility of SMS-RESOLVE DWI in assessing the
parotid gland tumors is still lacked.
Therefore, the purpose of present study is to evaluate

the feasibility of SMS-RESOLVE DWI in assessing par-
otid gland tumors, compared with conventional RE-
SOLVE DWI technique.

Methods
Patients
This prospective study was approved by the Ethics Com-
mittee of our hospital, and written informed consents
were obtained from all patients. From September 2018
to November 2018, twenty consecutive patients (11
males and 9 females; mean age, 55.0 ± 14.0 years; range,
29–76 years) with parotid tumors underwent MRI exam-
ination for pre-surgery evaluation. The twenty patients
include 8 patients with pleomorphic adenomas, 7 pa-
tients with warthin tumors, 3 patients with lymphomas,
one patient with mucoepidermoid carcinoma and one
patient with lymphoepithelioma.

Image acquisition
A 3.0-T MR scanner (MAGNETOM Skyra, Siemens
Healthcare, Erlangen, Germany) equipped with a
twenty-channel head/neck coil was used in this study.
Patients rested in the supine position. Imaging protocols
contained an unenhanced axial T1-weighted imaging

(repetition time [TR]/echo time [TE], 801/6.7 ms) and
axial T2-weighted imaging (TR/TE, 4000/85 ms) with fat
saturation. Two sets of DWI sequences (a prototype se-
quence SMS-RESOLVE and a product sequence RE-
SOLVE) were performed with comparable imaging
parameters. Detailed imaging parameters of these two
sequences were summarized in Table 1.

Qualitative comparisons of image quality
Qualitative assessment of RESOLVE DWI and SMS-
RESOLVE DWI sequences was performed based on the
following four aspects and a 4-point criteria: anatomical
structure differentiation (1: poor, 2: acceptable, 3:good,
4: excellent), lesion display (1: vaguely seen, 2: identifi-
able, 3: blurry borders, 4: sharp borders), artifact (1: def-
initely confounding interpretation, 2: present, but little
impact on interpretation, 3:faint, 4: no artifact), and
overall image quality (1: poor, 2: acceptable, 3: good, 4:
excellent).

Quantitative comparisons of image quality
Quantitative assessments were performed on the dedi-
cated post-processing workstation (MAGNETOM Skyra,
Siemens Healthcare, Erlangen, Germany). The slice in
which the parotid gland tumor showed the largest area
was chosen for quantitative analysis. For multicenter le-
sions, the larger one was selected for assessment. Based
on the DW (b1000) image, round regions of interest
(ROIs) with area about 15 mm2 (14.90 ± 0.61mm2) were
drawn in parotid tumors, ipsilateral masseter muscle,

Table 1 Imaging parameters of SMS-RESOLVE DWI and
RESOLVE DWI

Parameter SMS-RESOLVE RESOLVE

TR (ms) 4000 6750

TE (ms) 72 69

Slices 30 30

Slice thickness (mm) 3 3

Distance factor (%) 10 10

Voxel size (mm3) 1.1 × 1.1 × 3.0 1.1 × 1.1 × 3.0

Fat suppression Fat sat Fat sat

Readout segments 5 5

Readout partial Fourier acquisition 7/8 7/8

FOV (mm2) 220 × 220 220 × 220

Averages b0 = 2, b1000 = 2 b0 = 2, b1000 = 2

GRAPPA acceleration factor 2 2

Slice acceleration factor 2 –

Acquisition time (min:s) 3:41 5:46

SMS simultaneous multi-slice, RESOLVE readout segmentation of long variable
echo-trains, DWI diffusion-weighted imaging, TR repetition time, TE echo time,
FOV field of view, GRAPPA generalized auto calibrating partially
parallel acquisitions.
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ipsilateral spinal cord and background, respectively.
ROIs within the tumors were placed by avoiding possible
cystic, necrotic and hemorrhagic portion. Schematic dia-
gram of the ROIs placements was displayed in Fig. 1.
After the ROIs were placed, the mean signal intensity of the
lesion (SLesion), signal intensity of the masseters (SMasseter), sig-
nal intensity of the spinal cord (SSpinal), standard deviation of
the background (σBackground), standard deviation of the mas-
seter (σMasseter), standard deviation of the spinal cord (σSpinal)
and standard deviation of the lesion (σLesion) were automatic-
ally acquired. Then, the signal-to-noise (SNR) was calculated
as the ratio between SLesion or SSpinal and σBackground (SNR le-
sion= SLesion/σBackground; SNR spinal cord= SSpinal/σBackground)
[22]. SNR ratio was calculated using the following formula:
SNR ratio = SNR lesion / SNR spinal cord. Contrast-to-noise
(CNR) was calculated using the following formula: CNR

lesion ¼ SLesion − SMasseter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σLesion2þσMasseter
2

p ; CNR spinal cord ¼
SSpinal − SMasseter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σSpinal2þσMasseter
2

p [22]. CNR ratio was calculated using the fol-

lowing formula: CNR ratio =CNR lesion / CNR spinal cord.
After the same ROIs were copied on the ADC map, the mean
ADC value of tumor and masseter were automatically
achieved, and denoted as ADCLesion and ADCMasseter,
respectively.
Two radiologists (reader 1: with 2 years of experience;

reader 2: with 6 years of experience) performed the
qualitative and quantitative analysis independently. The
mean values of two readers were applied to further stat-
istical analyses.

Statistical analysis
Continuous parameters were expressed as mean ± stand-
ard deviation. Kolmogorov-Smirnov test was used for
normally distributed analysis. Paired t-test was used to
compare the difference of qualitative scores, ADCLesion,
ADCMasseter, SNR ratio and CNR ratio between SMS-
RESOLVE DWI and RESOLVE DWI. Intra-class correl-
ation coefficient (ICC) with 95% confidence interval (CI)
was used to assess the inter-reader agreement of ADC,
SNR ratio and CNR ratio measurements. The inter-
reader agreement of the qualitative scores was assessed
with kappa analysis. ICC and kappa values were inter-
preted as follows: (≤ 0.40, poor; 0.41–0.60, moderate;
0.61–0.80, good; ≥ 0.81, excellent) [11]. All statistical
analyses were performed by using two commercially
available software packages (SPSS version 22.0, IBM
Corp., Armonk, NY; MedCalc 15.0, Mariakerke,
Belgium). Two-sided P value less than 0.05 indicated sig-
nificant difference.

Results
Scan time
The scan time for SMS-RESOLVE DWI was 3 min and
41 s. The scan time for RESOLVE DWI was 5 min and
46 s.

Qualitative comparisons
The difference was not statistically significant for all four
qualitative score items between SMS-RESOLVE DWI
and conventional RESOLVE DWI (anatomical structure

Fig. 1 Schematic diagram of the placements of ROIs. Based on the DW (b1000) image (a) of a 47-year-old patient with a warthin tumor in the
right parotid gland, round regions of interest (ROIs) were drawn in parotid tumors (red), ipsilateral masseter muscle (yellow), ipsilateral spinal cord
(green) and background (blue), respectively. The central cystic area was avoided for measurement. Then, the same ROIs were copied on the ADC
map (b), and the mean ADC value of tumor and masseter were measured
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differentiation, 3.05 ± 0.69 vs 3.15 ± 0.67, P = 0.164; le-
sion display, 3.55 ± 0.69 vs 3.70 ± 0.66, P = 0.193; artifact,
2.95 ± 0.51 vs 2.90 ± 0.55, P = 0.330; overall image qual-
ity, 3.05 ± 0.76 vs 3.20 ± 0.77, P = 0.083) (Table 2).
The Kappa values of the four qualitative assessments

bases on SMS-RESOLVE DWI ranged from 0.74–0.84,
while those based on conventional RESOLVE DWI
ranged from 0.71–0.92 (Table 2).

Quantitative comparisons
There were no significant differences on ADCLesion

(0.91 ± 0.37 vs 0.92 ± 0.37, P = 0.298), ADCMasseter (1.41 ±
0.17 vs 1.55 ± 0.11, P = 0.122), SNR ratio (1.92 ± 0.36 vs
1.77 ± 0.74, P = 0.584) and CNR ratio (1.28 ± 0.59 vs
1.11 ± 0.58, P = 0.217) between SMS-RESOLVE DWI and
conventional RESOLVE DWI (Table 3).
The ICCs of the four quantitative measurements based

on SMS-RESOLVE DWI ranged from 0.75–0.89, while
those of the measurements based on conventional RE-
SOLVE DWI ranged from 0.74–0.88 (Table 3). Repre-
sentative images of the patients with lymphoepithelioma
and warthin tumor in this study were shown in Figs. 2
and 3.

Discussion
DWI and ADC value have been proven to be a useful
imaging marker for tumor diagnosis, differentiation of
histologic grade, prediction of disease survival and thera-
peutic monitoring in various tumors [23]. Clinical DWI

is usually scanned using SS-EPI technique because of the
fast scan speed, however it is prone to geometric distor-
tion, image blurring, and image artifacts, which is more
severe in head and neck region [7]. As a solution, RE-
SOLVE technique showed remarkable advantages over
SS-EPI reflected in reduced distortion and artifact [7].
However the improvement in image quality is achieved
at the cost of longer acquisition time, which is a poten-
tial drawback limiting the wide application of RESOLVE
DWI in clinical practice. In our study, we found that
SMS-RESOLVE DWI could allow a substantial reduction
of scan time while maintaining image quality with no
significant difference, thereby improving the clinical ap-
plicability of SMS-RESOLVE DWI in assessing parotid
gland tumors.
Two problems are usually taken into account in DWI

of head and neck region. The first one is artifact, and an-
other one is the display capability of lesions. Previous
studies have demonstrated the absolute advantage of RE-
SOLVE DWI on these two aspects, compared with SS-
EPI [8, 10]. When SMS technique is combined with RE-
SOLVE DWI, whether the reduced acquisition time
would hamper such advantage is not clarified. In our
study, no significant differences on the subjective scores
of artifact and lesion displayed, and the objective mea-
surements of SNR ratio and CNR ratio were observed
between SMS-RESOLVE DWI and RESOLVE DWI,
which was similar with the study of Filli et al. [14]. Our
study result indicated that SMS technique reduced the
scan time without a compromise on image quality and
lesion display capability, which can increase the clinical
usability of RESOLVE DWI for assessing parotid gland
tumors.
One more thing we must concern is that whether the

advanced DWI technique would influence the ADC
value. Previously, several studies compared the ADC
value derived from SS-EPI and RESOLVE DWI, and
paradoxical results were obtained. Zhao et al. found that
the ADC value of the sinonasal lesions on RESOVE
DWI was lower than that on SS-EPI, while Bogner et al.
indicated that there was no significant difference on the
ADC obtained from two DWI sequences [22, 24]. In this
study, we compared the ADC derived from SMS-

Table 2 Qualitative comparisons of image quality between SMS-RESOLVE DWI and RESOLVE DWI

Qualitative parameters SMS-
RESOLVE

RESOLVE P kappa

SMS-RESOLVE RESOLVE

anatomical structure differentiation 3.05 ± 0.69 3.15 ± 0.67 0.164 0.74 0.83

lesion display 3.55 ± 0.69 3.70 ± 0.66 0.193 0.79 0.71

artifact 2.95 ± 0.51 2.90 ± 0.55 0.330 0.79 0.78

overall image quality 3.05 ± 0.76 3.20 ± 0.77 0.083 0.84 0.92

SMS simultaneous multi-slice, RESOLVE readout segmentation of long variable echo-trains, DWI diffusion-weighted imaging.
Data are expressed as mean ± standard deviation.

Table 3 Quantitative comparisons of image quality between
SMS-RESOLVE DWI and RESOLVE DWI

Quantitative
parameters

SMS-
RESOLVE

RESOLVE P ICC

SMS-RESOLVE RESOLVE

ADCLesion 0.91 ± 0.37 0.92 ± 0.37 0.298 0.89 0.86

ADCMasseter 1.41 ± 0.17 1.55 ± 0.11 0.122 0.87 0.74

SNR ratio 1.92 ± 0.36 1.77 ± 0.74 0.584 0.75 0.78

CNR ratio 1.28 ± 0.59 1.11 ± 0.58 0.217 0.83 0.88

SMS simultaneous multi-slice, RESOLVE readout segmentation of long variable
echo-trains, DWI diffusion-weighted imaging, ADC apparent diffusion
coefficient, SNR signal-to-noise ratio, CNR contrast-to-noise ratio, ICC intra-class
correlation coefficient.
Unit of ADC is ×10−3 mm2/s.
Data are expressed as mean ± standard deviation.
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RESOLVE DWI and RESOLVE DWI respectively, and
no significant difference was found on the ADC of both
masseter and tumor, which was consistent with the find-
ings of Filli et al. [14]. Our study results indicated that
SMS technique would not affect the measurement of
ADC values. The derived diagnostic threshold value
achieved from RESOLVE DWI based studies could be
directly applied in SMS-RESOLVE DWI related study.

The scan time is 5 min and 46 s for RESOLVE DWI
of parotid gland in our study, which seems too long
in clinic. During our study design, we tried a highly-
optimized imaging parameter. Thirty slices with a
slice thickness of 3 mm were used in our study, while
the slice thickness usually ranged from 4 to 6 mm in
previous studies [1, 2, 25]. The voxel size was 1.1 ×
1.1 × 3.0 mm3, and the average number of each b

Fig. 2 Example of SMS-RESOLVE DWI, RESOLVE DWI, and corresponding ADC maps of a 29-year-old patient with a lymphoepithelioma in the right parotid
gland. The tumor showed isointensity on T1-weighted image (a), hyperintensity on T2-weighted image (b), and peripheral hyperintensity and central
hypointensity on axial DWI (c, SMS-RESOLVE DWI; d, RESOLVE DWI). Image quality scores were similar for SMS-RESOLVE DWI and conventional RESOLVE DWI.
The ADC value of the tumor derived from SMS-RESOLVE DWI (e) and RESOLVE DWI (f) were 0.54 × 10− 3mm2/s and 0.52× 10− 3mm2/s, respectively
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value was set as 2. In our opinion, DWI based on so
highly-optimized parameters can provide more ana-
tomical information on diffusion map, which is very
crucial for clinical evaluation of tumor and its adja-
cent structures. SMS technique can reduce the scan
time by nearly 2 min, increasing the applicability of so
highly-optimized parameters in clinical practice.

There were several limitations should be noted. First,
we did not compare our sequences with conventional
SS-EPI based DWI, because the advantage of RESOLVE
had been well demonstrated in previous studies [11, 12].
Second, we calculated the SNR ratio, CNR ratio and
ADC values using multiple small and round ROIs those
were manually placed. This method was prone to

Fig. 3 Example of SMS-RESOLVE DWI, RESOLVE DWI, and corresponding ADC maps of a 57-year-old patient with bilateral warthin tumors in
parotid glands. The tumor showed slight hyperintensity on T1-weighted image (a), hyperintensity on T2-weighted image (b), and hyperintensity
on axial DWI (c, SMS-RESOLVE DWI; d, RESOLVE DWI). Image quality scores were similar for SMS-RESOLVE DWI and RESOLVE DWI. The ADC value
of the tumor derived from SMS-RESOLVE DWI (e) and RESOLVE DWI (f) were 0.61 × 10− 3 mm2/s and 0.62× 10− 3 mm2/s, respectively

Jiang et al. BMC Medical Imaging           (2020) 20:93 Page 6 of 8



sampling bias. Third, most parotid gland tumors in our
study were benign ones with clearly demarcated margin.
Further large-scale studies enrolling more tumors with
infiltrative margin and various histo-pathological sub-
types could help us to confirm our findings, and evaluate
the effect of SMS-RESOLVE DWI on diagnostic
accuracy.

Conclusion
Our study indicated that SMS technique can provide a fas-
ter RESOLVE DWI scan for parotid gland tumors without
compromise in image quality in both qualitative and
quantitative assessment. In this respect, SMS-RESOLVE
DWI is a useful alternative to RESOLVE DWI for asses-
sing parotid gland tumors in clinical practice.
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