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Using CT texture analysis to differentiate
between peripheral lung cancer and
pulmonary inflammatory pseudotumor
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Abstract

Background: This study is to distinguish peripheral lung cancer and pulmonary inflammatory pseudotumor using
CT-radiomics features extracted from PET/CT images.

Methods: In this study, the standard 18F-fluorodeoxyglucose positron emission tomography/ computed
tomography (18 F-FDG PET/CT) images of 21 patients with pulmonary inflammatory pseudotumor (PIPT) and 21
patients with peripheral lung cancer were retrospectively collected. The dataset was used to extract CT-radiomics
features from regions of interest (ROI), The intra-class correlation coefficient (ICC) was used to screen the robust
feature from all the radiomic features. Using, then, statistical methods to screen CT-radiomics features, which could
distinguish peripheral lung cancer and PIPT. And the ability of radiomics features distinguished peripheral lung
cancer and PIPT was estimated by receiver operating characteristic (ROC) curve and compared by the Delong test.

Results: A total of 435 radiomics features were extracted, of which 361 features showed relatively good
repeatability (ICC ≥ 0.6). 20 features showed the ability to distinguish peripheral lung cancer from PIPT. these
features were seen in 14 of 330 Gray-Level Co-occurrence Matrix features, 1 of 49 Intensity Histogram features, 5 of
18 Shape features. The area under the curves (AUC) of these features were 0.731 ± 0.075, 0.717, 0.748 ± 0.038,
respectively. The P values of statistical differences among ROC were 0.0499 (F9, F20), 0.0472 (F10, F11) and 0.0145
(F11, Mean4). The discrimination ability of forming new features (Parent Features) after averaging the features
extracted at different angles and distances was moderate compared to the previous features (Child features).

Conclusion: Radiomics features extracted from non-contrast CT based on PET/CT images can help distinguish
peripheral lung cancer and PIPT.
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Background
Lung cancer is the world’s leading cause of cancer-
related deaths and a highly malignant tumor [1, 2], Ac-
cording to the location of the tumor, lung cancer can be
divided into peripheral lung cancer and central lung can-
cer, and more than 70% of all lung cancers are periph-
eral lung cancer [3]. lung cancer can be divided into
adenocarcinoma, squamous cell carcinoma, small cell
lung cancer and large cell lung cancer depending on the
histological and cytological types of tumors. In recent
years, with the improvement of the level of cancer diag-
nosis and treatment [4], the mortality rate of lung cancer
has been on a downward trend, but lung cancer is still
the leading cause of death [5]. About 70% of the patients
with lung cancer are in the advanced stage at the time of
initial diagnosis [6], and even some patients have already
had metastasis, and if patients with lung cancer can be
accurately diagnosed and undergo early surgery, the 10-
year survival rate can reach 88% [7]. thus, the early diag-
nosis and timely treatment of patients with lung cancer
are very important [8].
The good diagnostic effect of computed tomography

(CT) has been achieved in the diagnosis of lung cancer.
However, the traditional CT diagnosis of lung lesions is
mainly based on morphology, which has certain limita-
tions in the differential diagnosis of benign and malig-
nant tumors [9, 10].
In recent years, 18F-fluorodeoxyglucose positron emis-

sion tomography/computed tomography (18F-FDG
PET/CT) has achieved a great effect in the examination
of chest lesions [11], and has been widely used in clinic
[8]. Some reports have shown that PET/CT is more ef-
fective than conventional CT in identifying benign and
malignant chest lesions [12, 13]. However, FDG is not a
drug specifically ingested by cancer [13]. In most cases,
the cumulative increase in metabolic activity of inflam-
matory cells will lead to an increase in FDG uptake,
which is false positive on PET-CT. To some extent,
these lesions can also mimic the biological behavior of
malignant tumors. Even if experienced nuclear medicine
physicians manage to distinguish between benign and
malignant FDG uptake, The result is still far from satis-
factory. This is a great challenge for clinicians and nu-
clear medicine doctors, such as the differentiation of
pulmonary inflammatory pseudotumor (PIPT) and per-
ipheral lung cancer [14, 15].
The CT signs of PIPT are usually complex, variable

and unspecific, and showing round or oval, well-defined
solitary peripheral nodules or masses [16–19], account-
ing for about 1% of adult lung tumors [20]. It is a rare
disease characterized by pulmonary neoplastic hyperpla-
sia of inflammatory cells, which is very similar to malig-
nant tumors of the lung [21, 22]. PIPT occasionally has
a process of invasive proliferation and usually shows

false positive on PET/CT [18]. Due to the overlap be-
tween PIPT and peripheral lung cancer in histopath-
ology, biological behavior, clinical manifestations and
imaging features [20, 23], the clear diagnosis and differ-
entiation often can’t be made by clinicians and nuclear
medicine physicians.
Radiomics widely used in modern medical research,

due to radiomics can quantitative tumor heterogeneity
with the advantages of repeatable, non-invasive, free
from time and space constraints and low-cost [24, 25].
In recent years, radiomics plays a more and more im-
portant role in the qualitative diagnosis of tumors, the
differentiation of benign from malignant tumors and the
evaluation of prognosis of radiotherapy response. The
purpose of this study is to explore whether PIPT and
peripheral lung cancer can be distinguished by radio-
logical analysis.

Methods
Radiomics workflow
The raidomics flow of this study included: (1) images ac-
quisition, (2) image segmentation, (3) feasure extraction,
(4) data analysis. All the steps are shown in Fig. 1.

Patients
This study was approved by the Ethics Review Commit-
tee of Shandong Cancer Hospital and informed consent
was waived. The collection of patient materials in this
study was carried out in two steps. The first step en-
rolled PIPT patients who had undergone 18F-FDG PET/
CT scans in our hospital from May 2015 to October
2019, and their pathological diagnosis was available. In
the second step, the images of the patients with periph-
eral lung cancer were included randomly. The criteria
for patient inclusion were as follows: (I) the patient
underwent PET/CT examination for the first time; (II)
the patient had no history of diabetes; (III) the max-
imum diameter of the lesion was not less than 1.5 cm;
(IV) the patient had complete clinical materials and
pathological reports; (V) standardized uptake value of le-
sions ≥ 2.5.

Patient images acquisition
The 18F-FDG PET/CT images of all patients were ob-
tained by the same hybrid PEC/CT scanner (Philips
Healthcare, Cleveland, OH). The patient fasted for more
than 6 h, and the blood glucose level of all patients was
normal before the scan. PET/CT scans were completed
60min after intravenous injection of 18F-FDG at 4.4
MBq/kg. After attenuation correction and iterative re-
construction, the PET images were used for multi-plane
and multi-image imaging, and the images were fused
with the CT images. The initial CT image acquisition
was conducted with slice thickness 2 mm (120KVp, 206
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mA), and reconstructed to a 512 × 512 matrix (voxels
size, 1.17 × 1.17 × 5mm3). Then, the obtained image data
can be viewed in coronal, sagittal, and axial planes using
image workstation.

Region of interests (ROI) segmentation
The total process of image segmentation was completed
by three experienced doctors. All the image data were
imported into the MIM software (Cleveland, OH), and
the total process of image segmentation was completed
by three experienced radiologists. In the first group of
experiments, ROI was manually delineated by a

radiologist with 15 years of experience on the MIM soft-
ware and supervised by another nuclear medicine phys-
ician with 20 years of experience, a clinical chest doctor
with 20 years of experience to examine and correct all
the delineated images. In the second group of experi-
ments, ROI was manually delineated by a nuclear medi-
cine physician with 20 years of experience, The other
two doctors checked all images and discussed whether
to make changes. While the three senior doctors were
working, they were unable to access all patient-related
medical information. Finally, all the images of the two
groups of experiments were exported by a doctor.

Fig. 1 The workflow of this study

Fig. 2 Algorithm rules of feature extraction. Direction and length of the arrow represent the angle and distance of feature extraction, respectively.
Child feature(A ~O); Parent feature(P ~ S)
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Extraction of radiomic features
All radiomics feature were automatically using imaging
Biomarker Explorer (IBEX) software (MD Anderson Can-
cer Center, TX, USA), which is an open infrastructure
software platform that flexibly supports common radio-
mics workflow tasks such as multimodality image data im-
port and review, development of feature extraction
algorithms, model validation, and consistent data sharing
among multiple institutions [26]. In this study, we named
the features with different names under the same matrix
as parent features, and the features with the same name
extracted from different angles and different distances as
child features, in other words, we did not average the fea-
ture values of the same name from the same matrix ex-
tracted from different angles and distances.
This process had been shown in Fig. 2.

Statistical analysis
The Intra-class correlation coefficient (ICC) was used to
evaluate reproducibility [27], ICC ranges from 0 to 1,
where 0 indicates no repeatability and 1 indicates full re-
peatability. Intraclass correlation coefficients were de-
fined as poor (ICC < 0.4), fair (0.4 ≤ ICC < 0.6), good
(0.6 ≤ ICC < 0.75), and excellent (ICC ≥ 0.75) as reported
previously [28]. Only the feature with excellent repeat-
ability will be included in the follow-up analysis. The
Mann-Whitney U test [29] was performed to analyze the
differences between PIPT and peripheral lung cancer,

this process of statistical analysis was implemented on
Matlab (version 2014b, www.mathworks.com). Radiomics
features that can distinguish between peripheral lung can-
cer and PIPT were obtained using logistic regression ana-
lysis on Medcalc (version 18.2.1, http://www.medcalc.org).
The diagnostic performance of the radiomic features was
illustrated by the receiver operating characteristic (ROC)
curve with indices of the area under the curve (AUC),
confidence Interval, sensitivity and specificity, and com-
pared by the Delong test. The criterion value distinguished
peripheral lung cancer and PIPT was determined by the
maximum of the Youden index [30] (calculating the sum
of specificity and sensitivity at all possible thresholds, then
subtracting one), P-value was corrected by false discovery
rate (FDR) to adjust for multiple comparisons [31], P-
value < 0.05 was considered statistically significant. In
addition, we average the feature values of the same name
extracted from different angles and distances as new fea-
tures and observe their diagnostic capabilities.
The data from this study were z-score transformed

across each radiomic features and displayed as a heat
map with ward. D agglomeration method. Figure 3 rep-
resents a heat map of all radiomic feature extracted.

Results
Patient characteristics
A total of 21 PIPT patients were enrolled in this study,
including 15 males and 6 females (maximum age 74

Fig. 3 Unsupervised hierarchical clustering heat map of radiomic features extracted from CT images from 42 patients. In the heat map, each row
of the heat map represents a patient, and each column represents a radiomic feature extracted from the patient’s CT images. The differences in
feature values were visualized using red to represent higher than average and blue to represent lower than average
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years, minimum age 44 years, median age 58 years). In
the second step, 21 patients with peripheral lung cancer
were randomly collected, including 13 males and 8 fe-
males (maximum age 78 years, minimum age 44 years,
median age 67 years). 14 were diagnosed with adenocar-
cinoma, 6 with squamous cell carcinoma, and 1 with
atypical carcinoid. The clinical characteristics of the pa-
tients in this study were shown in Table 1.

Feature results
In this study, a total of 435 radiomics features were ex-
tracted (composed of 368 texture features, 18 shape fea-
tures, and 49 tumor intensity features), According to the
different calculation methods, these features were di-
vided into 5 categories. Among them, the gray-level co-
occurrence matrix (GLCM,22 parent features, 330 child
features), gray-level run length matrix (GLRLM, 11 par-
ent features, 33 child features), intensity histogram (IH,
9 parent features,49 child features), gray-level neighbor
intensity difference matrix (GLNIDM, 5 parent features,
none), shape (null,18 patient features, none).

Statistical results
As shown in Table 2, a total of 361 radiomic features
(ICC ≥ 0.75) show good repeatability. Among them, the
ability of repeatable shape features is up to 100% (18/
18). followed by the features belonging to IH and GLCM
reached 85.71% (42/49), 84.24% (278/330), respectively.
All statistical differences of PIPT and peripheral lung

cancer were tested by the Mann-Whitney U test. A total
of 29 feature differences were found to be statistically
significant, of which the GLCM has 22 child features,
which belong to 5 parent features, respectively, 1 parent
feature in IH, 1 parent features in NIDM, 5 parent fea-
tures in shape, and their child features are all 0. The 30
radiomics features with statistically significant differ-
ences are shown in Table 3.
Binary logistic regression model analysis showed that

23 of the 29 child features were significantly different
and could be used to distinguish PIPT from peripheral
lung cancer. These 23 child features respectively belong
to GLCM (parent feature correlation (n = 8), parent fea-
ture information measure corr1 (n = 4) and parent fea-
ture information measure corr2 (n = 4))、 IH (parent
feature range(n = 0)) 、GLNIDM (parent feature texture
strength(n = 0)) and shape (parent feature compact-
ness2(n = 0), Roundness(n = 0), parent feature spherical
disproportion(n = 0), parent feature sphericity (n = 0)
and parent feature surface area density(n = 0)),respect-
ively. (Table 3).
ROC curves of 25 features were performed to evaluate

the ability of features differentiating peripheral lung can-
cer from PIPT. The curves (AUC < 0.7) was abandoned
in this study, because of its limited discriminant ability.
Finally, A total of 20 ROC curves of features were ob-
tained in this study. In addition, we calculated the aver-
age value of the features at the same angle and different
distance and drew ROC curves, which were curve
Mean1 and Mean2. we also calculated the average value
of the features at different angles and different distances
and the drew of ROC curves were curve mean3, mean4,
mean5, respectively. The P-values of statistical differ-
ences among ROC were 0.0499 (F9, F20), 0.0472 (F10,
F11), and 0.0145 (F11, Mean4), and the others were
0.5908 ± 0.2803. All ROC curves are shown in Fig. 4.
At the same time, we calculate the AUC, sensitivity,

specificity, cut-off value, and Youden index. We

Table 1 Clinical case information of patients with peripheral
lung cancer and PIPT enrolled in this study

Characteristics peripheral lung cancer PIPT

Age, Mean ± SD (years) 63.62 ± 8.62 57.68 ± 8.61

Gender

Male 15 13

Female 6 8

Tumor volume (cm3)

Minimum value 1.65 1.05

Maximum value 64.29 82.08

Mean value 14.62 18.17

Maximum diameter of tumor (cm)

Minimum value 1.61 1.69

Maximum value 6.4 4.97

Mean value 3.30 2.75

SUV

Minimum value 3.6 2.6

Maximum value 26.2 17.3

Mean value 12.73 10.46

Table 2 The number of features grouped according to ICC

Matrix Poor (ICC < 0.4) Fair (0.4 ≤ ICC < 0.6) Good (0.6 ≤ ICC < 0.75) Excellent (0.75 ≤ ICC) Total

GLCM 25 27 72 206 330

GLRLM 1 11 7 14 33

IH 0 7 25 17 49

NIDM 1 2 0 2 5

SHAPE 0 0 6 12 18
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calculated their interquartile range (IQR) and median
values for features with discriminating ability, respect-
ively. The specific values of all statistical parameters dif-
ferentiating between peripheral lung cancer and PIPT
are shown in Table.4.

Discussion
The results of this study indicated that there was a sta-
tistically significant difference between the radiomic fea-
tures extracted from patients with peripheral lung
cancer and those extracted from patients with PIPT. We
assumed that this statistically significant difference be-
tween peripheral lung cancer and PIPT in this study
might be related to the pathological microstructure dif-
ferences between the two tissue types. Adenocarcinoma

may consist of some cubic tumor cells and some colum-
nar [32]. The pathology of primary lung adenocarcinoma
is mostly papillary type, others are solid, lepidic, acinar,
and micropapillary subtypes., which is often diagnosed
as a mixture of multiple subtypes [33]. The pathological
subtypes of lung squamous cell carcinoma include small
cell, clear cell, basaloid and papillary subtypes [6, 34], in
which papillary squamous cell carcinoma is usually char-
acterized by exogenous endobronchial growth [35]. The
histological types of small cell carcinoma are oat, inter-
mediate and mixed subtype [6]. On pathological smears,
most of the cancer cells are quasi-round or fusiform,
with few cytoplasm and naked nuclei, which are very
similar to lymphoma cells, and there are often mixed
non-nucleated necrotic cells or extensive necrotic areas

Table 3 Feature parameters differentiating between pulmonary inflammatory pseudotumor and peripheral lung cancer

Category Parent Feature Child Feature P1 -value P2 -value

GLCM Cluster Prominence 135–1Cluster Prominence 0.0325 0.2731

Correlation 333–1 Correlation 0.0111 0.0004

333–4 Correlation 0.0497 0.0070

45–1 Correlation 0.0128 0.0014

45–4 Correlation 0.0020 0.0021

45–7 Correlation 0.0025 0.0079

90–4 Correlation 0.0028 0.0029

90–7 Correlation 0.0086 0.0020

135–7 Correlation 0.0265 0.0368

Information Measure Corr1 333–4 Information Measure Corr1 0.0157 0.1208

0–1 Information Measure Corr1 0.0128 0.0384

45–1 Information Measure Corr1 2.97E-5 0.0018

90–1 Information Measure Corr1 5.7E-5 0.0002

90–4 Information Measure Corr1 0.0489 0.1070

135–1 Information Measure Corr1 0.0137 0.0158

Information Measure Corr2 333–1 Information Measure Corr2 0.0442 0.0140

333–4 Information Measure Corr2 0.0442 0.0955

0–1 Information Measure Corr2 0.0497 0.0978

45–1 Information Measure Corr2 0.0020 0.0184

90–1 Information Measure Corr2 0.0083 0.0130

135–1 Information Measure Corr2 0.0168 0.0273

Inverse Diff Moment Norm 135–7 Inverse Diff moment Norm 0.0391 0.2151

IH Range None 0.0169 0.0232

NIDM Complexity None 0.0268 0.0595

SHAPE Compactness2 None 0.0017 0.0027

Roundness None 0.0083 0.0102

Spherical Disproportion None 0.0017 0.0020

Sphericity None 0.0017 0.0028

Surface Area Density None 0.0207 0.0443

Note: The significant difference index of Mann-Whitney U test, P1-value; the significant difference index of Binary logistic regression, P2-value; indicates a
significant difference (p < 0.05)
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[6]. Large cell cancer cells often show sheets and nests
distribution. This kind of cancer cells has rich cyto-
plasm, vesicular nuclei and prominent nucleoli [6, 36].
The histological structure of PIPT is complex and often
accompanied by a mixture of different numbers of cells.
The main cell types of PIPT are spindle cells (myofibro-
blasts and fibroblasts) and chronic inflammatory cells
(especially plasma cells, lymphocytes and macrophages)
[17, 37, 38]. The histology of PIPT can be divided into
three types: (1) fibrous histiocytic type characterized by fu-
siform myofibroblasts and most common (2) under the
microscope, most of the patients with organized pneumo-
nia are foam cells, eosinophils and multinucleated cells (3)
Lymphocyte type is dominated by lymphocytes and
plasma cells, which is the most rare type [18, 39, 40].
The slight difference in pathology between peripheral

lung cancer and pulmonary inflammatory pseudotumor
may be reflected in the attenuation of CT. Correlation is a
value between 0 (uncorrelated) and 1 (perfectly correlated)
showing the linear dependency of gray level values to their
respective voxels in the GLCM [41], Information Measure
Corr1 and Information Measure Corr2 are two features
that assessing the correlation between the probability dis-
tributions of two voxels (quantifying the complexity of the
texture) [41, 42]. The median values of Correlation(F1-
Mean3)、Information Measure Corr1(F8-Mean4) and

Information Measure Corr2(F12-Mean5) of PIPT in this
study are mostly higher than that of peripheral lung can-
cer, which may be related to the distribution of inflamma-
tory cells in PIPT. The specific difference of different
radiomic features were described in Table 2. Relevant re-
ports show that myofibroblasts and histiocytes play a
dominant role in PIPT and are arranged in spirals or
flakes [18, 39]. This may be because PIPT necrosis is rela-
tively less than lung cancer [9, 43, 44], Lung cancer tissue
grows rapidly and is prone to focal necrosis, which may
lead to the larger values of Range(F17) and Texture
Strength(F18) of PIPT compared with that of lung cancer.
In this study, the shape features Compactness2, Spherical
Disproportion and Spherical are the quantification of
tumor roundness, and there is a certain correlation be-
tween these three features in definition. In this study, the
ROC curves of these three features(F16, F18, F19) coin-
cide, which also confirms this fact. This may be that the
most of the peripheral lung cancer is spherical, and the
most of the PIPT are found in the lower lobe of the lung
and are round or oval [17, 20]. Although the morpho-
logical features of peripheral lung cancer and pulmonary
inflammatory pseudotumor are highly similar, the prob-
ability of occurrence of the same imaging features may be
different in the cohort of patients [39, 45]. this may be an
important reason why most of the differences between

Fig. 4 ROC curses of radiomic features. * - Line coincidence
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peripheral lung cancer and PIPT in this study belong to
shape features.
In addition, in this study, we found that the features

extracted from different angles and distances had no
special advantage in distinguishing peripheral lung can-
cer from PIPT. On the contrary, the features extracted
from different angles and different distances have rela-
tively high discriminating ability, such as 45–7 Correl-
ation (F4), 45–1 Information Measure Corr1 (F9), 90–1
Information Measure Corr1 (F10). This may be related
to the directionality of the microstructure of the lung
in space.
Using texture features to distinguish benign and malig-

nant tissues has been reported in many articles. Tsai
et al. [46] reported that Texture features can be used to
distinguish nasopharyngeal carcinoma from normal
nasopharyngeal tissue, and the statistical difference in

texture features between nasopharyngeal carcinoma and
normal nasopharyngeal tissue may be related to the loss
of stripe structure in normal nasopharyngeal tissue. and
this finding had been confirmed on MRI images. Alilou
et al. [47] had shown that lung adenocarcinoma and
granuloma can be diagnosed by shape-based features
(sphericity and roughness), and the two lesions were dif-
ficult to distinguish in pathology. These reports give
great inspiration to the development of our study.
The reproducibility of radiomic features has long been

an inescapable topic in the field of radiomics research.
Variations in patient location, feature extraction soft-
ware, imaging device and segmentation will have an un-
predictable impact on the repeatability of radiomic
features. If features with relatively low robustness are
used in the study, they may perform poorly when tested
by new data sets and even seriously affect our

Table 4 Statistical parameters differentiating between peripheral lung cancer and PIPT

Feature Peripheral Lung Cancer PIPT AUC Confidence
Interval (%)

Sensitivity(%) Specificity(%) Cutoff-
Value

Youden-
IndexIQR median IQR median

F1 0.0429 0.7334 0.0874 0.7913 0.730 55.74 ~ 90.29 80.95 76.19 0.7657 0.5714

F2 0.1056 0.6783 0.1218 0.7846 0.726 56.02 ~ 89.11 80.95 66.67 0.7401 0.4762

F3 0.1399 0.0738 0.1480 0.2719 0.800 69.04 ~ 96.94 90.00 70.59 0.2047 0.6059

F4 0.1889 −0.0284 0.2054 0.1434 0.806 71.76 ~ 97.85 88.89 68.75 0.0246 0.5764

F5 0.1965 0.2102 0.1405 0.3946 0.774 61.64 ~ 0.9306 90.48 65.00 0.3589 0.5548

F6 0.1370 0.0223 0.1438 0.1954 0.754 61.65 ~ 93.45 84.21 72.22 0.1234 0.5643

F7 0.1467 −0.0576 0.2119 0.410 0.718 58.29 ~ 91.37 73.68 76.47 −0.0316 0.5015

Mean1 0.1500 0.2280 0.1403 0.4112 0.800 77.01 ~ 98.50 95.24 71.43 0.3512 0.6667

Mean2 0.1647 0.1211 0.1504 0.2990 0.753 58.75 ~ 91.82 85.71 76.19 0.1855 0.6190

Mean3 0.1372 0.2362 0.1453 0.3776 0.751 58.65 ~ 91.46 90.48 61.90 0.3055 0.5238

F8 0.0436 −0.3821 0.1112 −0.4560 0.726 55.63 ~ 89.49 95.24 57.14 −0.4461 0.5238

F9 0.0409 −0.2944 0.1154 0.3496 0.878 77.01 ~ 98.50 80.95 90.48 −0.3106 0.7143

F10 0.0506 −0.3605 0.0892 −0.4266 0.864 75.06 ~ 97.73 71.43 100.00 −0.3813 0.7143

F11 0.0389 −0.2849 0.1490 −0.3602 0.723 55.99 ~ 88.68 95.24 52,38 −0.3602 0.4762

Mean4 0.0329 −0.3328 0.0751 −0.3978 0.841 71.78 ~ 96.48 90.48 76.19 −0.3624 0.6667

F12 0.0428 0.8997 0.0692 0.9302 0.780 63.75 ~ 92.26 85.71 66.67 0.9175 0.5238

F13 0.0190 0.9330 0.0450 0.9623 0.739 58.18 ~ 89.66 85.71 66.71 0.9567 0.5238

F14 0.0378 0.8930 0.0788 0.9202 0.717 55.49 ~ 87.82 71.43 71.43 0.8975 0.4286

Mean5 0.0244 0.9065 0.0625 0.9419 0.751 60.00 ~ 90.12 85.71 61.91 0.9252 0.4762

F15 115 346 189 494 0.717 54.55 ~ 88.36 76.19 71.43 400.0000 0.4762

F16 0.1460 0.5928 0.4127 0.2817 0.785 63.38 ~ 93.54 95.24 71.43 0.3259 0.6667

F17 0.1063 0.3569 0.2001 0.2136 0.739 58.48 ~ 89.37 85.71 57.14 0.2454 0.4286

F18 0.0953 1.1904 0.5439 1.5253 0.785 63.38 ~ 93.54 95.24 71.43 1.3783 0.6667

F10 0.0680 0.8400 0.2671 0.6556 0.785 63.38 ~ 93.54 95.24 71.43 0.6882 0.6667

F20 1.7698 2.9145 5.3141 4.5316 0.710 54.38 ~ 87.57 66.67 76.19 2.9718 0.4286

Note: F1-GLCM-333-1-correlation, F2-CLCM-45-1-correlation, F4-GLCM-45-4-corr-elation, F6-GLCM-45-7 correlation, F6-GLCM-90-7-correlation, F7-CLCM-135-7-
correlation, F8-GLCM-0-1-information-measure corr1, F9-GLCM-45-1-information measure corr1, F10-GLCM-90–1-information measure corr1, F11-GLC-M-135-1-
information measure corr1, F12-GLCM-45-1-information measure corr2, F13-IGLCM-information measure-90–1-information corr2, F14-GLCM-135-1-information
corr2, F15-IH-range, F16-shape-compactness2, F17-shape-roundness, F19-shape-sphericity, F20-shape-surface area density, mean1-mean(F2+ … … + F4), mean2-
mean(F5+ … … F6), mean3-mean(F1+ … … F7), mean4-mean(F8+ … … F11), mean5-mean(F12+ … … + F14)
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conclusions. The results of this study showed that there
were differences in the repeatability of features extracted
from ROI segmented by manual. As manual segmenta-
tion was easily affected by different levels of observers,
we used ICC to filter features with high robustness, but
this still can not meet our needs. In the follow-up re-
search, a variety of image segmentation methods will be
used to screen highly robust features and verify our con-
clusions, such as automatic and semi-automatic segmen-
tation methods.
There are many limitations to our research. First of all,

the number of patients is small, due to the relatively low
incidence of PIPT, to a certain extent, it limits our col-
lection of relevant medical images. In addition, this
study lacks directly related pathological experimental tis-
sue specimens, so that we can not directly confirm our
findings, and the hypothesis of related problems can
only be based on previous reports. Finally, all the med-
ical images in this study are obtained from the same
PET/CT model. Further studies are needed to determine
whether the images obtained from different PET/CT
machines can get the same conclusion. In the following
research, we will enlarge the sample size as much as pos-
sible and apply machine learning and deep learning
methods to verify our conclusions.

Conclusions
There were significant differences in radiological charac-
teristics between peripheral lung cancer and PIPT,
among which Information Measure Corr1 features (F11,
F12) showed the highest ability to distinguish peripheral
lung cancer from PIPT.
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