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Abstract

Background: There is an increasing interest in non-contrast-enhanced magnetic resonance imaging (MRI) for
detecting and evaluating breast lesions. We present a methodology utilizing lesion core and periphery region of
interest (ROI) features derived from directional diffusion-weighted imaging (DWI) data to evaluate performance in
discriminating benign from malignant lesions in dense breasts.

Methods: We accrued 55 dense-breast cases with 69 lesions (31 benign; 38 cancer) at a single institution in a
prospective study; cases with ROIs exceeding 7.50 cm2 were excluded, resulting in analysis of 50 cases with 63
lesions (29 benign, 34 cancers). Spin-echo echo-planar imaging DWI was acquired at 1.5 T and 3 T. Data from three
diffusion encoding gradient directions were exported and processed independently. Lesion ROIs were hand-drawn
on DWI images by two radiologists. A region growing algorithm generated 3D lesion models on augmented
apparent-diffusion coefficient (ADC) maps and defined lesion core and lesion periphery sub-ROIs. A lesion-core and
a lesion-periphery feature were defined and combined into an overall classifier whose performance was compared
to that of mean ADC using receiver operating characteristic (ROC) analysis. Inter-observer variability in ROI definition
was measured using Dice Similarity Coefficient (DSC).

Results: The region-growing algorithm for 3D lesion model generation improved inter-observer variability over
hand drawn ROIs (DSC: 0.66 vs 0.56 (p < 0.001) with substantial agreement (DSC > 0.8) in 46% vs 13% of cases,
respectively (p < 0.001)). The overall classifier improved discrimination over mean ADC, (ROC- area under the curve
(AUC): 0.85 vs 0.75 and 0.83 vs 0.74 respectively for the two readers).

Conclusions: A classifier generated from directional DWI information using lesion core and lesion periphery
information separately can improve lesion discrimination in dense breasts over mean ADC and should be
considered for inclusion in computer-aided diagnosis algorithms. Our model-based ROIs could facilitate
standardization of breast MRI computer-aided diagnostics (CADx).

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: apenn@alanpenn.com
1Alan Penn & Assoc., Inc., 14 Clemson Ct, Rockville, MD 20810, USA
Full list of author information is available at the end of the article

Penn et al. BMC Medical Imaging           (2020) 20:61 
https://doi.org/10.1186/s12880-020-00458-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-020-00458-3&domain=pdf
http://orcid.org/0000-0001-5082-9384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:apenn@alanpenn.com


Background
There is an increasing interest in the use of non-enhanced
breast diffusion-weighted imaging (DWI). This is due in
part to concern of harm from gadolinium, the enhancing
agent used with dynamic-contrast-enhanced MRI
(DCEMRI) [1, 2]. A common lesion classifier is the mean
value of apparent-diffusion coefficient (ADC) calculated
over a lesion region-of-interest (ROI). However, lesion
ROIs can include cysts and/or areas of necrosis, or suffer
from volume-averaging at boundaries – all of which can de-
grade the effectiveness of mean ADC as a discriminator.
Several studies have investigated methods of extracting and
evaluating only the relevant portions, or sub-ROIs, of the
original full-lesion ROI. They have concluded that ROI
placement significantly influences reported ADC values in
breast tumors and that smaller ROIs are frequently associ-
ated with improved discrimination [3–5].
Methods of defining sub-ROIs have varied widely among

investigators. For example, including manually avoiding
areas identified on pre-contrast T1- or T2-weighted images
[6, 7], using very small (3–4 pixel) subregions with low in-
tensity signals [4], and covering the full-lesion ROI with cir-
cular sub-ROIs of fixed size and selecting the sub-ROI with
lowest ADC value [8] have been tested. Differences in sub-
ROI selection methodologies and imaging protocols have
led to reported results that are hard to compare across
studies [9, 10]. The method of defining the ROI affects
lesion-averaged ADC values, since drawing an ROI by hand
or placing geometric shapes over or within the lesion can
introduce bias by including background pixels and/or ex-
cluding lesion pixels at the boundary [8, 11–14]. Previous
studies showed that ADC values for malignant tumors de-
pend upon how much peri-tumor tissue is included in the
evaluation. Specifically, ADC of the central part of a malig-
nant lesion was significantly lower than ADC of the whole
lesion, while there was no significant difference for benign
lesions [7, 15]. Partridge et al. and Zeilinger et al. noted lim-
itations of hand-drawn ROIs, including ROI reproducibility
and accuracy, and the difficulty in propagating ROIs from
DCEMRI to DWI images [14, 16].
We present a model-based approach that introduces

three methodological novelties for DWI data acquisition
and post-processing. First, we obtain and utilize separately
the information from the three diffusion-encoding gradient
datasets. Second, we introduce a region-growing algorithm
for generating 3D, topologically connected lesion volume-
of-interest (VOI) models from which 2D ROIs are derived.
Finally, rather than analyzing the lesion as a single ROI,
we define lesion-core and periphery sub-ROI (peri-le-
sion) and derive separate features for the two. This was
motivated by earlier studies showing that analysis of
peri-lesion tissue can provide a discriminatory feature
(morphological blooming) in DCEMRI [17] and in
ADC analysis [15].

The purpose of this work is to present a new approach
that introduces the three methodological improvements
and to demonstrate that it leads to enhanced diagnostic
performance over using the mean ADC of the lesion
ROI as a classifier of malignant vs benign lesions. Only
patients with dense breasts are included in the study, as
this is the population with the worst diagnostic perform-
ance on mammography and thus with the greatest need
for improved imaging techniques.

Methods
Patient recruitment and imaging protocol
The study was performed under an IRB-approved proto-
col, with informed consent obtained from all subjects. Pa-
tients with breast lesions found on mammographic and/or
sonographic exams were recruited prospectively before
breast biopsy was performed. Subjects who had undergone
prior treatment were not accrued, as that could distort dif-
fusion signals. Fifty-five patients with 69 lesions (38 malig-
nant; 31 benign) were imaged between Jan. 1, 2015 and
Nov 15, 2016 using 1.5 T and 3.0 T MR systems. Lesions,
as annotated by Radiologist 1 who had access to all im-
aging and clinical data, were categorized by maximum in-
plane area as follows: small-medium (55 lesions: 0.14
cm2–6.74 cm2) and large (6 lesions: 8.63 cm2–49.30 cm2).
The data set contained no lesions with sizes between

6.74 cm2 and 8.63 cm2, and cases with ROIs larger than
that gap were excluded. The diameter of tumors having
sizes within the range of the gap is approximately 3 cm.
Clinical studies suggest that there is a low risk of local re-
currence with breast conservation surgery in invasive
breast cancers that are less than 3 cm in diameter [18].
Thus, choosing cancers less than 3 cm is clinically mean-
ingful and minimized the size bias of discriminating fea-
tures. The threshold 7.50 cm2 was nominally used to
represent the gap 6.74 cm2 to 8.63 cm2.
No lesions were excluded because of imaging problems

or patient motion. The study set included 49 masses (26
cancer; 23 benign). 12 non-mass enhancements (NME) (8
cancer; 4 benign) and two benign lesions that were identi-
fied on mammography as calcifications 1 and architectural
distortion 1 but negative on DCEMRI. Twelve lesions
were found in extremely dense breasts and 51 in heteroge-
neously dense breasts. All lesions underwent image-
guided biopsies following MR imaging.
The subjects underwent DWI, non-fat suppressed T2-

weighted imaging, and DCEMRI using dedicated 16-
channel Mammotrack phased array breast coils (Philips
Healthcare, Best, Netherlands), at a 1.5 T Achieva (Philips
Healthcare, Best, Netherlands; 1 benign; 3 malignant le-
sions) and a 3 T Achieva (Philips Healthcare, Best,
Netherlands; 30 benign; 35 malignant lesions). Diffusion
weighted images were acquired prior to the administration
of gadolinium-based contrast agent and the acquisition of
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DCEMRI. Spin-echo echo-planar imaging (SE-EPI) was
used to generate diffusion weighted images and corre-
sponding ADC maps in the axial plane, with imaging pa-
rameters shown in Table 1. DWI data were acquired,
retained, and analyzed individually for each of the three dif-
fusion gradient encoding directions.

Image analysis
Images were analyzed by two fellowship-trained breast radi-
ologists with over 10 years of experience (HA, VD) who
read MRI as part of their clinical practice. Radiologist 1,
who was familiar with clinical results and had access to
mammographic, sonographic and DCEMRI images in
addition to DWI images, selected one of the ADC, b = 0 s/
mm2, b = 50 s/mm2 or b = 800 s/mm2 series for lesion de-
lineation based on the reader’s assessment of lesion visibil-
ity. Radiologist 1 then selected the set of axial slices
containing the lesion that would be annotated and drew le-
sion ROIs on each of the selected axial slices. The slice with
the largest ROI was designated the “index slice.” Annota-
tions of Radiologist 1 were drawn on interpolated images
(512 × 534–1274 × 994 pixels) using the 1680 × 1050 HP
Compaq LA2205wg monitor (Hewlett-Packard, Palo Alto,
CA) which recorded, for each annotated slice, the size of
the marked ROI in cm2 (see, e.g., Fig. 1a). The annotated
images were then down-sampled to the original size of the
DICOM images (240 × 240–336 × 336 pixels). Pixels on the
down-sampled images have signal contribution from mul-
tiple interpolated pixels and were included in the final ROI
when a given percentage of contributing pixels had been
included in the hand-drawn ROI. This percentage was
selected such that the final ROI size in cm2 was the closest
to that on the interpolated image, for each case.
To simulate reading conditions of a non-contrast MRI

exam, Radiologist 2 was presented with mammographic,
sonographic, and DWI images but was blinded to clin-
ical report results and DCEMRI images. Radiologist 2
was also presented with arrows pointing to the approxi-
mate location of the lesion on b = 0 and 800 s/mm2 im-
ages and with ADC maps of the index slice. Radiologist
2 used these images to assess the location and extent of
the lesion, selected the index DW image to be annotated

independently from Reader 1 selection, and hand drew
the lesion ROI on this index slice using Mi-Forms De-
signer v.11 (Mi-Corporation, Durham, NC) on a Lenovo
Thinkpad X230 Tablet PC. Radiologist 2 annotated im-
ages interpolated to a fixed-size template of 340 × 340
pixels and the annotated images were then down-
sampled to the original size of the DICOM images.
Pixels in the down-sampled images were included in the
ROI if at least 50% of contributing pixels were in the
ROI on the 340 × 340 image.
Directional ADC maps were constructed for each dif-

fusion gradient encoding dataset (Eq. 1):

ADCd ¼ 1=b800ð Þ� ln S0=Sd;800
� � ð1Þ

where S0 is the signal intensity in DW image obtained at
b = 0 s/mm2 and Sd,800 is the signal intensity in DW
image obtained for the given diffusion encoding gradient
direction (d = r, p, or s for readout, phase encoding, and
slice encoding direction, respectively) and b = 800 s/
mm2. An augmented directional ADC map (auADCd)
was constructed for each of the three directional ADCd

maps by multiplying the pixel intensity on the direc-
tional ADCd map by the corresponding pixel intensity of
the S0 image (Eq. 2).

auADCd ¼ S0�ADCd

¼ S0� 1=b800ð Þ� ln S0=Sd;800
� � ð2Þ

S0 is a non-directional, T2-weighted image with in-
creased lesion conspicuity that is low-resolution but with
spatial distortion that matches that of higher b-value
DW images and ADC maps. Using augmented auADCd

maps was previously found to perform well for lesion
ROI definition [19].
From ROIs drawn by Radiologists 1 and 2, independ-

ently, and for each direction separately, 3D VOI models
were computer-generated around the lesion by including
spatially connected voxels with auADCd signal higher
than a certain threshold. The 3D model VOIs cross-
section in the index slice generally differed from the 2D
hand-drawn ROI, and the threshold was selected so that
the Jaccard similarity index between these was maxi-
mized [20]. The overlap of the hand-drawn ROI and the
3D VOI cross-section in the index slice defined the
“core-lesion sub-ROI”, while the remainder of the 2D
hand-drawn ROI constituted the “peri-lesion sub-ROI”.
Thus, three direction-dependent sets of core- and peri-
lesion sub-ROIs were defined for each reader, and quan-
titative differences between these directional sub-ROIs
were exploited for enhanced diagnostic purposes.
Figure 1 illustrates the index slice containing an invasive

lobular carcinoma (ILC) in a 57-year-old patient with het-
erogeneously dense breasts imaged at 3.0 T. Figure 1a
shows the original hand-drawn ROI from Radiologist 1 on

Table 1 Imaging parameters for the SE-EPI DWI sequence

Philips Achieva 1.5 T Philips Achieva 3.0 T

TR [ms] 16,860–16,960 10,546–13,863

TE [ms] 80.1 63.9–67.5

Field-of-view [mm2] 300 × 300–330 × 330 300 × 300–390 × 390

In-plane resolution [mm] 1.15–1.25 1.04–1.25

Slice thickness [mm] 2.5 2.5

Number of slices 80 65–80

b values [s/mm2] 0, 800 0, 800
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a b = 800 s/mm2 image. Figure 1b shows the hand-drawn
ROI superimposed in red on the ADC map. Figure 1c
shows green pixels that represent the cross-section with
the 3D computer lesion model constructed from auADCr

values. The lesion model in Fig. 1c is topologically con-
nected in 3D, but not in 2D, as shown. Green pixels that
lie within the hand-drawn ROI form the lesion-core; black
pixels that are within the hand-drawn ROI but are not in
the computer model form the peri-lesion.

ROC analysis
The ROC analysis was targeted for a binary classification,
where positive samples were malignant lesions and nega-
tive samples were benign lesions. Sensitivity was defined
as the ratio of the number of true positives over the sum
of the numbers of true positives and false negatives. Speci-
ficity was defined as the ratio of the number of true nega-
tives over the sum of the numbers of true negatives and
false positives. Sensitivity was evaluated at specificity equal
to 90% on the ROC curves [21]. Within core- and peri-
lesion sub-ROIs, a threshold of ADC = 1.37mm2/s was se-
lected to separate “benign-like” (ADC ≥ 1.37mm2/s) from
“cancer-like” voxels (ADC < 1.37mm2/s), based on a pre-
viously published study [19]. The quantitative feature de-
fined for lesion-core ROIs was the standard deviation of
area covered by cancer-like voxels (SDAC) over the three
directions. Thus, SDAC directly quantifies differences be-
tween directional DWI datasets, and higher SDAC values
indicate higher probability of cancer. If the mean area cov-
ered by cancer-like pixels was < 6.67mm2, (i.e., total area
for three directions < 20mm2) the cancer-like pixels were
assumed to be spurious and SDAC was forced to 0, indi-
cating benignity. The quantitative feature defined for peri-
lesion ROIs was the area covered by cancer-like pixels
minus the area covered by benign-like pixels (ACMB) over
all three directions, with negative values permitted. Higher
ACMB values indicated higher probability of cancer.
SDAC was combined with ACMB into a single ROC
model-based classifier (MBC), using logistic regression
with 5-fold cross validation. The baseline discrimination
classifier for each reader was the mean ADC value over

the hand-drawn ROIs. Mass lesions and lesions smaller
than 1 cm2 were also independently analyzed.

Statistical analysis
Differences between benign and malignant ROI sizes
were evaluated using a 2-sided t-test, with significance
level 0.05. Diagnostic performance of mean ADC, SDAC,
ACMB, and MBC was evaluated using pROC and
cvAUC packages in R (http://cran.us.r-project.org) [21].
Logistic regression with repeated stratified 5-fold cross-
validation was used. Binormal ROC curves were con-
structed using cross-validated model parameters..
The Dice Similarity Coefficient (DCS) was used to

evaluate inter-observer variability between ROIs resulting
from Radiologist 1 and Radiologist 2 readings. The DCS
values for each lesion averaged over the three directional
algorithm-generated lesion-core sub-ROIs were compared
to the DSC values for hand-drawn lesion ROIs, using the
Wilcoxon signed-rank test. The McNemar test was used
to compare percentages of cases with DSC greater than
0.8 (indicating substantial agreement) [22, 23].

Results
Figure 2 shows the hand-drawn lesion ROIs (light blue,
a and b) and lesion-core pixel sets (c and d) obtained
from phase directional ADCp map as defined by Radi-
ologist 1 (left) and Radiologist 2 (right), in a 63-year-old
patient with heterogeneously dense breasts with an inva-
sive ductal carcinoma (IDC) lesion. The red and blue
pixels in Fig. 2c-d mark the lesion core with red indicat-
ing cancer-like (ADC < 1.37) and blue indicating benign-
like (ADC ≥ 1.37) voxels.
The mean sizes and standard deviations of study lesions,

as recorded from annotations by Radiologist 1, were
154 ± 165mm2 (min, median, max: 16, 80, 673mm2) and
179 ± 142mm2 (min, median, max: 14, 121, 463mm2) for
benign and malignant lesions, respectively (p = 0.52). The
mean DSC values over study cases were 0.56 for hand-
drawn ROIs (0.57 and 0.55 in cancer and benign cases, re-
spectively) vs 0.66 for computer-generated lesion-core
sub-ROIs (0.63 and 0.70 in cancers and benign cases,

Fig. 1 2D cross-section of the model 3D lesion VOI
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respectively) (p < 0.001). For hand-drawn ROIs, 12.7% of
cases had mean DSC > 0.8 (11.8 and 13.8% in cancer and
benign cases, respectively), vs 46.0% in algorithm-
generated lesion core sub-ROIs (38.2 and 55.2% in cancer
and benign cases, respectively). This difference was statis-
tically significant (p < 0.001).
Figure 3 shows the corresponding baseline (mean ADC)

and overall model-based classifier binormal ROC curves
for Radiologist 1 and Radiologist 2. At specificity of 90%
(3 FP; 26 TN), sensitivity for Radiologist 1 improved from
27 to 64% and sensitivity for Radiologist 2 improved from
19 to 49% for model-based classifier over baseline.
Table 2 shows ROC AUC values for baseline discrim-

ination, ACMB, SDAC, and the overall model-based
classifier for the two radiologists. Table 3 shows ROC
AUC values for baseline discrimination, ACMB, and
SDAC for small lesions (areas < 1 cm2; n = 29) as marked

by Radiologist 1. Excluding from analysis the 4 lesions
obtained at 1.5 T field strength did not materially change
the AUC values. For Radiologist 1: AUCs for 3.0 T cases
only were 0.755 and 0.860, for mean ADC and MBC, re-
spectively, compared to AUC values for all cases of
0.748 and 0.850. For Radiologist 2: 3.0 T cases had AUC
values of 0.740 and 0.843 compared to values for all
cases of 0.743 and 0.829.
Figure 4 shows the AUC values computed for lesions

as marked by Radiologist 1 for lesions with areas less
than 1 cm2 (n = 29) and for all lesions (n = 63).

Discussion
We have tested the performance of a model-based classi-
fier for characterizing breast lesions, introducing three
new techniques. First, we used a region-growing algo-
rithm for generating topologically connected 3D lesion

Fig. 2 Definition of lesion core and lesion periphery sub-ROIs

Fig. 3 Binormal ROC curves for baseline and model-based classifier for the two readers
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VOI models from which 2D lesion ROIs are derived. This
algorithm operates on augmented directional ADC maps,
where values of the directional ADC map are multiplied
with corresponding values of the b = 0 s/mm2 DW image.
Second, we retained and utilized the information from the
three diffusion-encoding direction datasets separately,
thus defining three different model-based sets of 3D VOIs
and 2D ROIs. Finally, we divided the lesion ROI into
lesion-core and peri-lesion sub-ROIs and derived distinct
features for each which are combined into the overall
model-based classifier. The improvements over baseline
ROC AUC values validate our approach.
Our results indicate that inter-observer variability could

be improved if lesion-core ROIs are standardized by
employing algorithm-based definition. Improved inter-
observer variability is important for both the clinical appli-
cation of breast lesion discrimination and for development
of CADx systems for breast cancer detection and diagnos-
tics. We observed an increase in the percentage of cases
with substantial agreement for lesion-core sub-ROIs. This
demonstrates the benefit of computer-based ROI selection
and potential for standardization of ADC measurement
between observers and, potentially, institutions and
manufacturers.

For both radiologists, our model-based classifier re-
sulted in improvement in AUC over that obtained
from mean ADC. Improvement in AUC on small le-
sions was found for both radiologists using self-
training on their respective data sets; these results
suggest that it may be possible to improve discrimin-
ation of small lesions using the methods introduced
here, but a study with a larger set of small lesions is
required to validate that hypothesis. For lesions with
areas less than 1 cm2 in the index slice, the mean
ADC performed especially poorly and for Radiologist
1, SDAC – the lesion-core feature derived from dif-
ferences in directional DW images – was responsible
for most of the improvement in AUC. Using only
three gradient directions, rather than a more time-
intensive DTI sequence, preferentially labels as aniso-
tropic the lesions that have a suitable orientation rela-
tive to the directions of the gradients. However, our
results demonstrate that even the limited anisotropy
information derived from DWI is helpful in improv-
ing diagnostic accuracy. This is most strikingly true
for small lesions, where the discrimination task is es-
pecially challenging. As the imaging time is not in-
creased, this is a penalty-free method for improving
diagnostic performance.
Radiologist 1 defined hand-drawn lesion ROIs with ac-

cess to all the clinical and radiological information,
which is the typical scenario for evaluation of suspicious
findings. Radiologist 2 drew lesion ROIs without access
to DCEMRI information. Importantly, MR imaging
was performed prior to lesion biopsy. Thus, our re-
sults are relevant to and could help improve accuracy
of either DCEMRI-based diagnostic or screening MRI
exams (Radiologist 1 analysis), or of non-contrast-
enhanced screening exams (Radiologist 2 analysis).
There are several limitations to this study. First, the

two Radiologists drew ROIs with different prior informa-
tion, which could introduce variability. However, even
with these differences we have observed improved inter-
reader agreement in lesion core ROIs. This indicates that
our method is more robust to variations in methodology
than using simple hand-drawn ROIs. Second, while this
prospective study was designed to include and analyze
all non-excluded cases, most of the cases (59/63) were
imaged on 3.0 T systems. In our sample however,
restricting the analysis to cases imaged at 3.0 T resulted
in minimal differences in AUC values without materially
impacting the results. Third, we used a fixed ADC cutoff
for SDAC and ACMB definitions, based on earlier re-
sults, and it is possible that a more optimal cutoff value
would yield improved discrimination. Finally, this study
was restricted to women with dense breasts and it re-
mains to be seen how these results translate to the gen-
eral population.

Table 2 ROC analysis results

Radiologist Feature (No cases) AUC

Radiologist 1 baseline (63) 0.748

ACMB (63) 0.830

SDAC (63) 0.846

MBC (63) 0.850

Masses (49): baseline / MBC 0.789/0.930

Radiologist 2 baseline (63) 0.743

ACMB 0.831

SDAC 0.775

MBC (63) 0.829

Masses (49): baseline / MBC 0.760/0.874

baseline =mean ADC of hand-drawn ROI.
MBC =model-based classier

Table 3 ROC analysis results for lesions smaller than 1 cm2

Radiologist Feature (29 cases) AUC

Radiologist 1 baseline 0.670

ACMB 0.694

SDAC 0.782

MBC 0.747

Radiologist 2 baseline 0.707

ACMB 0.760

SDAC 0.667

MBC 0.726

baseline =mean ADC of hand-drawn ROI.
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Conclusions
The combination of (a) independent evaluation of DWI
directional signals, (b) model-based VOIs, and (c) features
derived separately from lesion-core and peri-lesion ROIs
defined on augmented ADC maps could improve discrim-
ination of benign from malignant breast lesions in women
with dense breasts. Inter-observer variability among
readers could be reduced by modeling lesions as 3D, topo-
logically connected VOIs from which 2D ROIs are de-
rived. The use of limited anisotropic information derived
from directional DWI datasets improves diagnostic accur-
acy without an acquisition time penalty. The methods in-
troduced here could potentially increase the diagnostic
accuracy of both DCEMRI-based and non-contrast
screening breast MRI exams.
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